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Abstract
In 2011, tense θ -valued Łukasiewicz–Moisil algebras (or tense LMθ -algebras) were introduced by Chiriţă as an algebraic
counterpart of the tense θ -valued Moisil propositional logic. In this paper we develop a topological duality for these algebras.
In order to achieve this we extend the topological duality given in Figallo et al. (J Mult Valued Logic Soft Comput 16(3–
5):303–322, 2010), for θ -valued Łukasiewicz–Moisil algebras. This new topological duality enables us to describe the tense
LMθ -congruences and the tense θLMθ -congruences on a tense LMθ -algebra and also to determine some properties of these
algebras.
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1 Introduction

In 1940, the first systemofmany-valued logicwas introduced
by J.Łukasiewicz, and his motivation was of philosophical
nature as he was looking for an interpretation of the concepts
of possibility and necessity. Since then, plenty of research has
been developed in this area. In 1968, whenGr.C.Moisil came
across Zadeh’s fuzzy set theory, he found the motivation he
had been looking for in order to legitimate the introduction
and study of infinitely valued Łukasiewicz algebras, so he
defined θ -valued Łukasiewicz algebras (without negation)
or LMθ -algebras, for short, where θ is the order type of a
chain. These structures were thought by Moisil as models of
a logic with infinity nuances.

Propositional logics usually do not incorporate the dimen-
sion of time; consequently, in order to obtain a tense logic, a
propositional logic is enriched by the addition of new unary
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operators (or connectives) which are usually denoted by
G, H , F and P . Tense algebras (or tense Boolean algebras)
are algebraic structures corresponding to the propositional
tense logic (see Burges 1984; Kowalski 1998).

An algebra 〈A,∨,∧,¬,G, H , 0, 1〉 is a tense algebra if
〈A,∨,∧,¬, 0, 1〉 is a Boolean algebra and G, H are unary
operators on A which satisfy the following axioms for all
x, y ∈ A:

G(1) = 1, H(1) = 1,

G(x ∧ y) = G(x) ∧ G(y), H(x ∧ y) = H(x) ∧ H(y),

x ≤ GP(x), x ≤ HF(x),

where P(x) = ¬H(¬x) and F(x) = ¬G(¬x).
Taking into account that tense algebras constitute the

algebraic basis for the bivalent tense logic, Diaconescu and
Georgescu (2007) introduced in the tense MV -algebras and
the tense Łukasiewicz–Moisil algebras (or tense n-valued
Łukasiewicz–Moisil algebras) as algebraic structures for
some many-valued tense logics. In recent years, these two
classes of algebras have become very interesting for sev-
eral authors (see Botur et al. 2011; Chajda and Paseka
2015; Chiriţă 2010, 2011, 2012a; Figallo and Pelaitay 2011,
2015a, b). In particular, Chiriţă (2010, 2011) introduced
tense θ -valued Łukasiewicz–Moisil algebras and proved an
important representation theorem which made it possible to
show the completeness of the tense θ -valued Moisil logic
(see Chiriţă 2010). In Diaconescu and Georgescu (2007), the
authors formulated an open problem about representation of
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tense MV -algebras, and this problem was solved in Botur
and Paseka (2015), Paseka (2013) for semisimple tenseMV -
algebras. Also, in Botur et al. (2011), tense basic algebras
which are an interesting generalization of tenseMV -algebras
were studied.

The main purpose of this paper is to give a topological
duality for tense θ -valued Łukasiewicz–Moisil algebras. In
order to achieve this we will extend the topological duality
given in Figallo et al. (2010), for θ -valued Łukasiewicz–
Moisil algebras.

The paper is organized as follows: In Sect. 2, we briefly
summarize the main definitions and results needed through-
out this article. In Sect. 3, we develop a topological duality
for tense θ -valued Łukasiewicz–Moisil algebras, extend-
ing the one obtained in Figallo et al. (2010) for θ -valued
Łukasiewicz–Moisil algebras. In Sect. 4, the results of Sect. 3
are applied.We characterize congruences and θ -congruences
on tense θ -valued Łukasiewicz–Moisil algebras by certain
closed subsets of the space associated with them. Also,
we determine some properties of these algebras. Finally,
in Sect. 5, we will obtain another characterization of tense
θ -congruences on a tense θ -valuedŁukasiewicz–Moisil alge-
bra.

2 Preliminares

The notions and results announced herewill be used through-
out the paper.

2.1 �-valued ukasiewicz–Moisil algebras

The following assumption will be needed throughout the
paper.

Let θ ≥ 2 be the order type of a totally ordered set J with
least element 0, being J = {0} + I (ordinal sum) and (I ,≤)

with first and last element.

Definition 1 (Boicescu et al. 1991) An algebra 〈A,∨,∧,

{ϕi }i∈I , {ϕi }i∈I , 0, 1〉 of type (2, 2, {1}i∈I , {1}i∈I , 0, 0) is an
θ -valued Łukasiewicz–Moisil algebra without negation (or
LMθ -algebra), if

(i) 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice,
(ii) ϕi , ϕi , i ∈ I , are unary operations on A which satisfy

the following conditions for any i, j ∈ I and x, y ∈ A:

(L1) ϕi is an endomorphism of bounded distributive lat-
tices,

(L2) ϕi x ∨ ϕi x = 1, ϕi x ∧ ϕi x = 0,
(L3) ϕiϕ j x = ϕ j x ,
(L4) i ≤ j implies ϕi x ≤ ϕ j x ,
(L5) ϕi x = ϕi y for all i ∈ I imply x = y.

An LMθ -algebra 〈A,∨,∧, {ϕi }i∈I , {ϕi }i∈I , 0, 1〉 will be
denoted in the rest of this paper by A or by

(
A, {ϕi }i∈I ,{

ϕi
}
i∈I

)
.

Axiom (L5) in Definition 1 can be replaced by :

(L5∗) ϕi x ≤ ϕi y for all i ∈ I imply x ≤ y.

Note, however, thatwewill use the same symbol 0 (symbol
1) for the least (greatest) elements of J and of the algebra A
under investigation.

If
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I

)
is an LMθ -algebra, then

(L6) for any i, j ∈ I ,ϕiϕ j = ϕiϕ j = ϕ j and ϕiϕ j = ϕ j .
If the set I has least element 0 and greatest element 1,
then

(L7) ϕ0a ≤ a ≤ ϕ1a for any a ∈ A.

It is well known that there are LMθ -congruences (or con-
gruences) on LMθ -algebras such that the quotient algebra
does not satisfy the determination principle (L5). That is the
reason why a new notion was defined as follows:
“A θLMθ -congruence (or θ -congruence) on an LMθ -algebra
is a bounded distributive lattice congruence ϑ such that
(x, y) ∈ ϑ if and only if (ϕi x, ϕi y) ∈ ϑ for all i ∈ I”.
([3, 12]).

The following characterizations of the Boolean elements
of an LMθ -algebra will be useful for the study of these alge-
bras:

(L8) Let A be an LMθ -algebra and let B(A) be the set of
all Boolean elements of A. Then, for each x ∈ A, the
following conditions are equivalent:

(i) x ∈ B(A),

(ii) there are y ∈ A and i ∈ I such that x = ϕi y (x =
ϕi y),

(iii) there is i0 ∈ I such that x = ϕi0x (x = ϕi0x),
(iv) for all i ∈ I , x = ϕi x (x = ϕi x).

2.2 A topological duality for LM�-algebras

In Figallo et al. (2010), extended Priestley duality to LMθ -
algebras considering θ -valued Łukasiewicz–Moisil spaces
(or LMθ -spaces) and LMθ -functions. More precisely, these
authors introduced the following notions:

Definition 2 A θ -valued Łukasiewicz–Moisil space (or
LMθ -space) is a pair

(
X , { fi }i∈I

)
provided the following

conditions are satisfied for all i, j ∈ I and for all x, y ∈ X :

(lP1) X is a Priestley space (Priestley 1970),
(lP2) fi : X −→ X is a continuous function,
(lP3) x ≤ y implies fi (x) = fi (y),
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(lP4) i ≤ j implies fi (x) ≤ f j (x),
(lP5) fi ◦ f j = fi ,

(lP6)
⋃

i∈I fi (X) is dense in X (i.e.
⋃

i∈I fi (X) = X ,
where Z denotes the closure of Z for all Z ⊆ X ).

Definition 3 An LMθ -function from an LMθ -space (X ,

{ fi }i∈I
)
into another

(
X ′,

{
f ′
i

}
i∈I

)
is an increasing and con-

tinuous function f from X into X ′ satisfying f ′
i ◦ f = f ◦ fi

for all i ∈ I .

It is worth mentioning that condition (lP6) is equivalent
to the following one:

(lP7) IfU and V are increasing1, closed and open subsets of
X and f −1

i (U ) = f −1
i (V ) for all i ∈ I , then U = V

(Figallo et al. 2010).

Besides, if (X , { fi }i∈I ) is an LMθ -space, then for all x ∈
X , the following properties are satisfied (Figallo et al. 2010):

(lP8) x ≤ fi (x) or fi (x) ≤ x for all i ∈ I .
If I has least element 0 and greatest element 1, then

(lP9) f0(x) ≤ x and f0(x) is the unique minimal element
in X that precedes

(lP10) x ≤ f1(x) and f1(x) is the unique maximal element
in X that follows x .

Furthermore, the above properties allowed them to assert that

(lP11) X is the cardinal sum of the sets ↑ { fi (x)}i∈I∪ ↓
{ fi (x)}i∈I for x ∈ X , where ↓ z = {x ∈ X : x ≤ z}
and ↑ z = {x ∈ X : z ≤ x} for all z ∈ X .

If I has least element 0 and greatest element 1, then

(lP12) X is the cardinal sum of the sets [ f0(x), f1(x)] for
x ∈ X , where [y, z] = {x ∈ X : y ≤ x ≤ z} for all
y, z ∈ X .

Although in Figallo et al. (2010) the authors developed a
topological duality for LMθ -algebras, next we will describe
some results of it with the aim of fixing the notation we are
about to use in this paper.
(A1) If

(
X , { fi }i∈I

)
is an LMθ -space and D(X) is the lat-

tice of all increasing, closed and open subsets of X , then(
D(X),

{
ϕX
i

}
i∈I ,

{
ϕX
i

}
i∈I

)
is an LMθ -algebra,where for all

i ∈ I , the operationsϕX
i andϕX

i are defined for allU ∈ D(X)

by means of the formulas:

1 Recall thatW is an increasing subset of X iff x ∈ W and x ≤ y imply
y ∈ W .

ϕX
i (U ) = f −1

i (U ) and ϕX
i (U ) = X\ f −1

i (U ). (1)

(A2) If
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I

)
is an LMθ -algebra and X(A) is

the set of all prime filters of A, ordered by inclusion relation
and with the topology having as a sub-basis the sets

σA(a) = {S ∈ X(A) : a ∈ S} for each a ∈ A, (2)

and

X(A)\σA(a) for each a ∈ A.

Then,
(
X(A),

{
f Ai

}
i∈I

)
is the LMθ -space associatedwith

A, where for all i ∈ I , the function f Ai : X(A) −→ X(A)

is defined for all S ∈ X(A) by the prescription:

f Ai (S) = ϕ−1
i (S). (3)

(A3) Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I

)
be an LMθ -algebra and σA :

A −→ D(X(A)) be the function defined as in (2), then σA

is an LMθ -isomorphism.
(A4) Let

(
X , { fi }i∈I

)
be an LMθ -space and εX : X −→

X(D(X)) be the function defined by

εX (x) = {U ∈ D(X) : x ∈ U }, for all x ∈ X , (4)

then εX is an isomorphism of LMθ -spaces.
(A5) Let h : (

A, {ϕi }i∈I ,
{
ϕi

}
i∈I

) −→ (
A′,

{
ϕ′
i

}
i∈I ,{

ϕ′
i

}
i∈I

)
be an LMθ -homomorphism. Then, the map Φ(h) :

X(A′) −→ X(A) is an LMθ -function, where

Φ(h)(S) = h−1(S), for all S ∈ X(A′). (5)

(A6) Let f : (
X , { fi }i∈I

) −→ (
X ′,

{
f ′
i

}
i∈I

)
be an LMθ -

function. Then, the map Ψ ( f ) : D(X ′) −→ D(X) is an
LMθ -homomorphism, where

Ψ ( f )(U ) = f −1(U ), for all U ∈ D(X ′). (6)

Then, using the usual procedures they proved that the cat-
egory lθP of LMθ -spaces and LMθ -functions is naturally
equivalent to the dual category of the category lθA of LMθ -
algebras and their corresponding homomorphisms,where the
isomorphismsσA and εX are the correspondingnatural equiv-
alences.

In addition, this duality allowed them to characterize the
congruences and θ -congruences on these algebras for which
they introduced these notions:

Definition 4 Let
(
X , { fi }i∈I

)
be an LMθ -space and let Y be

a subset of X .

(i) Y is semimodal if
⋃

i∈I fi (Y ) ⊆ Y , or equivalently
Y ⊆ ⋃

i∈I f −1
i (Y ).
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(ii) Y is modal if Y = ⋃
i∈I f −1

i (Y ).

(iii) Y is a θ -subset if
⋃

i∈I fi (Y ) ⊆ Y ⊆ ⋃
i∈I fi (Y ).

Then, the authors proved the lattice of all semimodal and
closed subsets and the lattice of all closed θ -subsets of the
LMθ -space associated with an LMθ -algebra play a funda-
mental role in the characterization of LMθ -congruences and
θLMθ -congruences on these algebras, respectively, as we
shall indicate next.

Theorem 1 (Figallo et al. 2010, Theorem 2.1.1) Let (A,

{ϕi }i∈I ,
{
ϕi

}
i∈I

)
bean LMθ -algebraandŁθ (A) = (X(A),{

f Ai
}
i∈I

)
be the LMθ -space associated with A. Then, the

lattice CS(Łθ (A)) of all semimodal and closed subsets of
Łθ (A) is anti-isomorphic to the lattice ConLMθ (A) of all
LMθ -congruences on A, and the anti-isomorphism is the
function ΘS defined by the prescription:

ΘS(Y ) = {(a, b) ∈ A × A : σA(a) ∩ Y = σA(b) ∩ Y }
for all Y ∈ CS(X(A)). (7)

Theorem 2 (Figallo et al. 2010, Theorem 2.1.2) Let (A,

{ϕi }i∈I ,
{
ϕi

}
i∈I

)
be an LMθ -algebra and let Łθ (A) =(

X(A),
{
f Ai

}
i∈I

)
be the LMθ -space associated with A.

Then, the lattice Cθ (Łθ (A)) of all closed θ -subsets of Łθ (A)

is anti-isomorphic to the lattice ConθLMθ (A) of all θLMθ -
congruences on A, and the anti-isomorphism is the function
Θθ defined as in Theorem 1.

2.3 Tense�-valued ukasiewicz–Moisil algebras

In Chiriţă (2011), made the first step in solving the prob-
lem to develop a tense logic based on the θ -valued Moisil
logic. In order to do this, the author introduced the tense θ -
valued Łukasiewicz–Moisil algebras by extending the tense
Boolean algebras and the tensen-valuedŁukasiewicz–Moisil
algebras. The notion of tense θ -valued Łukasiewicz–Moisil
is obtained by endowing θ -valued Łukasiewicz–Moisil alge-
bra with two unary operations G and H similar to the tense
operators on a Boolean algebra and the tense operators on
an n-valued Łukasiewicz–Moisil algebra. Next we will indi-
cate the basic definition, properties and examples of these
algebras.

Definition 5 An algebra 〈A,∨,∧, {ϕi }i∈I ,
{
ϕi

}
i∈I ,G, H ,

0, 1〉 is a tense θ -valued Łukasiewicz–Moisil algebra (or
tense LMθ -algebra) if 〈A,∨,∧, {ϕi }i∈I ,

{
ϕi

}
i∈I , 0, 1〉, is

an LMθ -algebra and G, H are two unary operators on A
which satisfy the following properties for all x, y ∈ A and
for all i ∈ I :

(T1) G(1) = 1 and H(1) = 1,

(T2) G(x ∧ y) = G(x) ∧ G(y) and H(x ∧ y) = H(x) ∧
H(y),

(T3) G(ϕi x) = ϕi G(x) and H(ϕi x) = ϕi H(x),
(T4) G(x) ∨ y = 1 iff x ∨ H(y) = 1.

A tense LMθ -algebra 〈A,∨,∧, {ϕi }i∈I ,
{
ϕi

}
i∈I ,G, H ,

0, 1〉 will be denoted in the rest of this paper by (A,G, H)

or by
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
.

Proposition 1 (Chiriţă 2011, Proposition 3.1) Let (A,

{ϕi }i∈I ,
{
ϕi

}
i∈I ,G, H

)
be a tense LMθ -algebra and B(A)

= {ϕi (x) : x ∈ A}i∈I . Then,
(B(A),G |B(A), H |B(A)

)
is a

tense Boolean algebra.

Definition 6 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra and let P, F : B(A) −→ B(A) be the opera-
tors defined for all x ∈ A and i ∈ I by the prescriptions:

(i) P(ϕi x) := ϕi H( ϕi x) = ¬H(¬ϕi x),
(ii) F(ϕi x) := ϕi G (ϕi x) = ¬G(¬ϕi x),

where ¬y is the complement of y for all y ∈ B(A).

From Definition 6 it follows that F and P are the opera-
tions on the tenseBoolean algebra

(B(A),G |B(A), H |B(A)

)
.

Definition 7 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra and for each i ∈ I , let Pi , Fi : A −→ A
be the operators defined for all x ∈ A by the prescriptions:

(i) Pi (x) := P(ϕi x) = ϕi H (ϕi x) = ¬H(ϕi x),
(ii) Fi (x) := F(ϕi x) = ϕi G (ϕi x) = ¬G (ϕi x).

Remark 1 From Definition 7 it follows that for all i ∈ I ,
Fi |B(A)= F and Pi |B(A)= P , where F and P are the
operations defined on B(A) in Definition 6.

Lemma 1 Let (A,G, H) be a tense LMθ -algebra. Then, the
following properties hold for all i, j ∈ I , x ∈ A and S ∈
X(A):

(i) Fi (x), Pi (x) ∈ B(A),
(ii) i ≤ j implies that Fi (x) ≤ Fj (x) and Pi (x) ≤ Pj (x),
(iii) i ≤ j implies that F−1

i (S) ⊆ F−1
j (S) and P−1

i (S) ⊆
P−1
j (S),

(iv) ϕ−1
j

(
F−1
i (S)

)
= F−1

j (S) and ϕ−1
j

(
P−1
i (S)

)
=

P−1
j (S).

Proof (i): If follows immediately from Definition 6 and
Remark 1.

(ii): Let i, j ∈ I , i ≤ j , then by property (L4) of LMθ -
algebras we have that ϕi (x) ≤ ϕ j (x) for any x ∈ A.
From this last assertion and the fact that the operators
F and P defined on the tense Boolean algebraB(A) are
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monotonous, we infer that F(ϕi (x)) ≤ F(ϕ j (x)) and
P(ϕi (x)) ≤ P(ϕ j (x)) for any x ∈ A, and therefore,
Fi (x) ≤ Fj (x) and Pi (x) ≤ Pj (x) for any x ∈ A.

(iii): Let i, j ∈ I , i ≤ j , and suppose that Fi (x) ∈ S. Since
by (ii), Fi (x) ≤ Fj (x) and S is a filter of A it follows
that Fj (x) ∈ S and so F−1

i (S) ⊆ F−1
j (S). The proof

of the other inclusion is similar.
(iv): It is a consequence of the fact that each of the following

statements is equivalent to the next one in the respective
sequences, in which are taken into account Definition
7 and property (L3) of LMθ -algebras:

Fi (ϕ j (a)) ∈ S; F (
ϕi

(
ϕ j a

)) ∈ S

F
(
ϕ j a

) ∈ S; Fj (a) ∈ S.

Pi (ϕ j (a)) ∈ S; P (
ϕi

(
ϕ j a

)) ∈ S; P (
ϕ j a

) ∈ S;
Pj (a) ∈ S.

��
Proposition 2 (Chiriţă 2011, Proposition 3.4) Let (A,

{ϕi }i∈I ,
{
ϕi

}
i∈I ,G, H

)
be an LMθ -algebra and let G, H

be two unary operations on A that satisfy conditions (T1),
(T2) and (T3). Then the condition (T4) is equivalent to the
following one:

(T4′) ϕi x ≤ G(P(ϕi x)) and ϕi x ≤ H(F(ϕi x)) for all x ∈
A and for all i ∈ I ,
or equivalently to the next one:

(T4′′) ϕi x ≤ G(Pi (x)) and ϕi x ≤ H(Fi (x)) for all x ∈ A
and for all i ∈ I .

Corollary 1 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra. Then for all x ∈ A and for all i ∈ I the
following property holds:

(T4∗) x ≤ G(Pi (x)) and x ≤ H(Fi (x)).

Proof From property (T4′), we have that (1) ϕi x ≤ G(P(ϕi
x)) for all i ∈ I and for all x ∈ A. Since P(ϕi x) =
Pi (x) ∈ B(A), then from the characterizations (L8) of the
Boolean elements of an LMθ -algebrawe obtain that Pi (x) =
ϕi (Pi (x)). Therefore, (2) G(P(ϕi x)) = G(ϕi (P(x))).
Besides, from property (T3) we get that (3) G(P(x)) =
ϕi G(Pi (x)). Then, from (1), (2) and (3) it follows that
ϕi x ≤ ϕi G(Pi (x)) for all i ∈ I and for all x ∈ A.
From this last statement and property (L5∗) we conclude
that x ≤ G(Pi (x)) for all x ∈ A. In a similar way it can be
proved that x ≤ H(Fi (x)). ��

In the following proposition, there are properties of tense
LMθ -algebras that are useful in what follows.

Proposition 3 (Chiriţă 2012b, Proposition 2.2.4) Let (A,

{ϕi }i∈I ,
{
ϕi

}
i∈I ,G, H

)
be a tense LMθ -algebra. Then, the

following properties hold for all x, y ∈ A and for all i ∈ I :

(T5) x ≤ y implies that G(x) ≤ G(y) and H(x) ≤
H(y),

(T6) x ≤ y implies that Fi (x) ≤ Fi (y) and Pi (x) ≤
Pi (y),

(T7) Fi (0) = 0 and Pi (0) = 0,
(T8) Fi (x ∨ y) = Fi (x) ∨ Fi (y) and Pi (x ∨ y) =

Pi (x) ∨ P(y),
(T9) Pi (G(x)) ≤ ϕi x and Fi (H(x)) ≤ ϕi x ,
(T10) G(Pi (x))∧Fi (y) ≤ Fi (Pi (x)∧y)and H(Fi (x))∧

Pi (y) ≤ Pi (Fi (x) ∧ y),
(T11) G(ϕi x)∧Fi (y) ≤ Fi (x∧y)and H(ϕi x)∧Pi (y) ≤

Pi (x ∧ y),
(T12) G(ϕi (x ∨ y)) ≤ G(ϕi x) ∨ Fi (y) and H(ϕi (x ∨

y)) ≤ H(ϕi x) ∨ Pi (y),
(T13) Fi (x) = Fi (ϕi (x)) and Pi (x) = Pi (ϕi (x)).

Corollary 2 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra. Then, the following properties hold for all
x, y ∈ A and for all i, j ∈ I :

(T9∗) Pi (G(x)) ≤ x and Fi (H(x)) ≤ x,
(T11∗) G(x) ∧ Fi (y) ≤ Fi (x ∧ y) and H(x) ∧ Pi (y) ≤

Pi (x ∧ y),
(T12∗) G(x∨ y) ≤ G(x)∨Fi (y) and H(x∨ y) ≤ H(x)∨

Pi (y),
(T14) ϕ j (Fi (x) = Fi (x) = Fi (ϕi (x)) and ϕ j (Pi (x)) =

Pi (x) = Pi (ϕi (x)).

Proof (T9∗): From property (T9), we have that PiG(x)
≤ ϕi x and Fi (H(x)) ≤ ϕi x for all i ∈ I and for all
x ∈ A. From Lemma 1 and property (L8) of Boolean
elements of an LMθ -algebra, we obtain that Pi (G(x)) =
ϕi Pi (G(x)) and Fi (H(x)) = ϕi Fi (H(x)). Then, from
the above assertion we infer that ϕi Pi (G(x)) ≤ ϕi x and
ϕi Fi (H(x)) ≤ ϕi x for all i ∈ I and for all x ∈ A, from
which we conclude by property (L5∗) that Pi (G(x)) ≤ x
and Fi (H(x)) ≤ x for all i ∈ I and for all x ∈ A.

(T11∗): From property (T11), we have that G(ϕi x) ∧
Fi (y) ≤ Fi (x ∧ y) and H(ϕi x) ∧ Pi (y) ≤ Pi (x ∧ y)
for all i ∈ I and for all x ∈ A. Taking into account this
last assertion, property (T3), Lemma 1, property (L2)
and the characterizations (L8) of the Boolean elements
of an LMθ -algebra, we infer that ϕi (G(x) ∧ Fi (y)) ≤
ϕi (Fi (x ∧ y)) and ϕi (H(x) ∧ Pi (y)) ≤ ϕi (Pi (x ∧ y))
for all i ∈ I and for all x ∈ A, and so from property
(L5∗) we can assert that G(x) ∧ Fi (y) ≤ Fi (x ∧ y) and
H(x)∧ Pi (y) ≤ Pi (x∧ y) for all i ∈ I and for all x ∈ A.

(T12∗): From property (T12) we have that G(ϕi (x ∨ y)) ≤
G(ϕi x) ∨ Fi (y) and H(ϕi (x ∨ y)) ≤ H(ϕi x) ∨ Pi (y)
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for all i ∈ I and for all x, y ∈ A. Then, from
this last statement, Lemma 1 and properties (T3) and
(L1) and the characterizations (L8) of the Boolean ele-
ments of an LMθ -algebra, we infer that ϕi G(x ∨ y) ≤
ϕi G(x)∨ϕi Fi (y) = ϕi (G(x)∨Fi (y)) andϕi H(x∨y) ≤
ϕi H(x) ∨ ϕi Pi (y) = ϕi (H(x) ∨ Pi (y)) for all i ∈ I
and for all x, y ∈ A, and therefore, from property
(L5∗), we conclude that G(x ∨ y) ≤ G(x) ∨ Fi (y) and
H(x ∨ y) ≤ H(x) ∨ Pi (y) for all i ∈ I and for all
x, y ∈ A.

(T14): It is a direct consequence of (i) in Lemma 1, the
characterizations (L8) of Boolean elements of an LMθ -
algebra and property (T13). ��

3 A topological duality for tense
LM�-algebras

In this section, we develop a topological duality for tense
LMθ -algebras, taking into account the results established by
Figallo et al. (2010). In order to determine this duality, we
introduce a topological category whose objects and their cor-
responding morphisms are described below.

Definition 8 A system
(
X , { fi }i∈I , R

)
is a tense LMθ -space

if the following conditions are satisfied:

(i)
(
X , { fi }i∈I

)
is a LMθ -space (Definition 2),

(ii) R is a binary relation on X and R−1 is the converse of
R such that:

(tS1) for each x ∈ X , R(x) and R−1(x) are closed subsets
of X ,

(tS2) for each x ∈ X , R(x) =↓ R(x)∩ ↑ R(x),
R−1(x) =↓ R−1(x)∩ ↑ R−1(x),

(tS3) (x, y) ∈ R implies ( fi (x), fi (y)) ∈ R for any i ∈ I ,
(tS4) ( fi (x), y) ∈ R, i ∈ I , implies that there exists z ∈ X

such that (x, z) ∈ R and fi (z) ≤ y,
(tS5) (y, fi (x)) ∈ R, i ∈ I , implies that there exists z ∈ X

such that (z, x) ∈ R and fi (z) ≤ y,
(tS6) for each U ∈ D(X), GR(U ), HR−1(U ) ∈ D(X),

where GR and HR−1 are operators on P(X), which
are defined for all Y ∈ P(X) by the prescriptions:

GR(Y ) := {x ∈ X : ↓ z ∩ R(x) ∩ Y �
= ∅for allz ∈ R(x)}, (8)

HR−1(Y ) := {x ∈ X : ↓ z ∩ R−1(x) ∩ Y �
= ∅for allz ∈ R−1(x)}, (9)

where ↓ z = {x ∈ X : x ≤ z} for all z ∈ X .

Definition 9 A tense LMθ -function f from a tense LMθ -
space

(
X1, { f 1i }i∈I ,

R1) into another LMθ -space
(
X2, { f 2i }i∈I , R2

)
is a function

f : X1 −→ X2 such that:

(i) f : X1 −→ X2 is an LMθ -function (Definition 3),
(ii) f : X1 −→ X2 satisfies the following conditions, for

all x ∈ X1:

(tf1) f (R1(x))⊆ R2( f (x)) and f (R−1
1 (x))⊆ R−1

2 ( f (x)),
(tf2) R2( f (x)) ⊆↑ f (R1(x)),
(tf3) R2

−1( f (x)) ⊆↑ f (R1
−1(x)).

The category that has tense LMθ -spaces as objects and
tense LMθ -functions as morphisms will be denoted by
t LMθ S, and the category of tense LMθ -algebras and tense
LMθ -homomorphisms will be denoted by t LMθ A.

Our next taskwill be to determine that the category t LMθ S
is naturally equivalent to the dual category of t LMθ A. Firstly,
we will determine some properties of tense LMθ -spaces and
tense LMθ -functions, which will be quite useful in order
to developed this duality and characterize the lattice of all
congruences and the lattice of all θ -congruences of these
algebras.

Proposition 4 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space.

For all Y ∈ P(X) such that Y is increasing,

GR(Y ) = {x ∈ X | R(x) ⊆ Y }, (10)

HR−1(Y ) = {x ∈ X | R−1(x) ⊆ Y }. (11)

Proof Let Y ⊆ X be increasing. It immediately follows that
{x ∈ X | R(x) ⊆ Y } ⊆ GR(Y ). Conversely, let y ∈ GR(Y )

and z ∈ R(y). Then, from prescription (8) we infer that
there exists w ∈ Y ∩ R(y) such that w ≤ z. Since Y
is increasing, we obtain that z ∈ Y and so, R(y) ⊆ Y .
Therefore, GR(Y ) = {x ∈ X | R(x) ⊆ Y }. The proof that
HR−1(Y ) = {x ∈ X | R−1(x) ⊆ Y } is similar. ��

Corollary 3 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. For

any U ∈ D(X),

GR(U ) = {x ∈ X | R(x) ⊆ U }, (12)

HR−1(U ) = {x ∈ X | R−1(x) ⊆ U }. (13)

Proof It is a direct consequence of Proposition 4 and the fact
that U is an increasing subset of X for all U ∈ D(X). ��

Definition 10 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space,

B(D(X)) be the Boolean algebra of all complemented ele-
ments of D(X) and let FR , PR−1 be the functions from
B(D(X)) into B(D(X)), defined for all U ∈ D(X) and for
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all i ∈ I by the prescriptions:

FR( f −1
i (U )) :=

{
x ∈ X : R( fi (x)) ∩ f −1

i (U ) �= ∅
}

,

(14)

PR−1( f −1
i (U )) :=

{
x ∈ X : R−1( fi (x)) ∩ f −1

i (U ) �= ∅
}

.

(15)

Proposition 5 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space.

Then, for all i ∈ I and for all U ∈ D(X),

FR

(
f −1
i (U )

)
=

{
x ∈ X : R(x) ∩ f −1

i (U ) �= ∅
}

, (16)

PR−1

(
f −1
i (U )

)
=

{
x ∈ X : R−1(x) ∩ f −1

i (U ) �= ∅
}

.

(17)

Proof Let x /∈ FR

(
f −1
i (U )

)
. Then, by Definition 10, we

have that (1) R( fi (x)) ∩ f −1
i (U ) = ∅, from which it follows

that (2) R(x)∩ f −1
i (U ) = ∅. Indeed, suppose that there is z ∈

R(x) such that fi (z) ∈ U . Then, from properties (tS3) and
(lP5) we obtain the fi (z) ∈ R( fi (x)) and fi ( fi (z)) ∈ U , and
consequently R( fi (x)) ∩ f −1

i (U ) �= ∅, which contradicts
(1). Therefore, assertion (2) holds, which allows us to assert

that
{
x ∈ X : R(x) ∩ f −1

i (U ) �= ∅
}

⊆ FR

(
f −1
i (U )

)
. On

the other hand, suppose that there exists x ∈ X such that (3)
R(x) ∩ f −1

i (U ) = ∅ and (4) R( fi (x)) ∩ f −1
i (U ) �= ∅.

Then, there exists y ∈ R( fi (x)) such that fi (y) ∈ U ,
from which it follows by property (tS4) that there exists
(5) z ∈ R(x) such that fi (z) ≤ y. From this last asser-
tion and property (lP5), we get that fi (y) = fi (z) and so
(6) fi (z) ∈ U . By virtue of statements (5) and (6) we can
assert that R(x)∩ f −1

i (U ) �= ∅, which contradicts (3). There-
fore, assertion (4) is not true, from which we conclude that

FR

(
f −1
i (U )

)
=

{
x ∈ X : R(x) ∩ f −1

i (U ) �= ∅
}
. In a sim-

ilar way we can proved (17). ��

Definition 11 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space and

let for each i ∈ I , Fi
R : X −→ X and Pi

R−1 : X −→ X be
the functions defined for all U ∈ P(X) by the prescriptions:

Fi
R(U ) := FR

(
f −1
i (U )

)
, (18)

Pi
R−1(U ) = PR−1

(
f −1
i (U )

)
. (19)

Lemma 2 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. Then,

for all i ∈ I and for all U ∈ D(X),

(tS7) FR
(
ϕX
i (U )

) = FR

(
f −1
i (U )

)
= ϕX

i (GR
(
ϕX
i

(
f −1
i (U )

)))
= ϕX

i

(
GR

(
ϕX
i (U )

))
,

(tS8) PR−1
(
ϕX
i (U )

) = PR−1

(
f −1
i (U )

)
= ϕX

i

(
HR−1

(
ϕX
i

(
f −1
i (U )

)))
= ϕX

i

(
HR−1

(
ϕX
i (U )

))
,

(tS9) Fi
R(U ) = ϕX

i

(
GR

(
ϕX
i

(
f −1
i (U )

)))
= ϕX

i(
GR

(
ϕX
i (U )

))
,

(tS10) Pi
R−1(U ) = ϕX

i

(
HR−1

(
ϕX
i

(
f −1
i (U )

)))
=

ϕX
i

(
HR−1

(
ϕX
i (U )

))
.

Proof It immediately follows taking into account Proposition
4, Definitions 10 and 11, the definitions of ϕX

i and ϕX
i , i ∈ I ,

given in prescription (1), and property (L6) of LMθ -algebras.
��

Lemma 3 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. Then,

for all i, j ∈ I and for all U ∈ D(X),

(i) Fi
R(U ), Pi

R−1(U ) ∈ B(D(X)),

(ii) f −1
j

(
Fi
R(U )

) = Fi
R(U ), f −1

j

(
Pi
R−1(U )

)
= Pi

R−1(U ).

Proof (i): From statement (A1) and the characterizations
(L8) of the Boolean elements of an LMθ -algebra it
follows that B(D(X)) = {

ϕX
i (U ) : U ∈ D(X)

}
i∈I ={

ϕX
i (U ) : U ∈ D(X)

}
i∈I , and consequently this last

assertion and properties (tS6) (Definition 8), (tS9) and
(tS10) (Lemma 2) of LMθ -spaces allow us to complete
the proof.

(ii): It is a direct consequence of (i), the characterizations
(L8) of the Boolean elements of an LMθ -algebra and
the definition of ϕX

j , j ∈ I , given in (1). ��

Lemma 4 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. Then,

for all x, y ∈ X, the following conditions are equivalent:

(i) ( fi (x), fi (y)) ∈ R for some i ∈ I ,
(ii) ( fi (x), fi (y)) ∈ R for all i ∈ I .

Proof It is a direct consequence of properties (lP5) and (tS3)
of tense LMθ -spaces. ��

Now, we will show a characterization of tense LMθ -
functions which will be useful later.

Lemma 5 Let
(
X1, { f 1i }i∈I , R1

)
and

(
X2, { f 2i }i∈I , R2

)
be

two tense LMθ -spaces and let f : X1 −→ X2 be a tense
LMθ -function. Then, f satisfies the following conditions for
any x ∈ X:

(tf4) ↑ f (R1(x)) =↑ R2( f (x)),
(tf5) ↑ f (R1

−1(x)) =↑ R2
−1( f (x)).

Proof It can be proved using a similar technique to that used
in the proof of Lemma 3.4 in Figallo et al. (2018). ��
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Lemma 6 Let
(
X1, { f 1i }i∈I , R1

)
and

(
X2, { f 2i }i∈I , R2

)
be

two tense LMθ -spaces, and let f : X1 −→ X2 be an LMθ -
function such that for all U ∈ D(X2):

(tf6) f −1
(
GR2(U )

) = GR1

(
f −1(U )

)
,

(tf7) f −1
(
HR−1

2
(U )

)
= HR−1

1

(
f −1(U )

)
.

Then, f satisfies the following conditions for all U ∈ D(X2)

and for all i ∈ I :

(tf8) f −1
(
Fi
R2

(U )
)

= Fi
R1

(
f −1(U )

)
,

(tf9) f −1
(
Pi
R−1
2

(U )

)
= Pi

R−1
1

(
f −1(U )

)
.

Proof (tf8): Let U ∈ D(X2). Then taking into account that
f : X1 −→ X2 is an LMθ -function, prescription (1) and
properties (tS9) and (tf6) it follows that for all i ∈ I ,

f −1
(
Fi
R2

(U )
)

= f −1
(
ϕ
X2
i

(
GR2

(
ϕ
X2
i

(
f 2

−1

i (U )
))))

= ϕ
X1
i

(
GR1

(
ϕ
X1
i

(
f 1

−1

i

(
f −1(U )

))))

= Fi
R1

(
f −1(U )

)
.

So, (tf8) holds.
(tf9): It can be proved in a similar way, taking into account
properties (tS10) and (tf7). ��

Lemma 7 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. Then

for all x, y ∈ X such that (x, y) /∈ R, the following condi-
tions are satisfied:

(i) There is U ∈ D(X) such that y /∈ U and x ∈ GR(U ),
or there is V ∈ D(X) such that y ∈ V and x /∈ F0

R(V ),
(ii) there is W ∈ D(X) such that y /∈ W and x ∈ HR−1(W ),

or there is V ∈ D(X) such that y ∈ V and x /∈ P0
R−1(V ).

Proof (i): Let x, y ∈ X such that y /∈ R(x). Then, fromprop-
erty (tS2) we have that y /∈↑ R(x) or y /∈↓ R(x). Suppose
that y /∈↑ R(x). Then, z � y for all z ∈ R(x). Since, by prop-
erty (tS1), R(x) is compact, then from the last assertion, we
infer that there isU ∈ D(X) such that y /∈ U and R(x) ⊆ U .
Therefore, x ∈ GR(U ). Suppose now that y /∈↓ R(x). Then
y � z for all z ∈ R(x). From the last statement and the
fact that R(x) is compact, we infer that there is V ∈ D(X)

such that y ∈ V and (1) R(x) ∩ V = ∅, which implies by
property (lP9) that (2) R(x) ∩ f −1

0 (V ) = ∅. Indeed, if there
is z ∈ R(x) such that f0(z) ∈ V , then from (lP9) we deduce
that z ∈ V and so z ∈ R(x) ∩ V , which contradicts (1).
Therefore, from (2) we conclude that x /∈ F0

R(V ).
(ii): It can be proved in a similar way to (i). ��

Proposition 6 Let
(
X1, { f 1i }i∈I , R1

)
and

(
X2, { f 2i }i∈I , R2

)

be two tense LMθ -spaces. Then, the following conditions are
equivalent:

(i) f : X1 −→ X2 is a tense LMθ -function,
(ii) f : X1 −→ X2 is an LMθ -function such that for all

U ∈ D(X2):

(tf6) f −1
(
GR2(U )

) = GR1

(
f −1(U )

)
,

(tf7) f −1(HR−1
2

(U )) = HR−1
1

(
f −1(U )

)
.

Proof The proof is similar in spirit to Lemma 3.6 of Figallo
et al. (2018). ��

Proposition 7 and Corollary 4 can be proved in a similar
way to Lemma 3.8 and Corollary 3.9 of Figallo et al. (2018).

Proposition 7 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space.

Then, the following conditions are satisfied for any x, y,∈ X
and i ∈ I :

(tS11) R( fi (x)) ⊆ ⋃
y∈R( fi (x)) ↑ fi (y),

(tS12) R−1( fi (x)) ⊆ ⋃
y∈R−1( fi (x))

↑ fi (y),
(tS13) ↑ fi (R(x)) =↑ R( fi (x)),
(tS14) ↑ fi (R−1(x)) =↑ R−1( fi (x)),

(tS15) f −1
i (GR(U )) = GR

(
f −1
i (U )

)
,

(tS16) f −1
i

(
HR−1(U )

) = HR−1

(
f −1
i (U )

)
,

(tS17) f −1
i

(
Fi
R(U )

) = Fi
R

(
f −1
i (U )

)
,

(tS18) f −1
i

(
Pi
R−1(U )

)
= Pi

R−1

(
f −1
i (U )

)
.

Corollary 4 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space.

Then, the conditions (tS3), (tS4) and (tS5) can be replaced
by the following conditions:

(tS15) f −1
i (GR(U )) = GR

(
f −1
i (U )

)
for anyU ∈ D(X),

(tS16) f −1
i

(
HR−1(U )

) = HR−1

(
f −1
i (U )

)
for any U ∈

D(X).

Proposition 8 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space

and D(X) be the lattice of all increasing, closed and open
subsets of X. Then,

Ψ (X) =
(
D(X),

{
ϕX
i

}

i∈I ,
{
ϕX
i

}

i∈I ,GR, HR−1

)

is a tense LMθ -algebra, where for all U ∈ D(X) and all
i ∈ I , ϕX

i (U ), ϕX
i (U ), GR(U ) and HR−1(U ) are defined as

in (1), (10) and (11), respectively.

Proof From statement (A1) we have that 〈D(X),∪,∩,

{ϕX
i }i∈I , {ϕX

i }i∈I ,∅, X〉 is an LMθ -algebra. From the def-
inition (10) and (11), we obtain that properties (T1) and (T2)
hold. Let us prove that the remaining axioms are satisfied.
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(T3): Since any U ∈ D(X) satisfies properties (tS18) and
(tS19) in Proposition 7, then we can assert that property (T3)
holds.
(T4′): Let U ∈ D(X), i ∈ I . Suppose that x ∈ ϕX

i (U )

and y ∈ R(x). Since x ∈ f −1
i (U ), it follows that x ∈

R−1(y) ∩ f −1
i (U ). This last assertion and Proposition 5

imply that y ∈ PR( f −1
i (U )) and consequently y ∈ Pi

R(U ).
Therefore, R(x) ⊆ Pi

R(U ), from which we obtain that
ϕX
i (U ) ⊆ GR

(
Pi
R(U )

)
. In a similar way, we can prove that

ϕX
i (U ) ⊆ HR−1

(
Fi
R(U )

)
. And so property (T4′) holds too.

From the above statements, we conclude thatΨ (X) is a tense
LMθ -algebra. ��

Lemma 8 Let f : (
X1, { f 1i }i∈I

) −→ (
X2, { f 2i }i∈I

)
be a

morphism of tense LMθ -spaces. Then, the map Ψ ( f ) :
D(X2) −→ D(X1) defined by Ψ ( f )(U ) = f −1(U ) for
all U ∈ D(X2), is a tense LMθ -homomorphism.

Proof It follows from statement (A6) and Proposition 6. ��

Proposition 8 and Lemma 8 show thatΨ is a contravariant
functor from t LMθ S to t LMθ A.

To achieve our goalwe need to define a contravariant func-
tor from t LMθ A to t LMθ S.

Lemma 9 Let (A,G, H) be a tense LMθ -algebra. Then, the
following conditions are equivalent for all S, T ∈ X(A):

(i) G−1(S) ⊆ T ⊆ F−1
0 (S),

(ii) H−1(T ) ⊆ S ⊆ P−1
0 (T ).

Proof (i)⇒(ii): Let S, T be two prime filters of A such
that (1) G−1(S) ⊆ T ⊆ F−1

0 (S), and let us suppose
that H(x) ∈ T . Then, from (1) it follows that H(x) ∈
F−1
0 (S) and hence F0(H(x)) ∈ S. From this last asser-

tion and the definition of the operator F0 (Definition 7) we
obtain that (2) F(ϕ0(H(x))) ∈ S. Taking into account that
F(ϕ0(H(x))) ∈ B(A) (Lemma 3) and the characterizations
(L8) of the Boolean elements of an LMθ -algebra, we infer
that (3) ϕ0(F(ϕ0(H(x))) = F(ϕ0(H(x))). Besides, from
property (T9), we have that (4) F(ϕ0(H(x)) ≤ ϕ0(x).
Then, from (2), (3), (4) and property (L7) of LMθ -algebras
we get that x ∈ S. Therefore, H−1(T ) ⊆ S. On the other
hand, suppose that z ∈ S. From property (T4∗), we get that
(5) G(P0(z)) ∈ S and so P0(z) ∈ G−1(S). From this last
statement and (1) we deduce that P0(z) ∈ T , and hence
z ∈ P−1

0 (T ). Therefore, S ⊆ P−1
0 (T ). The converse impli-

cation is similar. ��

Lemma 10 Let (A,G, H) be a tense LMθ -algebra and let
RA be the relation defined on X(A) by the prescription:

(S, T ) ∈ RA ⇐⇒ G−1(S) ⊆ T ⊆ F−1
0 (S). (20)

Then, for all S, T ∈ X(A),

(S, T ) ∈ RA ⇐⇒ H−1(T ) ⊆ S ⊆ P−1
0 (T ). (21)

Proof It is a direct consequence of Lemma 9. ��
Remark 2 Lemma 10 means that we have two ways to define
the relation RA, either by using G and F0, or by using H and
P0.

Corollary 5 Let (A,G, H) be a tense LMθ -algebra and let
RA be the relation defined on X(A) by prescription (20) or
equivalently by prescription (21). Then,

(S, T ) ∈ RA ⇐⇒ G−1(S) ⊆ T ⊆ F−1
i (S) for all i ∈ I ,

(22)

or equivalently,

(S, T ) ∈ RA ⇐⇒ H−1(T ) ⊆ S ⊆ P−1
i (T ) for all i ∈ I .

(23)

Proof FromLemma 1 it follows that for all S, T ∈ X(A) and
for all i ∈ I , F−1

0 (S) ⊆ F−1
i (S) and P−1

0 (T ) ⊆ P−1
i (T )

and so from Lemma 10 the proof is complete. ��
Lemma 11 Let (A,G, H) be a tense LMθ -algebra and let
RA be the relation defined on X(A) as in (20), or equivalently
as in (21), then for all S ∈ X(A),

(i) RA(S) =↓ RA(S)∩ ↑ RA(S),
(ii)

(
RA

)−1
(S) =↓ (

RA
)−1

(S)∩ ↑ (
RA

)−1
(S),

(iii) RA(S) is closed in X(A),
(iv)

(
RA

)−1
(S) is closed in X(A).

Proof Wewill only prove (i) and (iii). Similarly we can prove
(ii) and (iv).
(i): Since for all S ∈ X(A), RA(S) ⊆↓ RA(S) and
RA(S) ⊆↑ RA(S), we have that RA(S) ⊆ ↓ RA(S)∩ ↑
RA(S). On the other hand, let T ∈↑ RA(S) ∩ ↓ RA(S).
Then, there are S1, S2 ∈ X(A) such that S ⊆ S1, S1 RA T ,
S RA S2 and S2 ⊇ T . Hence, G−1(S) ⊆ G−1(S1) ⊆ T
and T ⊆ S2 ⊆ F−1

i (S) for any i ∈ I . Hence, from (T13)
we deduce that ϕ−1

i (T ) ⊆ F−1
i (S) for all i ∈ I . Therefore,

T ∈ RA(S).
(iii): Let us suppose that (1) T /∈ RA(S). Then, by prescrip-
tion (20) there is x ∈ G−1(S) such that x /∈ T , or there is
y ∈ T such that y /∈ F−1

0 (S). In the first case, we have that
(2) T /∈ σA(x) and (3) G−1(S) ∈ σA(x). Then, taking into
account that σA (x) is an increasing subset of X(A), asser-
tion (3) and prescription (20) we infer that RA(S) ⊆ σA (x).
From this assertion and (2) we deduce that (4) T ∈ σA ( x)c

and σA (x)c ⊆ RA(S)c. In the second case, T ∈ σA(y) and
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F−1
0 (S) ∈ σA(y)c. Since σA(y)c is a decreasing set, then

from the last statement and prescription (20) we infer that
RA(S) ⊆ σA(y)c. So, we obtain that (5) T ∈ σA(y) and
σA(y) ⊆ RA(S)c. Therefore, assertions (1), (4) and (5) allow
us to assert that RA(S)c is an open subset of X(A), which
implies that RA(S) is a closed subset of X(A). ��
Lemma 12 Let (A,G, H) be a tense LMθ -algebra and let
S ∈ X(A) and a ∈ A. Then,

(i) G(a) /∈ S if and only if there exists T ∈ X(A) such that
(S, T ) ∈ RA and a /∈ T ,

(ii) H(a) /∈ S if and only if there exists T ∈ X(A) such that

(S, T ) ∈ (
RA

)−1
and a /∈ T .

Proof (i): Suppose that (1) G(a) /∈ S. Let us consider the
ideal ({a} ∪ (A\F−1

0 (S)], and we will prove that

G−1(S) ∩ ({a} ∪ (A\F−1
0 (S)] = ∅. (24)

Suppose the opposite. Then there exists (2) b ∈ G−1(S)

and there exists (3) c ∈ (A\F−1
0 (S)) such that b ≤ a ∨ c,

Then, from properties (T5) and (T12) we have that G(b) ≤
G(a ∨ c) ≤ G(a) ∨ F0(c). From this last assertion, (1)
and (2), we deduce that F0(c) ∈ S, which contradicts (3).
Thus, (24) holds. Therefore, from Birkhoff–Stone Theo-
rem there is a prime filter T such that G−1(S) ⊆ T and
({a} ∪ (A\F−1

0 (S)] ∩ T = ∅. Consequently a /∈ T and
T ⊆ F−1

0 (S). Therefore, G−1(S) ⊆ T ⊆ F−1
0 (S) and so

from Lemma 10 we conclude that (S, T ) ∈ RA. The other
implication is easy.
(ii): It can be proved in a similar way as in (i). ��
Proposition 9 Let

(
A, {ϕi }i∈I ,

{
ϕi

}
,G, H

)
be an LMθ -

algebra and let
(
X(A), { f Ai }i∈I

)
be the LMθ -space asso-

ciated with A. Then, Φ(A) = (X(A), { f Ai }i∈I , RA
)
is a

tense LMθ -space, where RA is the relation defined on X(A)

as in (20) or (21). Besides, σA : A −→ D(X(A)), defined
by prescription (2), is a tense LMθ -isomorphism.

Proof From statement (A2) it follows that
(
X(A), { f Ai }i∈I

)

is an LMθ -space and σA is an LMθ -isomorphism. Also for
all a ∈ A, GRA(σA(a)) = σA(G(a)) and H

RA−1(σA(a)) =
σA(H(a)). Indeed, let us take a prime filter S such that
G(a) /∈ S. Then, by Lemma 12, we infer that there exists
T ∈ X(A) such that (S, T ) ∈ RA and a /∈ T , which
implies that RA(S) � σA(a). Hence S /∈ GRA(σA(a)), and
therefore, GRA(σA(a)) ⊆ σA(G(a)). On the other hand,
let S, T ∈ X(A) such that G(a) ∈ S and T ∈ RA(S).
Then a ∈ G−1(S) and G−1(S) ⊆ T , from which it fol-
lows that T ∈ σA(a). Therefore, RA(S) ⊆ σA(a), which
allows us to assert that S ∈ GR(σA(a)). And so, we get
that σA(G(a)) = GRA(σA(a)). Similarly we can prove that

H
RA−1 (σA(a)) = σA(H(a)) and consequently by Propo-

sition 6, σA is a tense LMθ -isomorphism. Besides, from
Lemma 11 we have that properties (tS1) and (tS2) hold.
Also, from Corollary 4 we obtain that conditions (tS4),
(tS5) and (tS6) are satisfied. Therefore, we conclude that(
X(A), { f Ai }i∈I , RA

)
is a tense LMθ -space. ��

Lemma 13 Let (A1,G1, H1) and (A2,G2, H2) be two tense
LMθ -algebras and let h : A1 −→ A2 be a tense LMθ -
homomorphism. Then, the function Φ(h) : X(A2) −→
X(A1), defined by Φ(h)(S) = h−1(S) for all S ∈ X(A2), is
a tense LMθ -function.

Proof It is a direct consequence of statement (A5) and Propo-
sition 6. ��

Proposition 9 and Lemma 13 show that Φ is a contravari-
ant functor from t LMθ A to t LMθ S.

The following characterizations of isomorphisms in the
category t LMθ S will be used to determine the duality that
we set out to prove.

Lemma 14 Let
(
X1, { f 1i }i∈I , R1

)
and

(
X2, { f 2i }i∈I , R2

)
be

two tense LMθ -spaces. Then, the following conditions are
equivalent, for every function
f : X1 −→ X2:

(i) f is an isomorphism in the category t LMθ S,
(ii) f is a bijective function such that f and f −1 are tense

LMθ -functions.

Proof It is routine. ��
Proposition 10 Let

(
X1, { f 1i }i∈I , R1

)
and

(
X2, { f 2i }i∈I , R2

)

be two tense LMθ -spaces. Then, the following conditions are
equivalent, for every function
f : X1 −→ X2:

(i) f is an isomorphism in the category t LMθ S,
(ii) f is a bijective function such that f and f −1 are LMθ -

functions and for all x, y ∈ X1:

(itf) (x, y) ∈ R1 ⇐⇒ ( f (x), f (y)) ∈ R2.

Proof (i) ⇒ (ii): It follows immediately from the hypothesis
(i), Lemma 14 and property (tf1) of tense LMθ -functions.
(ii) ⇒ (i): From the hypothesis (ii) and Lemma 14 it follows
that f is a bijective function and f and f −1 are LMθ -
functions. Besides, f satisfies conditions (tf1), (tf2) and (tf3)
as we will show next.
(tf1): From property (itf) and the fact that f is a bijective
function it follows that for all x ∈ X1, (1) f (R1(x)) =
R2 ( f (x)) and (2) f

(
R−1
1 (x)

)
= R−1

2 ( f (x)).

(tf2): From (1), we obtain that R2 ( f (x)) = f (R1(x)) ⊆↑
f (R1(x)) for all x ∈ X1.
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(tf3): From (2), we obtain that R−1
2 ( f (x)) = f

(
R−1
1 (x)

)
⊆

↑ f
(
R−1
1 (x)

)
for all x ∈ X1.

The proof that the function f −1 satisfies conditions (tf1),
(tf2) and (tf3) is similar. Therefore, f and f −1 are tense
bijective LMθ -functions and so fromLemma14we conclude
the proof. ��

The following proposition allows us to assert that εX :
X −→ X(D(X)), defined as in (4), is an isomorphism in the
category t LMθ S, which is fundamental in the duality we are
looking for.

Proposition 11 Let (X , { fi }i∈I , R) be a tense LMθ -space,
εX be the map from X onto X(D(X)) defined by prescription
(4) and let RD(X) be the relation defined on X(D(X)) by
means of the operators GR, F0

R, HR−1 and P0
R−1 as follows:

(εX (x), εX (y)) ∈ RD(X) ⇔ G−1
R (εX (x))

⊆ εX (y) ⊆ F0−1

R (εX (x)), (25)

or equivalently

(εX (x), εX (y)) ∈ RD(X) ⇔ H−1
R−1(εX (y))

⊆ εX (x) ⊆ P0−1

R−1(εX (y)). (26)

Then, the following property holds:

(tS19) (x, y) ∈ R ⇐⇒ (εX (x), εX (y)) ∈ RD(X).

Proof From Lemma 10 and statements (A1) and (A4) it fol-
lows that prescription (25) is equivalent to prescription (26).

Let x, y ∈ X such that (1) (εX (x), εX (y)) /∈ RD(X), them
from the prescription (25)we infer thatG−1

R (εX (x)) � εX (y)

or εX (y) � F0−1

R (εX (x)). From the last statements it follows
that there existsU ∈ D(X) such that x ∈ GR(U ) and y /∈ U
or there exists V ∈ D(X) such that y ∈ V and x /∈ F0

R(V ).
Consequently from Lemma 7 we obtain that (x, y) /∈ R.

Besides, assertion (1), prescription (26) and Lemma 7
allow us to assert that (x, y) /∈ R.

Conversely, let x, y ∈ X such that (x, y) /∈ R, then from
Lemma 7 we have that the following conditions hold:

(3) There is U ∈ D(X) such that x ∈ GR(U ) and y /∈ U ,
or there is V ∈ D(X) such that y ∈ V and x /∈ F0

R(V ),
(4) there isW ∈ D(X) such that y ∈ HR−1(W ) and x /∈ W ,

or there is V ∈ D(X) such that x ∈ V and y /∈ P0
R−1(V ).

Suppose that (3) holds. Then G−1
R (εX (x)) � εX (y) or

εX (y) � F0−1

R (εX (x)), and therefore, from prescription (25)
we infer that (εX (x), εX (y)) /∈ RD(X).

If (4) holds, then H−1
R−1(εX (y)) � εX (x) or εX (x) �

Po−1

R−1(εX (y)) and so from prescription (26) we obtain that

(εX (x), εX (y)) /∈ RD(X). ��
Corollary 6 Let (X , { fi }i∈I , R) be a tense LMθ -space, εX be
the map from X onto X(D(X)) defined by prescription (4)
and let RD(X) be the relation defined on X(D(X)) by means
of the operators GR and FR as follows:

(εX (x), εX (y)) ∈ RD(X) ⇔ G−1
R (εX (x))

⊆ εX (y) ⊆ Fi−1

R (εX (x)) for all i ∈ I , (27)

or equivalently

(εX (x), εX (y)) ∈ RD(X) ⇔ H−1
R−1(εX (y))

⊆ εX (x) ⊆ Pi−1

R−1(εX (y)) for all i ∈ I . (28)

Then, the following property holds:

(tS19) (x, y) ∈ R ⇐⇒ (εX (x), εX (y)) ∈ RD(X).

Proof From Lemma 1 it follows that for all x, y ∈ X and
i ∈ I , F0−1

R (εX (x)) ⊆ Fi−1

R (εX (x)) and P0−1

R−1(εX (y)) ⊆
Pi−1

R−1(εX (y)). From these last assertions and Proposition 10
the proof is complete. ��
Corollary 7 Let

(
X , { fi }i∈I , R

)
be a tense LMθ -space.

Then, the function εX : X −→ X(D(X)), defined by pre-
scription (4), is an isomorphism in the category t LMθ S.

Proof It follows from the results established in Figallo et al.
(2010) and Propositions 10 and 11. ��

Themap εX : X −→ X(D(X)), defined as in (4), leads us
to formulate another characterization of tense LMθ -spaces
as we will describe below:

Proposition 12 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space

and let εX be the function from X onto X(D(X)) defined by
prescription (4). If RD(X) is the relation defined on X(D(X))

by prescription (25) or (26), condition (tS2) in Definition 8
can be replaced by condition (tS19).

Proof (tS2) ⇒ (tS19): It follows fromProposition 11,which
is a consequence of Lemma 7, and consequently it is a con-
sequence of the fact that

(
X , { fi }i∈I

)
is an LMθ -space and

the relation R satisfies properties (tS1) and (tS2).
(tS19) ⇒ (tS2): We have to prove ↓ R(x)∩ ↑ R(x) ⊆
R(x); the other inclusion always holds. Suppose that y ∈
↓ R(x)∩ ↑ R(x). Then there exists z1, z2 ∈ X such that
y ≤ z1, (x, z1) ∈ R, z2 ≤ y and (x, z2) ∈ R. Hence, from
the fact that εX is an order isomorphism and property (tS19),
we infer that εX (y) ⊆ εX (z1), (εX (x), εX (z1)) ∈ RD(X),
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εX (z2) ⊆ εX (y) and (εX (x), εX (z2)) ∈ RD(X). Thus, from
the last statements and prescription (25), we obtain that

G−1
R (εX (x)) ⊆ εX (z2) ⊆ εX (y) ⊆ εX (z1) ⊆ F0

R
−1

(εX (x)).
Therefore, (εX (x), εX (y)) ∈ RD(X), and so from property
(tS19) we conclude that (x, y) ∈ R. ��

Then, from the above results and using the usual proce-
dures we can prove that the functors Φ ◦ Ψ and Ψ ◦ Φ are
naturally equivalent to the identity functors on t LMθ S and
t LMθ A, respectively, where the isomorphisms σA and εX
are the corresponding natural equivalences, from which we
conclude:

Theorem 3 The category t LMθ S is naturally equivalent to
the dual category of the category t LMθ A.

4 Congruences on tense LM�-algebras

In this section, our objective is the characterization of the
congruence lattice and the θ -congruence lattice on a tense
LMθ -algebra by means of certain closed subsets of its asso-
ciated tense LMθ -space. With this purpose, we will start by
introducing the following notion.

Definition 12 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. A

subset Y of X is a tense subset if it satisfies the following
conditions:

(ts1) Y ⊆ GR(Y ), where GR(Y ) is defined by prescription
(8), i.e., for all y ∈ Y and for all z ∈ R(y), ↓ z ∩
R(y) ∩ Y �= ∅,

(ts2) Y ⊆ HR−1(Y ), where HR−1(Y ) is defined by pre-
scription (9), i.e. for all y ∈ Y and for all z ∈ R(y),
↓ z ∩ R−1(y) ∩ Y �= ∅.

The notion of tense subset of a tense LMθ -space has the
following equivalent formulation, which will be useful later:

Lemma 15 Let (X , { fi }i∈I , R) be a tense LMθ -space. If Y is
a subset of X, then the following conditions are equivalent:

(i) Y is a tense subset,
(ii) Y = GR(Y ) ∩ Y ∩ HR−1(Y ).

Proof It is immediate. ��
In Figallo et al. (2012) the following characterizations of

a modal subset of an LMθ -space were obtained.

Proposition 13 (Figallo et al. 2012, Proposition 4.4, Corol-
lary 4.1) Let

(
X , { fi }i∈I

)
be an LMθ -space and let Y be a

nonempty subset of X. Then, the following conditions are
equivalent:

(i) Y is modal,
(ii) Y is decreasing and increasing,
(iii) Y is the cardinal sum of sets [ f0(y), f1(y)], y ∈ Y ,

where [x, z] = {w ∈ X : x ≤ w ≤ z} for all x, z ∈ X.

Corollary 8 Let (X , { fi }i∈I ) be an LMθ -space. If {Yi }i∈I is a
family of modal subsets of X, then

⋂
i∈I Yi is a modal subset

of X

Proof It is a direct consequence of Proposition 13. ��
Proposition 14 Let

(
X , { fi }i∈I , R

)
be a tense LMθ -space.

If Y is a tense semimodal subset of X, then for all i ∈ I and
for all y ∈ f −1

i (Y ), the following conditions are satisfied:

(ts5) R(y) ⊆ f −1
i (Y ),

(ts6) R−1(y) ⊆ f −1
i (Y ).

Proof (ts5): Let i ∈ I , (1) y ∈ f −1
i (Y ) and (2) z ∈ R(y).

Then, from (2) and property (tS3) we obtain that fi (z) ∈
R( fi (y)). From (1), (2), the last assertion and the fact that Y
is a tense subset of X , we infer that there is (3) w ∈ Y such
that w ∈ R( fi (y)) and (4) w ≤ fi (z). Then, from (4) and
property (lP3) it follows that (5) fi (w) = fi (z). Besides,
from (3) and the fact that Y is semimodal, we obtain that
fi (w) ∈ Y and so from (5), we conclude that fi (z) ∈ Y ,
which allows us to assert that R(y) ⊆ f −1

i (Y ).
(ts6): It can be proved in a similar way. ��
Corollary 9 Let

(
X , { fi }i∈I , R

)
be a tense LMθ -space. If Y

is a tense and semimodal subset of X, then for all i ∈ I ,
f −1
i (Y ) is a tense and modal subset of X.

Proof From property (lP5) it follows that f −1
i (Y ) is a modal

subset of X for all i ∈ I . Then, from Proposition 13,
we have that f −1

i (Y ) is increasing for all i ∈ I . From
this last assertion and Proposition 4, we infer that for all
i ∈ I , GR( f −1

i (Y )) = {x ∈ X : R(x) ⊆ f −1
i (Y )}

and HR−1( f −1
i (Y )) = {x ∈ X : R−1(x) ⊆ f −1

i (Y )}
and so from Proposition 14, we conclude that f −1

i (Y ) ⊆
GR( f −1

i (Y )) and f −1
i (Y ) ⊆ HR−1( f −1

i (Y )) for all i ∈ I .
Therefore, the proof is complete. ��
Corollary 10 Let

(
X , { fi }i∈I , R

)
be a tense LMθ -space. If

Y is a modal subset of X, then the following conditions are
equivalent:

(i) Y is a tense subset,
(ii) for all i ∈ I and for all y ∈ Y , the following conditions

are satisfied:

(ts7) R(y) ⊆ Y ,
(ts8) R−1(y) ⊆ Y ,

(iii) Y = GR(Y ) ∩ Y ∩ HR−1(Y ).
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Proof It is a direct consequence of Lemma 15 and Proposi-
tions 13 and 14. ��
Proposition 15 Let

(
X , { fi }i∈I , R

)
be a tense LMθ -space.

If Y is a modal subset of X, then GR(Y ) and HR−1(Y ) are
also modal.

Proof Let Y be a modal subset of X . From property (lP12)
it follows immediately that (1) GR(Y ) ⊆ ⋃

z∈GR(Y )[ f0(z),
f1(z)]. Let (2) z ∈ GR(Y ) and let (3) w ∈ [ f0(z), f1(z)],
then from (3) and properties (lP3) and (lP5), we obtain that
(4) fi (w) = fi (z) for all i ∈ I . Let (5) t ∈ R(w), then by (4),
(5) and property (tS3), we infer that f0(t) ∈ R( f0(z)), and
therefore, fromproperties (tS4), (lP3) and (lP5),we can assert
that there exists y ∈ X such that (5) y ∈ R(z) and (6) fi (y) =
fi (t) for all i ∈ I . From (2) and (5) we get that y ∈ Y . Since
Y is modal, then from this last assertion and (6) it results that
fi (t) ∈ Y for all i ∈ I . Then, since Y is modal, we have that
t ∈ Y , from which we deduce by (5) that R(w) ⊆ Y , which
allows to assert thatw ∈ GR(Y ). Therefore, from (3) we can
set that

⋃
z∈GR(Y )[ f0(z), f1(z)] ⊆ GR(Y ). Then, from (1) it

follows that GR(Y ) = ⋃
z∈GR(Y )[ f0(z), f1(z)], and so from

Proposition 13, we conclude that GR(Y ) is modal. The proof
that HR−1(Y ) is modal is similar. ��

The characterization of tense subsets of a tense LMθ -
space, given in Lemma 15, prompts us to introduce the
following definition:

Definition 13 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space and

let dX : P(X) −→ P(X) defined by:

dX (Z) = GR(Z) ∩ Z ∩ HR−1(Z), for all Z ∈ P(X).

(29)

For each n ∈ ω, let dnX : P(X) −→ P(X), defined by:

d0X (Z) = Z , dn+1
X (Z) = dX (dnX (Z)), for all Z ∈ P(X).

(30)

By using the above functions dX , dnX , n ∈ ω, we obtain
another equivalent formulation of the notion of tense subset
of a tense LMθ -space.

Lemma 16 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space. If Y

is a modal subset of X, then the following conditions are
equivalent:

(i) Y is a tense subset,
(ii) Y = dnX (Y ), for all n ∈ ω,
(iii) Y = ⋂

n∈ω dnX (Y ).

Proof It is a consequence of Corollary 10 and Definition 13.
��

Proposition 16 Let (X , { fi }i∈I , R) be a tense LMθ -space
and let the structure (D(X),GR, HR−1) be the tense LMθ -
algebra associatedwith X. Then, for all n ∈ ω, for allU , V ∈
D(X) and for all i ∈ I , the following conditions are satisfied:

(d0) dnX (U ) ∈ D(X),
(d1) dnX (X) = X and dnX (∅) = ∅,
(d2) dn+1

X (U ) ⊆ dnX (U ),
(d3) dnX (U ∩ V ) = dnX (U ) ∩ dnX (V ),
(d4) U ⊆ V implies dnX (U ) ⊆ dnX (V ),
(d5) dnX (U ) ⊆ U,
(d6) dn+1

X (U ) ⊆ GR(dnX (U )) and dn+1
X (U ) ⊆ HR−1

(dnX (U )),
(d7) dnX ( f −1

i (U )) = f −1
i (dnX (U )) for any n ∈ ω and i ∈ I ,

(d8) if U is modal, then dnX (U ) is modal,
(d9)

⋂
n∈ω dnX ( f −1

i (U )) is a closed, modal and tense subset
of X.

Proof In a similar way to (Figallo et al. 2018, Proposition
4.11). ��

As consequences of Proposition 16 and the above duality
for tense LMθ -algebras (Proposition 9) we obtain the fol-
lowing corollaries.

Corollary 11 (Chiriţă 2011, Proposition5.1)Let
(
A, {ϕi }i∈I ,{

ϕi
}
i∈I ,G, H

)
be a tense LMθ -algebra, d : A −→ A be

the function defined by d(a) = G(a)∧a∧H(a) for all a ∈ A,
and for each n ∈ ω, let dn : A −→ A be the function defined
by d0(a) = a and dn+1(a) = d(dn(a)) for all a ∈ A. Then,
for all n ∈ ω and for all a, b ∈ A, the following conditions
are satisfied:

(d1) dn(1) = 1 and dn(0) = 0,
(d2) dn+1(a) ≤ dn(a),
(d3) dn(a ∧ b) = dn(a) ∧ dn(b),
(d4) a ≤ b implies dn(a) ≤ dn(b),
(d5) dn(a) ≤ a,
(d6) dn+1(a) ≤ G(dn(a)) and dn+1(a) ≤ H(dn(a)),
(d7) for all i ∈ I and n ∈ ω, dn(ϕi (a)) = ϕi (dn(a)).

Corollary 12 Let (A,G, H) be a tense LMθ -algebra and(
X(A), { f Ai }i∈I , RA

)
be the tense LMθ -space associated

with A. If σA : A −→ D(X(A)) is the map defined by pre-
scription (2), then σA(dn(a)) = dnX(A)(σA(a)) for all a ∈ A
and n ∈ ω.

Proof It is a direct consequence of Proposition 9. ��
It is worthmentioning that the operator d defined inCorol-

lary 11 was previously defined in Kowalski (1998) for tense
algebras, inDiaconescu andGeorgescu (2007) for tenseMV -
algebras, in Figallo and Pelaitay (2014), Figallo et al. (2017)
for I K t-algebras and in Chiriţă (2010), Chiriţă (2011) for
tense θ -valued Łukasiewicz–Moisil algebras, respectively.
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Lemma 17 Let (A,G, H) be a tense LMθ -algebra. If
∧

j∈J
a j exists, then the following conditions hold:

(i)
∧

j∈J G(a j ) exists and
∧

j∈J G(a j ) = G(
∧

j∈J a j ),

(ii)
∧

j∈J H(a j ) exists and
∧

j∈J H(a j ) = H(
∧

j∈J a j ),

(iii)
∧

j∈J d(a j ) exists and
∧

j∈J d
n(a j ) = dn(

∧
j∈J a j )

for all n ∈ ω.

Proof (i): Assume that a j ∈ A for all j ∈ J and∧
j∈J a j exists. Since

∧
j∈J a j ≤ a j , we have by (T5)

that G
( ∧

j∈J a j

)
≤ G(a j ) for each j ∈ J . Thus,

G
( ∧

j∈J a j

)
is a lower boundof the set

{
G(a j ) : j ∈ J

}
.

Assume now that b is a lower bound of the set
{
G(a j ) :

j ∈ J }. From properties (T6) and (T9∗) we have that
P0(b) ≤ P0G(a j ) ≤ a j for each j ∈ J . So, P0(b) ≤∧

j∈J a j . Besides, the pair (G, P0) is a Galois connec-
tion, this means that x ≤ G(y) ⇐⇒ P0(x) ≤ y, for

all x, y ∈ A. So, we can infer that b ≤ G
( ∧

j∈J a j

)
.

This proves that
∧

j∈J G(a j ) exists and
∧

j∈J G(a j ) =
G

( ∧
j∈J a j

)
.

(ii): The proof for the operator H is analogous to the proof
for G.

(iii): It is a direct consequence of (i) and (ii). ��

For invariance properties we have:

Lemma 18 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space and(

D(X),GR, HR−1
)
be the tense LMθ -algebra associated

with X. Then, for all U , V ,W , Z ∈ D(X) such that U =
dX (U ), V = dX (V ), dX

(
f −1
i0

(W )
)

= f −1
i0

(W ) for some

i0 ∈ I , and dX
(
X\ f −1

i1
(Z)

)
= X\ f −1

i1
(Z) for some i1 ∈ I ,

the following properties are satisfied:

(i) U ∩ V = dX (U ∩ V ),
(ii) U ∪ V = dX (U ∪ V ),
(iii) dX ( f −1

i (W )) = f −1
i (W ) for all i ∈ I ,

(iv) dX (X\ f −1
i (Z)) = X\ f −1

i (Z) for all i ∈ I .

Proof (i): It immediately follows from the definition of the
function dX and property (T2) of tense LMθ -algebras.

(ii): Taking into account that U = dX (U ) and V = dX (V )

and the fact that the operations GR and HR−1 are
increasing, we infer that U ∪ V ⊆ GR(U ∪ V ) and
U ∪ V ⊆ HR−1(U ∪ V ), which imply that U ∪ V =
dX (U ∪ V ).

(iii): If W ∈ D(X) and dX ( f −1
i0

(W )) = f −1
i0

(W ) for some

i0 ∈ I , then from (d7) it follows that f −1
i0

(dX (W )) =
f −1
i0

(W ). From the last assertion and property (lP5) we

infer that f −1
i (dX (W )) = f −1

i (W ) for all i ∈ I , and

so from (d7), we get that dX ( f −1
i (W )) = f −1

i (W ) for
all i ∈ I . ��

(iv): It is proved in a similar way to (iii).

Corollary 13 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra. Then, for all a, b, c, d ∈ A, such that a =
d(a), b = d(b), ϕi0(c) = d(ϕi0(c)) for some i0 ∈ I and
ϕi1(d) = d(ϕi1(d)) for some i1 ∈ I , the following proper-
ties are satisfied:

(i) d(a ∧ b) = a ∧ b,
(ii) d(a ∨ b) = a ∨ b,
(iii) ϕi (c) = d(ϕi (c)) for all i ∈ I ,
(iv) ϕi (d) = d(ϕi (d)) for all i ∈ I .

Proof It is a direct consequence of Proposition 9 and Lemma
18. ��
Lemma 19 Let (A,G, H) be a tense LMθ -algebra. Then, for
all a ∈ A, the following conditions are equivalent:

(i) a = d(a),
(ii) a = dn(a) for all n ∈ ω.

Proof It immediately follows from Corollary 11. ��
Lemma 20 Let (A,G, H) be a complete tense LMθ -algebra
or a finite tense LMθ -algebra. Then, the following conditions
are equivalent for any a ∈ A:

(i) a = d(a),
(ii) a = dn(a) for all n ∈ ω,
(iii) a = ∧

n∈ω dn(a),
(iv) a = ∧

n∈ω dn(b) for some b ∈ A.

Proof Taking into accoun that
∧

n∈ω dn(a) ∈ A for any

a ∈ A and Lemma 17, it follows that d
( ∧

n∈ω dn(a)
)

=
∧

n∈ω dn(a) for any a ∈ A. This last assertion and Lemma
17 allows us to complete the proof. ��
Proposition 17 (Chiriţă 2011, Proposition 5.2) Let (A,

{ϕi }i∈I , {ϕi }i∈I ,G, H) be a tense LMθ -algebra and let
C(A) := {a ∈ A : d(a) = a}. Then,

〈C(A),∨,∧, {ϕi }i∈I ,
{
ϕi

}
i∈I , 0, 1〉

is an LMθ -algebra.

Proof From Corollary 13 and property (d1) in Corollary
11, we have that 〈C(A),∨,∧, 0, 1〉 is a bounded distribu-
tive lattice. Taking into account that a = d(a) for all
a ∈ C(A), and the properties (iii) and (iv) in Corollary 13
it follows that ϕi (a) = ϕi (d(a)) = d(ϕi (a)) and ϕi (a) =
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ϕi (d(a)) = d(ϕi (a)) for all a ∈ C(A) and i ∈ I . Therefore,
ϕi (a), ϕi (a) ∈ C(A) for all a ∈ C(A) and i ∈ I , from which
we conclude that 〈C(A),∨,∧,

{
ϕi }i∈I , {ϕi

}
i∈I , 0, 1〉 is an

LMθ -algebra. ��
Corollary 14 Let (A,G, H) be a tense LMθ -algebra. Then,
(B (C(A)) ,G, H) is a tenseBooleanalgebra,whereB(C(A))

is theBoolean algebra of all complemented elements ofC(A).

Proof It is a direct consequence of the fact that a ∈ B(C(A))

iff a ∈ C(A) and a = ϕi (a) for all i ∈ I (see (L8), Proposi-
tion 17 and property (iii) in Corollary 13). ��

Let us recall that a tense LMθ -congruence of an LMθ -
algebra A is a lattice congruence ρ on A, which satisfied the
following properties for all x, y ∈ A:

(i) if (x, y) ∈ ρ, then (ϕi x, ϕi y) ∈ ρ for all i ∈ I (i.e. ρ is
an LMθ -congruence on A),

(ii) if (x, y) ∈ ρ, then (G(x),G(y)) ∈ ρ and (H(x), H(y))
∈ ρ.

The tense, semimodal and closed subsets of the tense
LMθ -space associated with a tense LMθ -algebra perform
a fundamental role in the characterization of the tense LMθ -
congruences.

Theorem 4 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra, and
(
X(A), { f Ai }i∈I , RA

)
be the tense LMθ -

space associated with A. Then, the lattice CST (X(A)) of
all tense, semimodal and closed subsets of X(A) is anti-
isomorphic to the lattice ContLMθ (A) of all tense LMθ -
congruences on A, and the anti-isomorphism is the function
ΘST defined by the same prescription as in (7).

Proof Since CST (X(A)) ⊆ CS(X(A)), then from Theo-
rem 1 it follows that for any Y ∈ CST (X(A)), ΘST (Y )

is an LMθ -congruence on A. Let us prove that ΘST (Y )

preserves G and H . Let (1) (a, b) ∈ ΘST (Y ) and (2)
S ∈ σA(G(a)) ∩ Y . Since σA is a tense LMθ -isomorphism
it follows that S ∈ GRA(σA(a)) ∩ Y . Hence, from the fact
that σA(a) ∈ D(X(A)) and Corollary 3 we obtain that (3)
RA(S) ⊆ σA(a). Suppose that T ∈ RA(S). Since Y is a
tense subset of X(A) and S ∈ Y , then from property (ts1)
of these subsets we can assert that there is (4) W ∈ Y ,
such that W ⊆ T and W ∈ RA(S). This last assertion
and (3) allow us to infer that W ∈ σA(a), from which we
get by (4) that W ∈ σA(a) ∩ Y , and so by (1) we con-
clude that W ∈ σA(b) ∩ Y . Since W ⊆ T , we have that
T ∈ σA(b). Therefore, RA(S) ⊆ σA(b) and so, by virtue
that σA(b) ∈ D(X(A)), Corollary 3 and (2), we infer that
S ∈ GRA(σA(b))∩Y . Then, σA(G(a))∩Y ⊆ σA(G(b))∩Y .
The other inclusion is proved in a similar way. Analogously,
ΘST (Y ) preserves H . Therefore, ΘST (Y ) ∈ ContLMθ (A)

for all Y ∈ CST (X(A)).

Conversely, let ϑ ∈ ContLMθ (A) and let h : A −→ A/ϑ

be the natural epimorphism. Since ϑ ∈ ConLMθ (A), then
from Theorem 1 it follows that ϑ = ΘS(Y ), where Y =
{Φ(h)(S) : S ∈ X(A/ϑ)} = {h−1(S) : S ∈ X(A/ϑ)}
and Y ∈ CS(X(A)). Besides, Y is a tense subset of X(A).
Indeed, let T ∈ Y and (1) Q ∈ RA(T ). Since there exists
S ∈ X(A/ϑ) such that (2) Φ(h)(S) = h−1(S) = T , we
obtain that Q ∈ RA (Φ(h)(S)). From Lemma 13, Φ(h)

is a tense LMθ -function, then from the last assertion and
property (tf2) of tense LMθ -functions, we infer that Q ∈↑
Φ(h)

(
RA/ϑ (S)

)
. Therefore, there exists M ∈ X(A/ϑ) such

that (3) M ∈ RA/ϑ (S) and Φ(h)(M) ⊆ Q, and conse-
quentlyΦ(h)(M) ∈↓ Q. Also, it is verified thatΦ(h)(M) =
h−1(M) ∈ Y . Besides, from (3) and property (tf1) of tense
LMθ -functions, we obtain that Φ(h)(M) ∈ RA(Φ(h)(S))

and thus from (2), we get that Φ(h)(M) ∈ RA(T ). There-
fore,Φ(h)(M) ∈↓ Q ∩RA(T ) ∩Y , fromwhichwe conclude
by (1) that for all T ∈ Y , ↓ Q ∩ RA(T ) ∩ Y �= ∅ for all
Q ∈ RA(T ), which means that Y ⊆ GRA(Y ) and so, (ts1)
holds. In a similar way it can be proved that property (ts2)
holds. Finally, we conclude that Y is a tense, semimodal and
closed subset of X(A) and so ϑ = ΘST (Y ). ��

The tense and closed θ -subsets of the tense LMθ -space
associated with a tense LMθ -algebra enable us to charac-
terize the tense θLMθ -congruences on these algebras as
Theorem 5 shows.

Theorem 5 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra, and let
(
X(A), { f Ai }i∈I , RA

)
be the tense

LMθ -space associated with A. Then, the lattice CθT (X(A))

of closed and tense θ -subsets of X(A) is anti-isomorphic to
the lattice ContθLMθ (A) of tense θLMθ -congruences on A,
and the anti-isomorphism is the function ΘθT defined by the
same prescription as in (7).

Proof It is a consequence of Theorems 2 and 4 and the
fact that ContθLMθ (A) ⊆ ConθLMθ (A), ContθLMθ (A) ⊆
ContLMθ (A), CθT (X(A)) ⊆ Cθ (X(A)) and CθT (X(A)) ⊆
CST (X(A)). ��

5 Other characterization of tense
�LM�-congruences

In this sectionwewill obtain another characterization of tense
θLMθ -congruences on a tense LMθ -algebra. First, we will
determine the filters such that the lattice of congruence asso-
ciated with each of them is a tense LMθ -congruence. For
this, we will remember the notion of tense filter of a tense
LMθ -algebra and the notion of θ -filter of an LMθ -algebra.

Definition 14 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra. A filter S of A is a tense filter iff
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(tf) d(a) ∈ S for all a ∈ S or equivalently dn(a) ∈ S for all
a ∈ S and n ∈ ω.

Definition 15 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be an LMθ -

algebra. A filter S of A is a θ -filter iff

(sf) ϕi (a) ∈ S for all a ∈ S and i ∈ I , or equivalently
ϕ0(a) ∈ S for all a ∈ S.

Lemma 21 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
bea tense LMθ -

algebra. If S is a filter of A, then the following conditions are
equivalent:

(i) S is a tense filter of A,
(ii) G(a) ∈ S and H(a) ∈ S for all a ∈ S.

Proof (i) ⇒ (ii): Let S be a tense filter of A and a ∈ S. Since
d(a) ∈ S, d(a) ≤ G(a) and d(a) ≤ H(a), we infer that
G(a) ∈ S and H(a) ∈ S.
(ii) ⇒ (i): Let a ∈ S. Then, from the hypothesis (ii) and the
fact that S is a filter we obtain that d(a) ∈ S, and therefore,
S is a tense filter of A. ��
Lemma 22 Let (A, {ϕi }i∈I , {ϕi }i∈I ,G, H) be a tense LMθ -
algebra. If S is a θ -filter of A, then the following conditions
are equivalent:

(i) S is a tense filter of A,
(ii) dn(ϕi (a)) ∈ S for all a ∈ S, n ∈ ω and i ∈ I .

Proof (i) ⇒ (ii): Let a ∈ S, n ∈ ω and i ∈ I . Since S
is a θ -filter of A, we have that ϕi (a) ∈ S. From this last
assertion and the fact that S is a tense filter we conclude that
dn(ϕi (a)) ∈ S.
(ii) ⇒ (i): From the hypothesis (ii) we obtain that for all
a ∈ S and n ∈ ω, dn(ϕ0(a)) ∈ S. From the last assertion,
properties (L7) and (d4) and the fact that S is a filter of A we
infer that dn(a) ∈ S for all a ∈ S and n ∈ ω, and therefore,
S is a tense filter of A. ��
Definition 16 Let

(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra. A filter S of A is a tense θ -filter iff S is a
tense filter and a θ -filter of A.

We will denote by FT θ (A) the lattice of all tense θ -filters
of a tense LMθ -algebra (A,G, H).

Remark 3 Let us recall that under the Priestley duality, the
lattice of all filters of a bounded distributive lattice is anti-
isomorphic to the lattice of all increasing closed subsets of
the dual space. Under that anti-isomorphism, any filter S of a
bounded distributive lattice A corresponds to the increasing
closed set

YS = {T ∈ X(A) : T ⊆ S} =
⋂

a∈S σA(a) (31)

and ΘC (YS) = Θ(S), where ΘC (YS) is defined as in (7)
and Θ(S) is the lattice congruence associated with S (i.e.
Θ(S) = {(a, b) ∈ A × A : a ∧ s = b ∧ s for some s ∈ S}).

Conversely any increasing closed subset Y of X(A) cor-
responds to the filter

SY = {a ∈ A : Y ⊆ σA(a)} =
⋂

T∈Y T , (32)

and Θ(SY ) = ΘC (Y ), where ΘC (Y ) is defined as in (7), and
Θ(SY ) is the lattice congruence associated with SY .

Lemma 23 Let (X , { fi }i∈I , R) be a tense LMθ -space. Then
for every subset Y of X, the following conditions are equiv-
alent:

(i) Y is increasing and semimodal,
(ii) Y is modal.

Proof (i) ⇒ (ii): Since Y is a semimodal subset of X , then
(1) Y ⊆ f −1

i (Y ) for all i ∈ I . On the other hand, let (2)
x ∈ f −1

0 (Y ). Taking into account (2), property (lP9) and
the fact that Y is increasing, we infer that x ∈ Y , and so by
(1) we obtain that Y = f −1

0 (Y ). From this last assertion and
property (lP5), we infer that Y = f −1

i (Y ) for all i ∈ I , which
means that Y is modal.
(i) ⇒ (ii): It follows from Definition 4 and Proposition 13. ��
Theorem 6 Let

(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra. If S is a filter of A, then the following con-
ditions are equivalent:

(i) Θ(S) ∈ ContLMθ (A),
(ii) S ∈ FTθ (A).

Proof (i) ⇒ (ii): Let S be a filter of A such that Θ(S) ∈
ContLMθ (A). Then, fromTheorem4 andRemark 3 it follows
that Θ(S) = ΘST (YS), where Θ(S) is the lattice congru-
ence associated with S and (1) YS = {x ∈ X(A) : S ⊆
x} = ⋂

a∈S σA(a) is a tense, semimodal and closed subset of
the tense LMθ -space X(A) associated with A. Since, YS is
semimodal and also by Priestley duality, YS is increasing, we
have by Lemma 23 that YS is modal. Besides, σA is an LMθ -
isomorphism, then taking into account the prescription (1)

we obtain that YS = f A
−1

i (YS) = f A
−1

i

( ⋂
a∈S σA(a)

)
=

⋂
a∈S f A

−1

i

(
σA(a)

)
= ⋂

a∈S σA(ϕi (a)), for any i ∈ I .

From the last assertion, and taking into account that YS
is a tense subset of X(A), Corollaries 11 and 12 and
Lemma 16, we infer that YS = dX(A)

(⋂
a∈S σA(ϕi (a))

) ⊆⋂
a∈S dX(A) (σA(ϕi (a))) = ⋂

a∈S σA(d(ϕi (a))) ⊆ ⋂
a∈S

σA(ϕi (a)) = YS, for any i ∈ I . Hence, (2) YS =⋂
a∈S σA(d(ϕi (a)) for any i ∈ I , from which we get that

d(ϕi (a)) ∈ S for any a ∈ S and i ∈ I . Indeed, assume
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that a ∈ S, then by the assertion (1), a ∈ x for all
x ∈ YS , from which it follows by the assertion (2) that
x ∈ ⋂

a∈S σA(d(ϕi (a)) for any i ∈ I , and thus d(ϕi (a)) ∈ x
for all x ∈ YS and i ∈ I . Therefore, d(ϕi (a)) ∈ ⋂

x∈YS x
for any i ∈ I , and taking into account that by Remark 3,
S = ⋂

x∈YS x , we deduce that d(ϕi (a)) ∈ S for any i ∈ I ,
from which we conclude by Lemma 21 that S ∈ FTθ (A).
(ii) ⇒ (i): From Priestley duality and (31), we have that⋂

a∈S σA(a) = YS = {x ∈ X(A) : S ⊆ x} is an increas-
ing and closed subset of X(A) and Θ(S) = ΘC (YS). By
Theorem 4, it remains to show that YS is a semimodal and
tense subset of X(A). From the hypothesis (ii), we infer that
for all a ∈ S, i ∈ I and x ∈ YS , d(ϕi (a)) ∈ x , and con-
sequently from Corollary 13, we obtain that ϕi (d(a)) ∈ x
for all i ∈ I and all x ∈ YS , from which it follows
that (1) YS ⊆ ⋂

a∈S σA(ϕi (d(a))) for all i ∈ I . And so,
by property (d2) in Corollary 11, YS ⊆ ⋂

a∈S σA(ϕi (a))

for all i ∈ I . From this assertion we have that YS ⊆⋂
a∈S σA(ϕ1(a)) ⊆ ⋂

a∈S σA(a) = Ys . Since σA is an
LMn-isomorphism, then by the prescription (1) we get
that (2) Ys = ⋂

a∈S σA(ϕ1(a)) = ⋂
a∈S f A

−1

1 (σA(a)) =
f A

−1

1

(⋂
a∈S σA(a)

) = f A
−1

1 (YS). Therefore, from the last
statement and property (lP5) we conclude that YS = f Ai (YS)
for all i ∈ I and so, YS is modal. In addition, from (1), (2)
and Corollary 11 we infer that YS ⊆ ⋂

a∈S σA(d(ϕ1(a)) ⊆⋂
a∈S σA(ϕ1(a)) = Ys and hence, YS = ⋂

a∈S σA(d(ϕ1(a)).
Then, taking into account that

⋂
a∈S dX(A)(σA(ϕ1(a))) =

dX(A)

( ⋂
a∈S σA(ϕ1(a))

)
and Corollary 12, we obtain that

YS = dX(A)(YS), and thus, from Lemma 16 and the fact
that YS is modal, we infer that YS is a tense subset of X(A).
Finally, since YS is a tense, modal and closed subset of X(A)

and ΘMT (YS) = ΘC (YS) = Θ(S), we conclude, from The-
orem 4, that Θ(S) ∈ ContLMθ (A). ��

The tense, modal and closed subsets of the tense LMθ -
space associated with a tense LMθ -algebra play a key role
in the characterization of the tense LMθ -congruences asso-
ciated with tense θ -filers of this algebras, as we will prove
next.

Theorem 7 Let (A,G, H) be a tense LMθ -algebra, and(
X(A), { f Ai }i∈I , RA

)
be the tense LMθ -space associated

with A. Then, the lattice CMT (X(A)) of tense, modal and
closed subsets of X(A) is anti-isomorphic to the lattice
ContLMθFT θ (A)

(A) of tense LMθ -congruences on A associ-
ated with some tense θ -filter of A, and the anti-isomorphism
is the function ΘMT defined by the same prescription as in
(7).

Proof Let Y ∈ CMT (X(A)). Thus, from Lemma 23, Y ∈
CST (X(A)) and Y is increasing. Then, from Theorem 4 we
obtain that ΘST (Y ) ∈ ContLMθ (A), and from Remark 3,
we get that ΘST (Y ) = Θ(SY ), where SY is a filter of A

defined as in (31). From this last assertion and Theorem 6,
we infer that SY ∈ FT θ (A), from which we conclude that
ΘST |CMT (X(A)) (Y ) ∈ ContLMθFT θ (A)

(A). Conversely, let
ϑ ∈ ContLMθFT θ (A)

(A). Then there is S ∈ FT θ (A) such
that ϑ = Θ(S). Since ContLMθFT θ (A)

(A) ⊆ ContLMθ (A),
then from Theorem 4 and Remark 3, we infer that that
Θ(S) = ΘST (YS), where YS is defined as in (32). The fact
that YS is increasing and Lemma 23 allow us to assert that
YS ∈ CMT (X(A)) and ϑ = ΘST |CMT (X(A)) (Y ). Therefore,
the restrictionΘST |CMT (X(A)) is a function fromCMT (X(A))

onto ContLMθFT θ (A)
(A). If ΘMT = ΘST |CMT (X(A)), then

from the last statement and Theorem 4, we conclude the
proof. ��

Our next objective is to prove that the θ -filters of a
tense LMθ -algebra allow us to characterize the tense θLMθ -
congruences on this algebra. For this purpose, we consider
the following notion:

Definition 17 Let
(
A, {ϕi }i∈I ,

{
ϕi

}
i∈I ,G, H

)
be a tense

LMθ -algebra and ϑ ∈ ContLMθ (A), the tense θLMθ -
congruence on A generated by ϑ is the smallest tense
θLMθ -congruence on A, in the sense of the inclusion rela-
tion, containing ϑ and it will be denoted by ϑ̂θ .

In order to achieve the characterization that we have pro-
posed we will take into account Theorems 5 and 7. First,
we will obtain the greatest tense and closed θ -subset con-
tained in an arbitrary tense, modal and closed subset of a
tense LMθ -space.

In Figallo et al. (2010), the following characterizations of
closed θ -subsets of an LMθ -space were obtained.

Proposition 18 (Figallo et al. 2010, Proposition 2.1.5) Let(
X , { fi }i∈I

)
be an LMθ -space and let Y be a subset of X.

Then the following conditions are equivalent:

(i) Y is a closed θ -subset,
(ii) there is a subset Z of X such that Y = ⋃

i∈I fi (Z),

(iii) Y = ⋃
i∈I fi (Y ).

Proposition 19 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space

and let Y be a tense, modal and closed subset of X. Then⋃
i∈I fi (Y ) is a tense and closed θ -subset.

Proof By condition (ii) in Proposition 18 we have that⋃
i∈I fi (Y ) is a closed θ -subset of X . Now assume that

(1) y ∈ ⋃
i∈I fi (Y ). From (1), the fact that the subset Y is

tense and modal and Corollary 10, it follows that R(y) ⊆ Y .
Since, by Proposition 13, we have that Y is a decreasing sub-
set of X , we obtain that (2) ↓ R(y) ⊆ Y . From property
(lP9), we deduce that for all z ∈ R(y), f0(z) ∈↓ R(y).
Besides, from (2) we get that f0(z) ∈ Y and so from
property (lP5) we obtain that f0(z) ∈ f0(Y ). Therefore,
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f0(z) ∈ ⋃
i∈I fi (Y )∩ ↓ R(y), from which we conclude by

(1) that ↓ R(y) ∩ ⋃
i∈I fi (Y ) �= ∅ for all y ∈ ⋃

i∈I fi (Y ),
which allows us to assert that

⋃
i∈I fi (Y ) is tense. ��

Proposition 20 Let
(
X , { fi }i∈I , R

)
be a tense LMθ -space

associated and let Y be a tense, modal and closed subset of
X. Then

⋃
i∈I fi (Y ) is the largest tense and closed θ -subset,

in the sense of the inclusion relation, contained in Y .

Proof (i) From Proposition 19, we have that
⋃

i∈I fi (Y ) is a
tense and closed θ -subset.
(ii) Since Y is closed and modal, then

⋃
i∈I fi (Y ) ⊆ Y .

(iii) Let Z be a tense and closed θ -subset of X such that
(1) Z ⊆ Y . Then, from Proposition 18 we have that (2) Z =⋃

i∈I fi (Z). Besides, from (1) we obtain that fi (Z) ⊆ fi (Y )

for all i ∈ I , and consequently,
⋃

i∈I fi (Z) ⊆ ⋃
i∈I fi (Y ),

from which we conclude by (2) that Z ⊆ ⋃
i∈I fi (Y ).

Finally, from (i), (ii) and (iii) the proof is complete.
��

Corollary 15 Let (A,G, H) be a tense LMθ -algebra and(
X(A), { f Ai }i∈I , RA

)
be the tense LMθ -space associated

with A. Then, for every tense, modal and closed subset Y

of X(A), Θ̂ST (Y )θ = ΘθT

(⋃
i∈Y f Ai (Y )

)
, where ΘST and

ΘθT are the anti-isomorphisms defined in Theorems 4 and
5, respectively.

Proof It is a direct consequence of Theorems 4 and 5 and
Proposition 20. ��
Corollary 16 Let (A,G, H) be a tense LMθ -algebra and(
X(A), { f Ai }i∈I , RA

)
be the tense LMθ -space associated

with A. Then for every S ∈ FT θ (A), Θ̂(S)θ = ̂ΘMT (YS)θ =
ΘθT

(⋃
i∈I f Ai (YS)

)
, where YS is defined as in (32), ΘMT

and ΘθT are the anti-isomorphisms defined in Theorems 7
and 5, respectively.

Proof It is a direct consequence of Remark 3, Theorems 6
and 7, Lemma 23 and Corollary 15. ��
Theorem 8 Let (A,G, H) be a tense LMθ -algebra. Then,
the lattice FT θ (A) of all tense θ -filters of A is isomorphic
to the lattice ContθLMθ (A) of tense θLMθ -congruences of
A, and the isomorphism is the function Ψ from FT θ (A)

onto ContθLMθ (A), defined for all S ∈ FT θ (A) by Ψ (S) =
Θ̂(S)θ , where Θ(S) is the LMθ -congruence associated with
S.

Proof It is immediate that Ψ (S) = Θ̂(S)θ ∈ ContθLMθ (A)

for all S ∈ FT θ (A). On the other hand, letϑ ∈ ContθLMθ (A)

and let
(
X(A), { f Ai }i∈I , RA

)
be the tense LMθ -space asso-

ciated with A, then from Theorem 5 it follows that there
is Y ∈ CθT (X(A)) such that (1) ϑ = ΘθT (Y ). Since,
Y = ⋃

i∈I f Ai (Y ), then Z = f A
−1

1 (Y ) is a modal and closed

subset of X(A) and (2) Y = ⋃
i∈I f Ai (Z). Also, taking into

account that Y is tense and semimodal and Corollary 9, we
infer that Z is tense. Therefore, from Theorem 7 it follows
that (3) ΘST (Z) = Θ(SZ ) and SZ ∈ FT θ (A). Besides,
from (1), (2) and Corollary 15, we obtain that Θ̂ST (Z)θ =
ΘθT

(⋃
i∈Y f Ai (Z)

)
= ΘθT

(⋃
i∈Y f Ai (Y )

)
= ϑ , from

which we get by (3) that Ψ (S) = Θ̂(SZ ) = ϑ . In addi-
tion, let S1, S2 ∈ FT θ (A) such that S1 ⊆ S2, then YS2 ⊆
YS1 and thus,

⋃
i∈I f Ai (YS2),

⋃
i∈I f Ai (YS1) ∈ CθT (X(A))

and
⋃

i∈I f Ai (YS2) ⊆ ⋃
i∈I f Ai (YS1). Consequently from

Theorem 5 we have that ΘθT

(⋃
i∈I f Ai (YS1)

)
⊆ ΘθT

(⋃
i∈I f Ai (YS2)

)
. Hence, from the last statement and Corol-

lary 16, we deduce that Θ̂(S1)θ ⊆ Θ̂(S2)θ , and so we can
assert that Ψ (S1) ⊆ Ψ (S2). Conversely, let us assume that
S1, S2 ∈ FT θ (A) and Ψ (S1) ⊆ Ψ (S2), which means that
Θ̂(S1)θ ⊆ Θ̂(S2)θ . Then, from Corollary 16 we infer that

ΘθT

(⋃
i∈Y f Ai (YS1)

)
⊆ ΘθT

(⋃
i∈Y f Ai (YS2)

)
, and so from

Theorem 5, we obtain that
⋃

i∈Y f Ai (YS2) ⊆ ⋃
i∈Y f Ai (YS1).

Thus, YS2 ⊆ YS1 , which allows us to conclude that S1 ⊆ S2.
Therefore, Ψ : FT θ (A) −→ ContθLMθ (A) is a lattice iso-
morphism. ��

6 Conclusion and future works

Priestley spaces arise more naturally in relation with log-
ics, as Priestley spaces incorporate the now widely used
Kripke semantics in them. As a result, Priestley’s duality
became rather popular among logicians, and most dualities
for distributive lattices with operators have been performed
in terms of Priestley spaces. In particular, in this paper we
have determined a topological duality for tense θ -valued
Łukasiewicz–Moisil algebras, extending the one obtained
for θ -valued Łukasiewicz–Moisil algebras in Figallo et al.
(2010). By means of the above duality we have obtained
properties of these algebras and also we have characterized
the congruences and the θ -congruences on these algebras. In
a future work we will use the previous characterizations to
describe the simple and the subdirectly irreducible tense θ -
valued Łukasiewicz–Moisil algebras and the simple and the
subdirectly irreducible tense θ -valued Łukasiewicz–Moisil
algebras by θ -congruences. Furthermore, by means of the
aforementioned duality, we will prove a representation the-
orem for tense LMθ -algebras, which was formulated and
proved by a different method by Chiriţă (2011). The proof
of this theorem could be of interest for people working
in duality theory. We expect that our method can be eas-
ily applied to weak-tense operators or tense operators on
θ -valued Łuaksiewicz–Moisil algebras with negation (see,
Chiriţă (2012b), Chapter 6).
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