Skip to main content
Log in

Biclustering with a quantum annealer

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Several problem in Artificial Intelligence and Pattern Recognition are computationally intractable due to their inherent complexity and the exponential size of the solution space. One example of such problems is biclustering, a specific clustering problem where rows and columns of a data-matrix must be clustered simultaneously. Quantum information processing could provide a viable alternative to combat such a complexity. A notable work in this direction is the recent development of the D-Wave computer, whose processor has been designed to the purpose of solving Quadratic Unconstrained Binary Optimization (QUBO) problems. In this paper, we investigate the use of quantum annealing by providing the first QUBO model for biclustering and a theoretical analysis of its properties (correctness and complexity). We empirically evaluated the accuracy of the model on a synthetic data-set and then performed experiments on a D-Wave machine discussing its practical applicability and embedding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. According to the quantum adiabatic theorem, a quantum system that begins in the non-degenerate ground state of a time-dependent Hamiltonian will remain in the instantaneous ground state provided the Hamiltonian changes sufficiently slowly.

  2. Available at http://www.tik.ee.ethz.ch/sop/bimax (Scenario I—Noise).

  3. Note that only 1097 of 1152 qubits are operational.

  4. An Ising model is frustrated when the competition between ferromagnetic and anti-ferromagnetic couplings leads to a ground state where the interaction energies between spins cannot be simultaneously minimized.

  5. Note that parameter G can always be chosen close to B.

References

  • Ayadi W, Elloumi M, Hao J (2012) BiMine+: an efficient algorithm for discovering relevant biclusters of DNA microarray data. Knowl Based Syst 35:224–234

    Article  Google Scholar 

  • Badea L (2009) Generalized clustergrams for overlapping biclusters. In: Proceedings of the 21st international joint conference on artificial intelligence. IJCAI’09. Morgan Kaufmann Publishers Inc., San Francisco, pp 1383–1388

  • Ben-Dor A, Chor B, Karp R, Yakhini Z (2003) Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol 10(3–4):373–384

    Article  Google Scholar 

  • Bian Z, Chudak F, Macready WG, Rose G (2010) The Ising model: teaching an old problem new tricks. http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf

  • Bian Z, Chudak F, Israel R, Lackey B, Macready WG, Roy A (2014) Discrete optimization using quantum annealing on sparse Ising models. Front Phys 2:56

    Article  Google Scholar 

  • Bicego M, Lovato P, Ferrarini A, Delledonne M (2010) Biclustering of expression microarray data with topic models. In: International conference on pattern recognition (ICPR2010), pp 2728–2731

  • Boothby T, King AD, Roy A (2016) Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf Process 15(1):495–508

    Article  MathSciNet  MATH  Google Scholar 

  • Cai J, Macready WG, Roy A (2014) A practical heuristic for finding graph minors. ArXiv e-prints arXiv:1406.2741

  • Cheng Y, Church G (2000) Biclustering of expression data. In: Proceedings eighth international conference on intelligent systems for molecular biology (ISMB00), pp 93–103

  • Dahl ED (2013) Programming with D-Wave: map coloring problem. http://www.dwavesys.com/sites/default/files/MapColoringWP2.pdf

  • Denchev VS, Boixo S, Isakov SV, Ding N, Babbush R, Smelyanskiy V, Martinis J, Neven H (2016) What is the computational value of finite-range tunneling? Phys Rev X 6(3):031015

    Google Scholar 

  • Denitto M, Farinelli A, Franco G, Bicego M (2014) A binary factor graph model for biclustering. In: Frnti P, Brown G, Loog M, Escolano F, Pelillo M (eds) Structural, syntactic, and statistical pattern recognition, vol 8621. Lecture notes in computer science. Springer, Berlin, pp 394–403

    Google Scholar 

  • Denitto M, Farinelli A, Figueiredo MA, Bicego M (2017) A biclustering approach based on factor graphs and the max-sum algorithm. Pattern Recognit 62:114–124

    Article  Google Scholar 

  • Dhillon I (2001) Coclustering documents and words using bipartite spectral graph partitioning. In: Proceedings of international conference on knowledge discovery and data mining, pp 269–274

  • Dolnicar S, Kaiser S, Lazarevski K, Leisch F (2012) Biclustering: overcoming data dimensionality problems in market segmentation. J Travel Res 51(1, (1)):41–49

    Article  Google Scholar 

  • Farhi E, Goldstone J, Gutmann S (2002) Quantum adiabatic evolution algorithms versus simulated annealing. Eprint arXiv:quant-ph/0201031

  • Finnila AB, Gomez MA, Sebenik C, Stenson C, Doll JD (1994) Quantum annealing: a new method for minimizing multidimensional functions. Chem Phys Lett 219:343–348

    Article  Google Scholar 

  • Flores JL, Inza I, Larranaga P, Calvo B (2013) A new measure for gene expression biclustering based on non-parametric correlation. Comput Methods Programs Biomed 112(3):367–397

    Article  Google Scholar 

  • Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  MATH  Google Scholar 

  • Henriques R, Madeira SC (2014) BicPAM: pattern-based biclustering for biomedical data analysis. Algorithms Mol Biol 9(1):27

    Article  Google Scholar 

  • Henriques R, Madeira SC (2018) BSig: evaluating the statistical significance of biclustering solutions. Data Min Knowl Disc 32(1):124–161. https://doi.org/10.1007/s10618-017-0521-2

    Article  MathSciNet  Google Scholar 

  • Henriques R, Antunes C, Madeira SC (2015) A structured view on pattern mining-based biclustering. Pattern Recognit 48(12):3941–3958

    Article  Google Scholar 

  • Kadowaki T, Nishimori H (1998) Quantum annealing in the transverse Ising model. Phys Rev E 58(5):5355–5363

    Article  Google Scholar 

  • King J, Yarkoni S, Raymond J, Ozfidan I, King AD, Nevisi MM, Hilton JP, McGeoch CC (2017) Quantum annealing amid local ruggedness and global frustration. ArXiv e-prints arXiv:1701.04579

  • Kochenberger G, Hao J, Glover F, Lewis M, Lü Z, Wang H, Wang Y (2014) The unconstrained binary quadratic programming problem: a survey. J Comb Optim 28(1):58–81

    Article  MathSciNet  MATH  Google Scholar 

  • Kurihara K, Tanaka S, Miyashita S (2009) Quantum annealing for clustering. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. UAI ’09. AUAI Press, Arlington, pp 321–328

  • Madeira S, Oliveira A (2004) Biclustering algorithms for biological data analysis: a survey. IEEE Trans Comput Biol Bioinform 1:24–44

    Article  Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello C (2014) Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans Evolut Comput 18(1):20–35

    Article  Google Scholar 

  • Neven H, Rose G, Macready WG (2008) Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization, ArXiv e-prints arXiv:0804.4457

  • Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E (2014) Biclustering methods: biological relevance and application in gene expression analysis. PLoS ONE 9(3):e90,801

    Article  Google Scholar 

  • O’Gorman B, Babbush R, Perdomo-Ortiz A, Aspuru-Guzik A, Smelyanskiy V (2015a) Bayesian network structure learning using quantum annealing. Eur Phys J Spec Top 224(1):163–188

    Article  Google Scholar 

  • O’Gorman B, Rieffel E, Do M, Venturelli D, Frank J (2015b) Compiling planning into quantum optimization problems: a comparative study. In: Proceedings of the workshop on constraint satisfaction techniques for planning and scheduling problems (COPLAS-15), pp 11–20

  • Perdomo-Ortiz A, Fluegemann J, Biswas R, Smelyanskiy VN (2015) A performance estimator for quantum annealers: Gauge selection and parameter setting. ArXiv e-prints arXiv:1503.01083

  • Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129

    Article  Google Scholar 

  • Pudenz KL (2016) Parameter setting for quantum annealers. In: 2016 IEEE high performance extreme computing conference (HPEC), pp 1–6

  • Ray P, Chakrabarti BK, Chakrabarti A (1989) Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys Rev B 39:11,828–11,832

    Article  Google Scholar 

  • Rieffel EG, Venturelli D, O’Gorman B, Do MB, Prystay EM, Smelyanskiy VN (2015) A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf Process 14:1–36 arXiv:1407.2887

    Article  MATH  Google Scholar 

  • Santoro GE, Tosatti E (2006) Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J Phys A Math Gen 39(36):R393–R431

    Article  MathSciNet  MATH  Google Scholar 

  • Truong DT, Battiti R, Brunato M (2013) A repeated local search algorithm for biclustering of gene expression data. In: Hancock E, Pelillo M (eds) Similarity-based pattern recognition. Springer, Heidelberg, pp 281–296. https://doi.org/10.1007/978-3-642-39140-8_19

  • Tu K, Ouyang X, Han D, Honavar V (2011) Exemplar-based robust coherent biclustering. In: SDM, SIAM, pp 884–895

  • Venturelli D, Mandrà S, Knysh S, O’Gorman B, Biswas R, Smelyanskiy V (2015) Quantum optimization of fully connected spin glasses. Phys Rev X 5(031):040

    Google Scholar 

  • Yang J, Wang H, Wang W, Yu PS (2005) An improved biclustering method for analyzing gene expression profiles. Int J Artif Intell Tools 14(05):771–789

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Universities Space Research Association (USRA) Quantum Artificial Intelligence Laboratory Research Opportunity program. We would like to thank in particular Davide Venturelli for his very helpful comments on a first draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bottarelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottarelli, L., Bicego, M., Denitto, M. et al. Biclustering with a quantum annealer. Soft Comput 22, 6247–6260 (2018). https://doi.org/10.1007/s00500-018-3034-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3034-z

Keywords

Navigation