Skip to main content
Log in

Effects of risk attitudes and investment spillover on supplier encroachment

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

With the development of e-commerce, a growing number of suppliers have begun to initially establish their own direct channels, competing with their retail channels. However, while this encroachment endows the suppliers with an efficient method to control downstream competition and total production output directly, it may hurt the retailer due to the loss of monopoly in the retail market. This inconsistency presents a difficulty in reaching equilibrium. In this paper, we focus on the combined effects of the risk attitudes and upstream production investment of supply chain members on supplier encroachment and verify the existence of “win–win” results for both supplier and retailer. We find that, while the two parties cannot simultaneously benefit from supplier encroachment in the absence of upstream investment, they can obtain a Pareto improvement from it in the presence of upstream investment and spillover effect. Regarding risk attitudes, we find that both the supplier and the retailer can reach agreement on the supplier encroachment in the case of a moderate confidence level. In other words, the not too risk-loving and not too risk-averse supply chain members are more likely to obtain a Pareto improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arya A, Mittendorf B, Sappington DE (2007) The bright side of supplier encroachment. Mark Sci 26(5):651–659

    Article  Google Scholar 

  • Chai J, Chen H, Huang Q, Yan W (2017) Should a manufacturer encroach on its retailer’s operations with quality differentiated products? In: Discrete dynamics in nature and society

  • Che YK, Hausch DB (1999) Cooperative investments and the value of contracting. Am Econ Rev 89(1):125–147

    Article  Google Scholar 

  • Chen X (2014) Uncertain calculus and uncertain finance. UTLab, Beijing

    Google Scholar 

  • Chen H, Wang X, Liu Z, Zhao R (2017) Impact of risk levels on optimal selling to heterogeneous retailers under dual uncertainties. J Ambient Intell Humaniz Comput 8(5):727–745

    Article  Google Scholar 

  • Chen H, Yan Y, Liu Z, Xing T (2018a) Effect of risk attitude on outsourcing leadership preferences with demand uncertainty. Soft Comput 22(16):5263–5278

    Article  Google Scholar 

  • Chen H, Yan Y, Ma N, Yang L (2018b). Coopetition strategy and pricing timing in an outsourcing supply chain with uncertain operation risks. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2821106

    Article  Google Scholar 

  • Chiang WK, Chhajed P, Hess JD (2003) Direct marketing, indirect pro fits: a strategic analysis of dual-channel supply-chain design. Manag Sci 49(1):1–20

    Article  Google Scholar 

  • Chung H, Lee E (2017) Asymmetric relationships with symmetric suppliers: strategic choice of supply chain price leadership in a competitive market. Eur J Oper Res 259(2):564–575

    Article  MathSciNet  Google Scholar 

  • Fanti L (2016) Endogenous timing under price competition and unions. Int J Econ Theory 12(4):401–413

    Article  MathSciNet  Google Scholar 

  • Ha AY, Tong S, Zhang H (2011) Sharing demand information in competing supply chains with production diseconomies. Manag Sci 57(3):566–581

    Article  Google Scholar 

  • Ha A, Long X, Nasiry J (2015) Quality in supply chain encroachment. Manuf Serv Oper Manag 18(2):280–298

    Article  Google Scholar 

  • Hsiao L, Chen YJ (2014) Strategic motive for introducing internet channels in a supply chain. Prod Oper Manag 23(1):36–47

    Article  Google Scholar 

  • Kapner S (2014) How the web drags on some retailers. Wall Street J. https://www.wsj.com/articles/how-the-web-drags-on-some-retailers-1417477790

  • Ke H, Su T, Ni Y (2015) Uncertain random multilevel programming with application to production control problem. Soft Comput 19(6):1739–1746

    Article  Google Scholar 

  • Li Z, Gilbert SM, Lai G (2013) Supplier encroachment under asymmetric information. Manag Sci 60(2):449–462

    Article  Google Scholar 

  • Li T, Xie J, Zhao X (2015a) Supplier encroachment in competitive supply chains. Int J Prod Econ 165:120–131

    Article  Google Scholar 

  • Li Z, Gilbert SM, Lai G (2015b) Supplier encroachment as an enhancement or a hindrance to nonlinear pricing. Prod Oper Manag 24(1):89–109

    Article  Google Scholar 

  • Li H, Cui N, Xu X (2017) Dual channel supply chain with manufacturer competition. J Syst Eng 32(4):535–546

    MATH  Google Scholar 

  • Liu B (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  • Liu Z, Zhao R, Liu X, Chen L (2017) Contract designing for a supply chain with uncertain information based on confidence level. Appl Soft Comput 56:617–631

    Article  Google Scholar 

  • Shang W, Ha AY, Tong S (2015) Information sharing in a supply chain with a common retailer. Manag Sci 62(1):245–263

    Google Scholar 

  • Tedeschi B (2000) E-commerce report; Traditional manufacturers are grappling with the pros and cons of direct sales on the Internet. New York Times, January 3

  • Tsay AA, Agrawal N (2004) Channel conflict and coordination in the E-commerce age. Prod Oper Manag 13(1):93–110

    Article  Google Scholar 

  • Wang Y, Niu B, Guo P (2013) On the advantage of quantity leadership when outsourcing production to a competitive contract manufacturer. Prod Oper Manag 22(1):104–119

    Article  Google Scholar 

  • Wu X, Zhao R, Tang W (2014) Uncertain agency models with multidimensional incomplete information based on confidence level. Fuzzy Optim Decis Mak 13(2):231–258

    Article  MathSciNet  Google Scholar 

  • Xiao T, Qi X (2008) Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers. Omega 36(5):741–753

    Article  Google Scholar 

  • Xie J, Zhang W, Liang L, Xia Y, Yin J, Yang G (2018) The revenue and cost sharing contract of pricing and servicing policies in a dual-channel closed-loop supply chain. J Clean Prod 191:361–383

    Article  Google Scholar 

  • Yao D-Q, Yue X, Mukhopadhyay SK, Wang Z (2009) Strategic inventory deployment for retail and e-tail stores. Omega 37(3):646–658

    Article  Google Scholar 

  • Yan Y, Zhao R, Lan Y (2017) Asymmetric retailers with different moving sequences: group buying versus individual purchasing. Eur J Oper Res 261(3):903–917

    Article  Google Scholar 

  • Yan Y, Zhao R, Liu Z (2018a) Strategic introduction of the marketplace channel under spillovers from online to offline sales. Eur J Oper Res 267(1):65–77

    Article  MathSciNet  Google Scholar 

  • Yan Y, Zhao R, Chen H (2018b) Prisoner’s dilemma on competing retailers’ investment in green supply chain management. J Clean Prod 184:65–81

    Article  Google Scholar 

  • Yan Y, Zhao R, Xing T (2018c) Strategic introduction of the marketplace channel under dual upstream disadvantages in sales efficiency and demand information. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2018.09.022

    Article  MathSciNet  Google Scholar 

  • Yang X, Gao J (2016) Linear-quadratic uncertain differential game with application to resource extraction problem. IEEE Trans Fuzzy Syst 24(4):819–826

    Article  Google Scholar 

  • Yang K, Zhao R, Lan Y (2014) The impact of risk attitude in new product development under dual information asymmetry. Comput Ind Eng 76:122–137

    Article  Google Scholar 

  • Yang H, Luo J, Zhang Q (2017) Supplier encroachment under nonlinear pricing with imperfect substitutes: bargaining power versus revenue-sharing. Eur J Oper Res 267:1089–1101

    Article  MathSciNet  Google Scholar 

  • Yang H, Luo J, Zhang Q (2018) Supplier encroachment under nonlinear pricing with imperfect substitutes: bargaining power versus revenue-sharing. Eur J Oper Res 267(3):1089–1101

    Article  MathSciNet  Google Scholar 

  • Yoon D-H (2016) Supplier encroachment and investment spillovers. Prod Oper Manag 25(11):1839–1854

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 71771165 and 61873108, the Key Project of Humanities and Social Sciences in Hubei Education Department under Grant No. 18D101, the High Level Training Project of Huanggang Normal University under Grant No. 201816803, and Yanta Scholars Foundation of Xi’an University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchen Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal participants performed by any of the authors.

Informed consent

Informed consent is obtained from all individual participants included in the study.

Additional information

Communicated by Y. Ni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Effects of risk attitudes and investment spillover on supplier encroachment

Appendix: Effects of risk attitudes and investment spillover on supplier encroachment

To obtain Theorem 1, we first present the following lemma.

Lemma 1

(Liu 2011) Let the function \(g(\mathbf x ,x_1,x_2,\dots ,x_n)\) be strictly increasing with \(x_1,x_2, \dots , x_k\) and be strictly decreasing with \(x_{k+1},x_{k+2},\dots ,x_n\). If \(\xi _1,\xi _2,\dots , \xi _{n}\) are uncertain variables with uncertainty distributions \(\varPhi _1,\varPhi _2,\dots ,\varPhi _n\), respectively, then the chance constraint \({\mathcal {M}}\{g(\mathbf x ,\xi _1,\xi _2,\dots ,\xi _n) \leqslant 0\}\geqslant \alpha \) holds if and only if \(g\left( \mathbf x ,\varPhi _1^{-1}(\alpha ),\dots ,\varPhi _k^{-1}(\alpha ),\varPhi _{k+1}^{-1}(1-\alpha ),\dots ,\varPhi _{n}^{-1}(1-\alpha )\right) \le 0,\) where \(0 \le \alpha \le 1\).

Proof

(Theorem 1) Because the supplier’s profit function \(\pi _{s}(q_{r},w;x)\) is strictly decreasing with respect to the per-unit selling cost x, from Lemma 1, the chance constraint \(M\{\pi _{s}(q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\xi )\geqslant \pi _{0s}\}\geqslant \alpha _{1}\) is equivalent to

$$\begin{aligned} \pi _{0s}-\pi _{s}\left( q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\varPsi ^{-1}(\alpha _{1})\right) \leqslant 0. \end{aligned}$$

Since \(\pi _\mathrm{ms}(q_{r},w;\alpha _{1})=\hbox {max}\{\pi _{0s}\}\), the supplier’s maximum profit \(\pi _\mathrm{ms}(\cdot ,\cdot )\) under his acceptable confidence level \(\alpha _{1}\) satisfies

$$\begin{aligned}&\pi _\mathrm{ms}\left( q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\alpha _{1}\right) \nonumber \\&\quad =\max \left\{ \pi _{0s}\bigm |M\{\pi _{s}(q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\xi )\geqslant \pi _{0s}\}\geqslant \alpha _{1}\right\} \nonumber \\&\quad =\pi _{s}\left( q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\varPsi ^{-1}(\alpha _{1})\right) . \end{aligned}$$
(11)

Similarly, the retailer’s maximum profit \(\pi _{mr}(\cdot ,\cdot )\) under her acceptable confidence level \(\alpha _{2}\) is

$$\begin{aligned}&\pi _\mathrm{mr}\left( q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\alpha _{2}\right) \nonumber \\&\quad =\max \left\{ \pi _{0r}\bigm |M\{\pi _{r}(q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\eta )\geqslant \pi _{0r}\}\geqslant \alpha _{2}\right\} \nonumber \\&\quad =\pi _{r}\left( q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\varPhi ^{-1}(1-\alpha _{2})\right) . \end{aligned}$$
(12)

Consequently, by via Eqs. (11) and (12), model (3) can be equivalent to model (4). The proof of the theorem is completed. \(\square \)

Proof

(Proposition 1) For model (4), by maximizing the retailer’s profit \(\pi _{r}\left( q_{r},w;\varPhi ^{-1}(1-\alpha _{2})\right) \) under her acceptable confidence level \(\alpha _{2}\), the optimal quantity is \(q_{r}^{{\mathrm{NN}}}(w;\alpha _{2})=\frac{\varPhi ^{-1}(1-\alpha _{2})-w}{2}\). Substituting \(q_{r}^{{\mathrm{NN}}}(w;\alpha _{2})\) into the supplier’s profit function \(\pi _{s}\left( q_{r}^{{\mathrm{NN}}}(w;\alpha _{2}),w;\varPsi ^{-1}(\alpha _{1})\right) \), the first-order condition yields the optimal wholesale price as follows: \(w^{{\mathrm{NN}}}=\frac{\varPhi ^{-1}(1-\alpha _{2})+\varPsi ^{-1}(\alpha _{1})}{2}\). The optimal quantity and the wholesale price yield the firm’s profits under no encroachment. The proof of the proposition is completed. \(\square \)

Proof

(Theorem 2) The proof of this theorem is similar to that of Theorem 1. \(\square \)

Proof

(Proposition 2) First, solving the first-order conditions in the profit function of the retailer \(\pi _{r}\left( q_{s},q_{r},w;\varPhi ^{-1}(1-\alpha _{2})\right) \) and the supplier \(\pi _{s}\left( q_{s},q_{r},w;\varPhi ^{-1}(1-\alpha _{1}),\varPsi ^{-1}(\alpha _{1})\right) \), we can derive the equilibrium quantities as a function of the wholesale price as

$$\begin{aligned} \begin{array}{l} q_r^{{\mathrm{EN}}}(w;\alpha _{1},\alpha _{2})=\frac{2\varPhi ^{-1}(1-\alpha _{2})-(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-c)\theta -2w}{4-\theta ^2},\\ q_s^{{\mathrm{EN}}}(w;\alpha _{1},\alpha _{2})=\frac{2(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-c)-\theta \varPhi ^{-1}(1-\alpha _{2})+\theta w}{4-\theta ^2}. \end{array} \end{aligned}$$

Next, substituting the production decision \(q_r^{{\mathrm{EN}}}(w;\alpha _{1},\alpha _{2})\) and \(q_s^{{\mathrm{EN}}}(w;\alpha _{1},\alpha _{2})\) into the supplier’s profit function and maximizing the objective function yields the following optimal wholesale price

$$\begin{aligned} w^{{\mathrm{EN}}}=\frac{\left( \varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-c\right) \theta ^3-\left( 4\varPhi ^{-1}(1-\alpha _{2})+2\varPsi ^{-1}(\alpha _{1})\right) \theta ^2+8\left( \varPhi ^{-1}(1-\alpha _{2})+\varPsi ^{-1}(\alpha _{1})\right) }{2(8-3\theta ^2)}. \end{aligned}$$

So we can obtain the optimal quantities and profits of the retailer and the supplier under encroachment.

Moreover, if the game exists, the quantity must be greater than zero. \(q_r^{{\mathrm{EN}}}>0\) requires \(c>\widetilde{c}_1\) and \(q_s^{{\mathrm{EN}}}>0\) requires \(c<\widetilde{c}_2\), where \(\widetilde{c}_1=\frac{(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))\theta -(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{\theta }\) and \(\widetilde{c}_2=\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{2(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))\theta }{8-\theta ^2}\). Note that \(\widetilde{c}_1<\widetilde{c}_2\), hence, game exits if \(\widetilde{c}_1<c<\widetilde{c}_2\). The proof of the proposition is completed. \(\square \)

Proof

(Corollary 1) Taking the first-order condition of the equilibrium results yields

\(\qquad \qquad \quad \frac{\partial w^{{\mathrm{EN}}}}{\partial c}=\frac{\theta ^3}{2(3\theta ^2-8)}<0, \frac{\partial q_r^{{\mathrm{EN}}}}{\partial c}=\frac{2\theta }{8-3\theta ^2}>0, \frac{\partial q_s^{{\mathrm{EN}}}}{\partial c}=\frac{8-\theta ^2}{2(3\theta ^2-8)}<0\).

Thus the wholesale price \(w^{{\mathrm{EN}}}\) and the supplier’s optimal direct selling quantity \(q_{s}^{{\mathrm{EN}}}\) always decrease with the supplier’s selling cost c, while the retailer’s optimal order quantity \(q_{r}^{{\mathrm{EN}}}\) always increases with the supplier’s selling cost c.

Similarly, we have \(\frac{\partial \pi _r^{{\mathrm{EN}}}}{\partial c} =-\frac{8\theta \left( (\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-c) \theta -\varPhi ^{-1}(1-\alpha _{2})+\varPsi ^{-1}(\alpha _{1})\right) }{(3\theta ^2-8)^2} >0\), thus the retailer’s optimal profit \(\pi _{r}^{{\mathrm{EN}}}\) always increases with the supplier’s selling cost c. \(\frac{\partial \pi _s^{{\mathrm{EN}}}}{\partial c}<0\) if \(c<\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{4\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{8+\theta ^2}\) and \(\frac{\partial \pi _s^{{\mathrm{EN}}}}{\partial c}>0\) if \(c>\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{4\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{8+\theta ^2}\). Denote \(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{4\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{8+\theta ^2}\) as \(\overline{c}\), combining with \(\widetilde{c}_1<c<\widetilde{c}_2\), hence, the supplier’s optimal profit \(\pi _s^{{\mathrm{EN}}}\) is decreases if \(c\in (\widetilde{c}_1,\overline{c})\), and increases otherwise. The proof of the corollary is completed. \(\square \)

Proof

(Corollary 2) We take the first-order condition of the equilibrium results and obtain \(\frac{\partial w^{{\mathrm{EN}}}}{\partial \theta }>0\) if \(\widetilde{c}_1<c<\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})+\frac{16(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{3\theta (\theta ^2-8)}\) and \(\frac{\partial w^{{\mathrm{EN}}}}{\partial \theta }<0\) if \(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})+\frac{16(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{3\theta (\theta ^2-8)}<c<\widetilde{c}_2\). \(\frac{\partial q_r^{{\mathrm{EN}}}}{\partial \theta }<0\) and \(\frac{\partial \pi _r^{{\mathrm{EN}}}}{\partial \theta }<0\) if \(\widetilde{c}_1<c<\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{6(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))\theta }{8+3\theta ^2}\) while \(\frac{\partial q_r^{{\mathrm{EN}}}}{\partial \theta }>0\) and \(\frac{\partial \pi _r^{{\mathrm{EN}}}}{\partial \theta }>0\) if \(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{6(\theta \varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{8+3\theta ^2}<c<\widetilde{c}_2\). \(\frac{\partial q_s^{{\mathrm{EN}}}}{\partial \theta }>0\) if \(\widetilde{c}_1<c<\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))(8+3\theta ^2)}{16\theta }\) and \(\frac{\partial q_s^{{\mathrm{EN}}}}{\partial \theta }<0\) if \(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))(8+3\theta ^2)}{16\theta }<c<\widetilde{c}_2\). \(\frac{\partial \pi _s^{{\mathrm{EN}}}}{\partial \theta }<0\) if \(\widetilde{c}_1<c<\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{3\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{8}\) and \(\frac{\partial \pi _s^{{\mathrm{EN}}}}{\partial \theta }>0\) if \(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{3\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{8}<c<\widetilde{c}_2\). The proof of the corollary is completed. \(\square \)

Proof

(Proposition 3) When \(\widetilde{c}_1<c<\widetilde{c}_2\), both NN and ES games exit. Comparing \(\pi _{r}^{{\mathrm{EN}}}\) and \(\pi _{r}^{{\mathrm{NN}}}\) yields

$$\begin{aligned} \pi _{r}^{{\mathrm{EN}}}-\pi _{r}^{{\mathrm{NN}}}=\frac{\left( -8c\theta +8\left( \varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})\right) \theta -\left( \varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})\right) (16-3\theta ^2)\right) \left( -8c+8\left( \varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})\right) -3\left( \varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})\right) \theta \right) \theta }{16(8-3\theta ^2)^2}. \end{aligned}$$

Then, the sign of \(\pi _{r}^{{\mathrm{EN}}}-\pi _{r}^{{\mathrm{NN}}}\) depends on that of two roots

$$\begin{aligned} \begin{array}{ll} \widetilde{c}_{r1}=\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))(16- 3\theta ^2)}{8\theta },\\ \widetilde{c}_{r2}=\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-\frac{3\theta \left( \varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})\right) }{8}. \end{array} \end{aligned}$$

Further, we can show that \(\widetilde{c}_{r1}<\widetilde{c}_{1}<\widetilde{c}_{r2}<\widetilde{c}_{2}\). Thus, \(\pi _{r}^{{\mathrm{EN}}}<\pi _{r}^{{\mathrm{NN}}}\) if \(\widetilde{c}_{1}<c<\widetilde{c}_{r2}\), and \(\pi _{r}^{{\mathrm{EN}}}>\pi _{r}^{{\mathrm{NN}}}\) if \(\widetilde{c}_{r2}<c<\widetilde{c}_{2}\). Next, comparing the supplier’s profit under two games, we have

\(\pi _{s}^{{\mathrm{EN}}}-\pi _{s}^{{\mathrm{NN}}}=\frac{1}{8(8-3\theta ^2)}((2\theta ^2+16)c^2-((\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))(4\theta ^2+32)+16(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))\theta )c+(2 (\varPhi ^{-1}(1-\alpha _{1}))^2-4 \varPhi ^{-1}(1-\alpha _{1}) c+3 (\varPhi ^{-1}(1-\alpha _{2}))^2-6 \varPhi ^{-1}(1-\alpha _{2}) c+5 (\varPsi ^{-1}(\alpha _{1}))^2)\theta ^2-16(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})))\theta +16(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))^2\).

Then, the sign of \(\pi _{s}^{{\mathrm{EN}}}-\pi _{s}^{{\mathrm{NN}}}\) depends on that of two roots

$$\begin{aligned} \begin{array}{ll} \widetilde{c}_{s1}=\frac{(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))(16+2\theta ^2)-8(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))-\sqrt{2(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))^2(8-3\theta ^2)\theta ^2}}{16+2\theta ^2},\\ \widetilde{c}_{s2}=\frac{(\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))(16+2\theta ^2)-8(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))+\sqrt{2(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))^2(8-3\theta ^2)\theta ^2}}{16+2\theta ^2}. \end{array} \end{aligned}$$

And we have \(\widetilde{c}_{1}<\widetilde{c}_{s1}<\widetilde{c}_{2}<\widetilde{c}_{s2}\). Therefore, \(\pi _{s}^{{\mathrm{EN}}}>\pi _{s}^{{\mathrm{NN}}}\) if \(\widetilde{c}_{1}<c<\widetilde{c}_{s1}\), and \(\pi _{s}^{{\mathrm{EN}}}<\pi _{s}^{{\mathrm{NN}}}\) if \(\widetilde{c}_{s1}<c<\widetilde{c}_{2}\). The proof of the proposition is completed. \(\square \)

Proof

(Theorem 3) The proof of this theorem is similar to that of Theorem 1. \(\square \)

Proof

(Proposition 4) Here, similar to the proof of Propositions 1 and 2, we also apply the backward induction to solve this problem. First, in Case NS, a retailer’s production decision is the same as that in Proposition 1 and the optimal quantity is

$$\begin{aligned} q_r^{{\mathrm{NS}}}(w;\alpha _{2})=\frac{\varPhi ^{-1}(1-\alpha _{2})+w}{2}. \end{aligned}$$

Next, substituting the retailer’s production decision \(q_r^{{\mathrm{NS}}}(w;\alpha _{2})\) into the supplier’s profit function and maximizing the objective function yield the following optimal wholesale price

$$\begin{aligned} w^{{\mathrm{NS}}}(I;\alpha _{1},\alpha _{2})=\frac{\varPhi ^{-1}(1-\alpha _{2})+\varPsi ^{-1}(\alpha _{1})(1-I)}{2}. \end{aligned}$$

Finally, substituting the above production quantity and wholesale price decision into the supplier’s profit function yields the following optimal investment level

$$\begin{aligned} I^{{\mathrm{NS}}}=\frac{\varPsi ^{-1}(\alpha _{1})\left( \varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})\right) }{4k-\left( \varPsi ^{-1}(\alpha _{1})\right) ^2}. \end{aligned}$$

So we can obtain the optimal quantities and profits of the retailer and the supplier under encroachment. The proof of the proposition is completed. \(\square \)

Proof

(Corollary 3) Taking the first-order condition of the equilibrium results yields

$$\begin{aligned}&\frac{\partial q_r^{{\mathrm{NS}}}}{\partial k}=-\,\frac{(\varPhi ^{-1}(1-\alpha _{2}) -\varPsi ^{-1}(\alpha _{1}))(\varPsi ^{-1}(\alpha _{1}))^2}{((\varPsi ^{-1} (\alpha _{1}))^2-4k)^2}<0,\\&\frac{\partial g^{{\mathrm{NS}}}}{\partial k}=-\,\frac{4\varPsi ^{-1}(\alpha _{1})(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)^2}<0,\\&\frac{\partial w^{{\mathrm{NS}}}}{\partial k}=\frac{(2(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))) (\varPsi ^{-1}(\alpha _{1}))^2}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)^2}>0,\\&\frac{\partial \pi _{r}^{{\mathrm{NS}}}}{\partial k}=\frac{2k(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))^2(\varPsi ^{-1}(\alpha _{1}))^2}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)^3}<0,\\&\frac{\partial \pi _{s}^{{\mathrm{NS}}}}{\partial k}=-\,\frac{(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1} (\alpha _{1}))^2(\varPsi ^{-1}(\alpha _{1}))^2}{2((\varPsi ^{-1}(\alpha _{1}))^2-4k)^2}<0. \end{aligned}$$

So we derive Corollary 3 based on above equation. \(\square \)

Proof

(Theorem 4) The proof of this theorem is similar to that of Theorem 1. \(\square \)

Proof

(Proposition 5) First, solving the first-order conditions in the profit function of the retailer \(\pi _{r}\left( q_{s},q_{r},w,I;\varPhi ^{-1}(1-\alpha _{2})\right) \) and the supplier \(\pi _{s}\left( q_{s},q_{r},w,I;\varPhi ^{-1}(1-\alpha _{1}),\varPsi ^{-1}(\alpha _{1})\right) \), we obtain the equilibrium quantities as a function of the wholesale price and investment level as follows

$$\begin{aligned} q_r^{{\mathrm{ES}}}(w,I;\alpha _{1},\alpha _{2})= & {} \frac{2(\varPhi ^{-1}(1-\alpha _{2})-w)-(\varPhi ^{-1}(1-\alpha _{1})-c)\theta +\theta \varPsi ^{-1}(\alpha _{1})(1-I)}{4-\theta ^2},\\ q_s^{{\mathrm{ES}}}(w,I;\alpha _{1},\alpha _{2})= & {} \frac{2(\varPhi ^{-1}(1-\alpha _{1})-c)-2\varPsi ^{-1}(\alpha _{1})(1-I)-\theta (\varPhi ^{-1}(1-\alpha _{2})- w}{4-\theta ^2}. \end{aligned}$$

Next, substituting the production decision \(q_r^{{\mathrm{ES}}}(w,I;\alpha _{1},\alpha _{2})\) and \(q_s^{{\mathrm{ES}}}(w,I;\alpha _{1},\alpha _{2})\) into the supplier’s profit function and maximizing the objective function yield the following optimal wholesale price

$$\begin{aligned} w^{{\mathrm{ES}}}=\frac{\left( \varPhi ^{-1}(1-\alpha _{1})-c-\varPsi ^{-1}(\alpha _{1})(1-I)\right) \theta ^{3}-\left( 4\varPhi ^{-1}(1-\alpha _{2})+2\varPsi ^{-1}(\alpha _{1})(1-I)\right) \theta ^2+8\left( \varPhi ^{-1}(1-\alpha _{2})+\varPsi ^{-1}(\alpha _{1})(1-I)\right) }{2(8-3\theta ^2)}. \end{aligned}$$

Subsequent calculation steps with Proposition 5. Substituting the above production quantity and wholesale price decision into the supplier’s profit function yields the optimal investment level. The optimal investment level yields the optimal wholesale price, production quantities and firms’ profit under encroachment with the spillover effect.

Moreover, if the game exits, the quantity must be greater than zero. \(q_r^{{\mathrm{ES}}}=0\) yields

$$\begin{aligned} \widetilde{c}_3=\frac{ 2\left( (\varPhi ^{-1}(1-\alpha _{2}) - \varPsi ^{-1}(\alpha _{1}))-2\theta (\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))\right) +(\varPhi ^{-1}(1-\alpha _{1})-\varPhi ^{-1}(1-\alpha _{2}))(\varPsi ^{-1}(\alpha _{1}))^2}{(\varPsi ^{-1}(\alpha _{1}))^2-2k\theta }, \end{aligned}$$

and \(q_s^{{\mathrm{ES}}}=0\) yields

$$\begin{aligned} \widetilde{c}_4=\frac{\left( (\varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1}))(8-\theta ^2)-2(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))\theta \right) k-(\varPhi ^{-1}(1-\alpha _{1})-\varPhi ^{-1}(1-\alpha _{2}))(2-\theta )}{(8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2}. \end{aligned}$$

In addition, we discuss the situation of supplier investment. From

$$\begin{aligned}I^{{\mathrm{ES}}}=\frac{\left( \left( \varPhi ^{-1}(1-\alpha _{1})-\varPsi ^{-1}(\alpha _{1})-c\right) (\theta ^2-4\theta +8)+\left( \varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})\right) (1-\theta )\right) \varPsi ^{-1}(\alpha _{1})}{2(8-3\theta ^2))k-( 12-8\theta +\theta ^2)(\varPsi ^{-1}(\alpha _{1}))^2}, \end{aligned}$$

the upper molecule is larger than zero, so the denominator \(2(8-3\theta ^2))k-( 12-8\theta +\theta ^2)(\varPsi ^{-1}(\alpha _{1}))^2\) is greater than zero, i.e., \(k>\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}\). Comparing \(\widetilde{c}_4\) and \(\widetilde{c}_3\) yields

$$\begin{aligned}\widetilde{c}_4-\widetilde{c}_3=\frac{(2(8-3\theta ^2))k-( \theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2)(\varPhi ^{-1}(1-\alpha _2)-\varPsi ^{-1}(\alpha _1))k}{((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )}. \end{aligned}$$

Upper size dependent factor \((2(8-3\theta ^2))k-(\theta ^2-8\theta +12)\), \(((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)\) and \(((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )\). In addition, \(\frac{(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{8-\theta }<\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<\)\(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\); then, we have when (i) \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\) and \(c<\widetilde{c}_{4}\); (ii) \(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{\theta }\) and \(\widetilde{c}_{3}<c<\widetilde{c}_{4}\), the supplier will encroach the consumer market, and both the supplier and the retailer are existing in the consumer market. The proof of the proposition is completed. \(\square \)

Proof

(Corollary 4) Taking the first-order condition of the equilibrium results yields

$$\begin{aligned} \begin{array}{l} \frac{\partial I^{{\mathrm{ES}}}}{\partial c}=\frac{(\theta ^2-4\theta +8)\varPsi ^{-1}(\alpha _{1})}{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2+(6\theta ^2-16)k}<0,\\ \frac{\partial q_s^{{\mathrm{ES}}}}{\partial c}=\frac{(8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2+(6\theta ^2-16)k}<0. \end{array} \end{aligned}$$

Hence, the supplier’s investment intensity \(I^{{\mathrm{ES}}}\) and the direct selling quantity \(q_s^{{\mathrm{ES}}}\) always decrease with the supplier’s selling cost c. And

$$\begin{aligned} \frac{\partial q_r^{{\mathrm{ES}}}}{\partial c}=\frac{2((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )}{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2+(6\theta ^2-16)k}. \end{aligned}$$

We can find that \(\frac{\partial q_r^{{\mathrm{ES}}}}{\partial c}<0\) if \(k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\) while \(\frac{\partial q_r^{{\mathrm{ES}}}}{\partial c}>0\) if \(k>\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\), combining with Proposition 5 that \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k\), so the retailer’s order quantity \(q_r^{{\mathrm{ES}}}\) decrease in \(k\in \left( \frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta )}, \frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\right) \) and increase in \(k\in \left( \frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }, +\infty \right) \). Because \(\pi _r^{{\mathrm{ES}}}=(q_r^{{\mathrm{ES}}})^2\), \(\pi _r^{{\mathrm{ES}}}\) is the same as \(q_r^{{\mathrm{ES}}}\) on parameter monotonicity.

Next, we consider the trend of \(w^{{\mathrm{ES}}}\), first-order condition is

$$\begin{aligned}\frac{\partial w^{{\mathrm{ES}}}}{\partial c}=\frac{k\theta ^3-(\theta ^2-2\theta +4)(\varPsi ^{-1}(\alpha _{1}))^2}{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2+(6\theta ^2-16)k}. \end{aligned}$$

Thus, the wholesale price \(w^{{\mathrm{ES}}}\) increases in \(k\in \left( \frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta )}, \frac{(\theta ^2-2\theta +4)(\varPsi ^{-1}(\alpha _{1}))^2}{\theta ^3}\right) \) and decreases in \(k\in \left( \frac{(\theta ^2-2\theta +4)(\varPsi ^{-1}(\alpha _{1}))^2}{\theta ^3}, +\infty \right) \).

With respect to \(\pi _s^{{\mathrm{ES}}}\), we have \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}=\frac{(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)c+R}{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2+(6\theta ^2-16)k}\), here

$$\begin{aligned} R= & {} (2(\varPsi ^{-1}(\alpha _{1}))^2-4k\theta )\varPhi ^{-1}(1-\alpha _{2})\\&-(2(\varPsi ^{-1}(\alpha _{1}))^2-8k-k\theta ^2)\varPhi ^{-1}(1-\alpha _{1})\\&-k(\theta ^2-4\theta +8)\varPsi ^{-1}(\alpha _{1}). \end{aligned}$$

Solving \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}=0\) yields the feasible root \(\widehat{c}=\frac{-R}{2(\varPsi ^{-1}(\alpha _{1}))^2-(\theta ^2+8)k}\), and \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}<0\) if \(c<\widehat{c}\) and \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}>0\) otherwise. In addition, \(\widehat{c}<\widetilde{c}_4\) if \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\) and \(\widetilde{c}_3<\widehat{c}<\widetilde{c}_4\) if \(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }<k\), we can obtain the monotonicity of \(\pi _s^{{\mathrm{ES}}}\) about c, we can obtain

(a) When \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\), then \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}<0\) if \(c<\widehat{c}\) and \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}>0\) if \(\widehat{c}<c<\widetilde{c}_4\);

(b) When \(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }<k\), then \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}<0\) if \(\widetilde{c}_3<c<\widehat{c}\) and \(\frac{\partial \pi _s^{{\mathrm{ES}}}}{\partial c}>0\) if \(\widehat{c}<c<\widetilde{c}_4\). The proof of the corollary is completed. \(\square \)

Proof

(Corollary 5) The proof of this corollary is similar to that of Corollary 4. \(\square \)

Proof

(Proposition 6) From comparison of the retailer’s profit under NS and ES games, we find that the size of \(\pi _r^{{\mathrm{ES}}}-\pi _r^{{\mathrm{NS}}}\) depends on two roots

$$\begin{aligned} \begin{array}{l} \widetilde{c}_{r3}=\frac{S_1}{2(\varPsi ^{-1}(\alpha _{1}))^4-4(\theta +2)k(\varPsi ^{-1}(\alpha _{1}))^2+16k^2\theta },\\ \widetilde{c}_{r4}=\frac{S_2}{2(\varPsi ^{-1}(\alpha _{1}))^4-4(\theta +2)k(\varPsi ^{-1}(\alpha _{1}))^2+16k^2\theta }. \end{array} \end{aligned}$$

And two intermediate parts \(\pi _r^{{\mathrm{ES}}}-\pi _r^{{\mathrm{NS}}}\) are less than zero, the other part \(\pi _r^{{\mathrm{ES}}}-\pi _r^{{\mathrm{NS}}}\) is greater than zero, where

$$\begin{aligned} S_1= & {} (2(\varPsi ^{-1}(\alpha _{1}))^4-4(\theta -2)k(\varPsi ^{-1} (\alpha _{1}))^2+16k^2\theta )\varPhi ^{-1}(1-\alpha _{1})\\&+\,(2(\varPsi ^{-1}(\alpha _{1}))^4+(\theta -8)k\theta (\varPsi ^{-1}(\alpha _{1}))^2\\&+\,6k^2\theta ^2)\varPhi ^{-1}(1-\alpha _{2})+(\theta ^2-4\theta +8)k (\varPsi ^{-1}(\alpha _{1}))^3\\&+\,(6\theta -16)k^2\theta \varPsi ^{-1}(\alpha _{1}),\\ S_2= & {} (2(\varPsi ^{-1}(\alpha _{1}))^4-4(\theta +2)k(\varPsi ^{-1} (\alpha _{1}))^2+16k^2\theta )\varPhi ^{-1}(1-\alpha _{1})\\&-\,(2(\varPsi ^{-1}(\alpha _{1}))^4-(\theta ^2-8\theta +24)k(\varPsi ^{-1}(\alpha _{1}))^2\\&-\,(6\theta ^2-32)k^2)\varPhi ^{-1}(1-\alpha _{2})\\&-\,(\theta ^2-12\theta +16)k(\varPsi ^{-1}(\alpha _{1}))^3+(6\theta ^2+16\theta -32)k^2\varPsi ^{-1}(\alpha _{1}). \end{aligned}$$

Next, we need to compare \(\widetilde{c}_{r3}\), \(\widetilde{c}_{r4}\), \(\widetilde{c}_{3}\) and \(\widetilde{c}_{4}\), as shown in the following.

\(\bullet \)\(\widetilde{c}_{r3}-\widetilde{c}_{4}=\frac{k\theta ((\varPsi ^{-1}(\alpha _{1}))^2-k\theta )(2(8-3\theta ^2))k-( \theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2)(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{2((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )((\varPsi ^{-1}(\alpha _{1}))^2-4k)((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)}\),

\(\bullet \)\(\widetilde{c}_{r3}-\widetilde{c}_{3}=\frac{k(2(8-3\theta ^2))k-( 12-8\theta +\theta ^2)(\varPsi ^{-1}(\alpha _{1}))^2)(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{2((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )((\varPsi ^{-1}(\alpha _{1}))^2-4k)}\),

\(\bullet \)\(\widetilde{c}_{r4}-\widetilde{c}_{3}=-\frac{k(2(8-3\theta ^2))k-( 12-8\theta +\theta ^2)(\varPsi ^{-1}(\alpha _{1}))^2)(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))}{2((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )((\varPsi ^{-1}(\alpha _{1}))^2-4k)}\).

Through comparison of \(\widetilde{c}_{3}\) and \(\widetilde{c}_{4}\) in combination with Proposition 5, we find that the relationship between the size of \(\widetilde{c}_{r3}\), \(\widetilde{c}_{r4}\), \(\widetilde{c}_{3}\), and \(\widetilde{c}_{4}\) depends on the factors of \((2(8-3\theta ^2))k-(\theta ^2 -8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2\), \(((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)\), \(((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )\) and \(((\varPsi ^{-1}(\alpha _{1}))^2-k\theta )\). In addition, \(\frac{(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{8-\theta }<\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{\theta }\); then, we have: (a) When \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\), then \(\widetilde{c}_{r3}<\widetilde{c}_{4}<\widetilde{c}_{3}<\widetilde{c}_{r4}\); (b) When \(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{\theta }\), then \(\widetilde{c}_{r4}<\widetilde{c}_{3}<\widetilde{c}_{4}<\widetilde{c}_{r3}\); (c) When \(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{\theta }<k\), then \(\widetilde{c}_{r4}<\widetilde{c}_{3}<\widetilde{c}_{r3}<\widetilde{c}_{4}\).

In summary, we have

(i) When \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}{(\alpha _1)})^2}{2(8-3\theta ^2)}<k<\frac{(\varPsi ^{-1}{(\alpha _1)})^2}{2\theta }\), we have \(\pi ^{{\mathrm{ES}}}_r>\pi ^{{\mathrm{NS}}}_r\) if \(c<\widetilde{c}_{r3}\) and \(\pi ^{{\mathrm{ES}}}_r<\pi ^{{\mathrm{NS}}}_r\) if \(\widetilde{c}_{r3}<c<\widetilde{c}_4\);

(ii) When \(\frac{(\varPsi ^{-1}{(\alpha _1)})^2}{\theta }<k\), we have \(\pi ^{{\mathrm{ES}}}_r<\pi ^{{\mathrm{NS}}}_r\) if \(\widetilde{c}_3<c<\widetilde{c}_{r3}\) and \(\pi ^{{\mathrm{ES}}}_r>\pi ^{{\mathrm{NS}}}_r\) if \(\widetilde{c}_{r3}<c<\widetilde{c}_4\);

(iii) When \(\frac{(\varPsi ^{-1}{(\alpha _1)})^2}{2\theta }<k<\frac{(\varPsi ^{-1}{(\alpha _1)})^2}{\theta }\), we have \(\pi ^{{\mathrm{ES}}}_r<\pi ^{{\mathrm{NS}}}_r\).

With respect to the supplier’s profit, we find that the size of \(\pi _s^{{\mathrm{ES}}}-\pi _s^{{\mathrm{NS}}}\) is also dependent on two roots

$$\begin{aligned} \begin{array}{l} \widetilde{c}_{s3}=\frac{T_1}{\left( (\varPsi ^{-1}(\alpha _{1}))^2-4\,k \right) (2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)},\\ \widetilde{c}_{s4}=\frac{T_2}{\left( (\varPsi ^{-1}(\alpha _{1}))^2-4\,k \right) (2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)}. \end{array} \end{aligned}$$

And when \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k\), two intermediate parts \(\pi _s^{{\mathrm{ES}}}-\pi _s^{{\mathrm{NS}}}\) are less than zero, the other part \(\pi _s^{{\mathrm{ES}}}-\pi _s^{{\mathrm{NS}}}\) is greater than zero. Where

$$\begin{aligned} T_1= & {} ((4(\theta ^2+8))\varPhi ^{-1}(1-\alpha _{1}) -(4(\theta ^2-4\theta +8))\varPsi ^{-1}(\alpha _{1})-16\varPhi ^{-1}(1-\alpha _{2})\theta )k^2-((\theta ^2+16)\varPhi ^{-1}(1-\alpha _{1})\\&-(4(\theta +2))\varPhi ^{-1}(1-\alpha _{2})-(\theta ^2- 4\theta +8)\varPsi ^{-1}(\alpha _{1}))(\varPsi ^{-1}(\alpha _{1}))^2k+(2(\varPhi ^{-1}(1-\alpha _{1})-\varPhi ^{-1}(1-\alpha _{2})))(\varPsi ^{-1}(\alpha _{1}))^4\\&+k\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})) \sqrt{((\varPsi ^{-1}(\alpha _{1}))^2-4k)(\theta ^2-8\theta +12) (\varPsi ^{-1}(\alpha _{1}))^2-(2(8-3\theta ^2))k}),\\ T_2= & {} ((4(\theta ^2+8))\varPhi ^{-1}(1-\alpha _{1}) -(4(\theta ^2-4\theta +8))\varPsi ^{-1}(\alpha _{1})-16\varPhi ^{-1}(1-\alpha _{2})\theta )k^2+((\theta ^2+16)\varPhi ^{-1}(1-\alpha _{1})\\&-(4(\theta +2))\varPhi ^{-1}(1-\alpha _{2})-(\theta ^2-4\theta +8)\varPsi ^{-1}(\alpha _{1}))(\varPsi ^{-1}(\alpha _{1}))^2k+(2(\varPhi ^{-1}(1-\alpha _{1})-\varPhi ^{-1}(1-\alpha _{2}))) (\varPsi ^{-1}(\alpha _{1}))^4\\&-k\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1})) \sqrt{((\varPsi ^{-1}(\alpha _{1}))^2-4k)(\theta ^2-8\theta +12) (\varPsi ^{-1}(\alpha _{1}))^2-(2(8-3\theta ^2))k}). \end{aligned}$$

Next, we need to compare \(\widetilde{c}_{s3}\), \(\widetilde{c}_{s4}\), \(\widetilde{c}_{3}\) and \(\widetilde{c}_{4}\), as shown in the following

\(\bullet \) \(\widetilde{c}_{s3}-\widetilde{c}_{4}=\frac{k\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))((2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2-(8-\theta ^2)k)\sqrt{k((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2))}}{((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2))((\varPsi ^{-1}(\alpha _{1}))^2-4k)}\)

\(\qquad \qquad -\frac{k\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2)k)}{((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)((\varPsi ^{-1}(\alpha _{1}))^2-4k)}\),

\(\bullet \) \(\widetilde{c}_{s4}-\widetilde{c}_{4}=\frac{k\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)\sqrt{k((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2))}}{((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)((\varPsi ^{-1}(\alpha _{1}))^2-4k)}\)

\(\qquad \qquad -\frac{k\theta (\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2))}{((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2)(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)((\varPsi ^{-1}(\alpha _{1}))^2-4k)}\),

\(\bullet \) \(\widetilde{c}_{s4}-\widetilde{c}_{3}=\frac{-k\theta (\varPhi ^{-1}(1-\alpha _{2})-c)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )\sqrt{((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2))}}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)}\)

\(\qquad \qquad \quad -\frac{k(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2)k)}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)}\),

\(\bullet \) \(\widetilde{c}_{s3}-\widetilde{c}_{3}=\frac{k\theta (\varPhi ^{-1}(1-\alpha _{2})-c)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )\sqrt{((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2))}}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)}\)

\(\qquad \qquad \quad -\frac{k(\varPhi ^{-1}(1-\alpha _{2})-\varPsi ^{-1}(\alpha _{1}))((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2-2(8-3\theta ^2)k)}{((\varPsi ^{-1}(\alpha _{1}))^2-4k)((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta )(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k)}\).

After comparing \(\widetilde{c}_{3}\) and \(\widetilde{c}_{4}\) in combination with Proposition 5, we find that the relationship between the size of \(\widetilde{c}_{s3}\), \(\widetilde{c}_{s4}\), \(\widetilde{c}_{3}\) and \(\widetilde{c}_{4}\) depends on the factors of \((8-\theta ^2)k-(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2\), \(2(\varPsi ^{-1}(\alpha _{1}))^2-(8+\theta ^2)k\), \((\varPsi ^{-1}(\alpha _{1}))^2-4k\), \(2(8-3\theta ^2))k-(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2\), \((2\theta -3)(\varPsi ^{-1}(\alpha _{1}))^2+(4-2\theta ^2)k\) and \((\varPsi ^{-1}(\alpha _{1}))^2-2k\theta \). In addition, \(\frac{(2-\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{8-\theta }<\frac{2(\varPsi ^{-1}(\alpha _{1}))^2}{8+\theta ^2}<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{4}<\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<\frac{(3-2\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{2(2- \theta ^2}<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\). Then we have: (a) When \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}(\alpha _{1}))^2}{2(8-3\theta ^2)}<k<\frac{(3-2\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{2(2- \theta ^2}\), then \(\widetilde{c}_{s4}<\widetilde{c}_{4}<\widetilde{c}_{3}<\widetilde{c}_{s3}\); (b) When \(\frac{(3-2\theta )(\varPsi ^{-1}(\alpha _{1}))^2}{2(2- \theta ^2}<k<\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }\), then \(\widetilde{c}_{s4}<\widetilde{c}_{4}<\widetilde{c}_{s3}<\widetilde{c}_{3}\); (c) When \(\frac{(\varPsi ^{-1}(\alpha _{1}))^2}{2\theta }<k\), then \(\widetilde{c}_{3}<\widetilde{c}_{s4}<\widetilde{c}_{4}<\widetilde{c}_{s3}\).

In summary, we have

(i) When \(\frac{(\theta ^2-8\theta +12)(\varPsi ^{-1}{(\alpha _1})^2}{2(8-3\theta ^2)}<k<\frac{(\varPsi ^{-1}{(\alpha _1)})^2}{2\theta }\), we have \(\pi ^{{\mathrm{ES}}}_s>\pi ^{{\mathrm{NS}}}_s\) if \(c<\widetilde{c}_{s4}\) and \(\pi ^{{\mathrm{ES}}}_s<\pi ^{{\mathrm{NS}}}_s\) if \(\widetilde{c}_{s4}<c<\widetilde{c}_{4}\);

(ii) When \(\frac{(\varPsi ^{-1}{(\alpha _1)})^2}{2\theta }<k\), we have \(\pi ^{{\mathrm{ES}}}_s>\pi ^{{\mathrm{NS}}}_s\) if \(\widetilde{c}_{3}<c<\widetilde{c}_{s4}\) and \(\pi ^{{\mathrm{ES}}}_s<\pi ^{{\mathrm{NS}}}_s\) if \(\widetilde{c}_{s4}<c<\widetilde{c}_{4}\).

The proof of the proposition is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yan, Y., Ma, N. et al. Effects of risk attitudes and investment spillover on supplier encroachment. Soft Comput 24, 2395–2416 (2020). https://doi.org/10.1007/s00500-018-03677-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-03677-7

Keywords

Navigation