Skip to main content
Log in

Checking weak optimality and strong boundedness in interval linear programming

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Interval programming provides a mathematical tool for dealing with uncertainty in optimization problems. In this paper, we study two properties of interval linear programs: weak optimality and strong boundedness. The former property refers to the existence of a scenario possessing an optimal solution, or the problem of deciding non-emptiness of the optimal set. We investigate the problem from a complexity-theoretic point of view and prove that checking weak optimality is NP-hard for all types of programs, even if the variables are restricted to a single orthant. The property of strong boundedness implies that each feasible scenario of the program has a bounded objective function. It is co-NP-hard to decide for inequality-constrained interval linear programs. For this class of programs, we derive a sufficient and necessary condition for testing strong boundedness using the orthant decomposition method. We also discuss the open problem of checking strong boundedness of programs described by equations with nonnegative variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allahdadi M, Mishmast Nehi H (2013) The optimal solution set of the interval linear programming problems. Optim Lett 7(8):1893–1911

    Article  MathSciNet  MATH  Google Scholar 

  • Cerulli R, D’Ambrosio C, Gentili M (2017) Best and worst values of the optimal cost of the interval transportation problem. In: Sforza A, Sterle C (eds) Optimization and decision science: methodologies and applications: ODS, Sorrento, Italy, 4–7 September 2017. Springer International Publishing, Cham, pp 367–374

  • Cheng G, Huang G, Dong C (2017) Convex contractive interval linear programming for resources and environmental systems management. Stoch Environ Res Risk Assess 31(1):205–224

    Article  Google Scholar 

  • Chinneck JW, Ramadan K (2000) Linear programming with interval coefficients. J Oper Res Soc 51(2):209–220

    Article  MATH  Google Scholar 

  • Dubois D, Kerre E, Mesiar R, Prade H (2000) Fuzzy interval analysis. Springer, Boston, pp 483–581

    MATH  Google Scholar 

  • Garajová E, Hladík M, Rada M (2017) On the properties of interval linear programs with a fixed coefficient matrix. In: Sforza A, Sterle C (eds) Optimization and decision science: methodologies and applications: ODS, Sorrento, Italy, 4–7 September 2017. Springer International Publishing, Cham, pp 393–401

  • Garajová E, Hladík M, Rada M (2018) Interval linear programming under transformations: optimal solutions and optimal value range. Cent Eur J Oper Res. https://doi.org/10.1007/s10100-018-0580-5

    Google Scholar 

  • Gerlach W (1981) Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix. Math Operationsforsch Stat Ser Optim 12(1):41–43

    MATH  Google Scholar 

  • Hladík M (2012) Interval linear programming: a survey. Chapter 2. In: Mann ZA (ed) Linear programming—new frontiers in theory and applications. Nova Science, New York, pp 85–120

    Google Scholar 

  • Hladík M (2013) Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl 438(11):4156–4165

    Article  MathSciNet  MATH  Google Scholar 

  • Juman Z, Hoque M (2014) A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies. Eur J Oper Res 239(1):146–156

    Article  MathSciNet  MATH  Google Scholar 

  • Koníčková J (2006) Strong unboundedness of interval linear programming problems. In: 12th GAMM–IMACS international symposium on scientific computing, computer arithmetic and validated numerics (SCAN 2006), p 26

  • Kumar P, Panda G, Gupta U (2016) An interval linear programming approach for portfolio selection model. Int J Oper Res 27(1–2):149–164

    Article  MathSciNet  MATH  Google Scholar 

  • Lai KK, Wang S, Xu JP, Zhu SS, Fang Y (2003) A class of linear interval programming problems and its application to portfolio selection. IEEE Trans Fuzzy Syst 10(6):698–704

    Article  Google Scholar 

  • Li DF (2016) Interval-valued matrix games. Springer, Berlin, pp 3–63

    Google Scholar 

  • Li W (2015) A note on dependency between interval linear systems. Optim Lett 9(4):795–797

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Tian X (2011) Fault detection in discrete dynamic systems with uncertainty based on interval optimization. Math Model Anal 16(4):549–557

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Luo J, Wang Q, Li Y (2014) Checking weak optimality of the solution to linear programming with interval right-hand side. Optim Lett 8(4):1287–1299

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Liu X, Li H (2015) Generalized solutions to interval linear programmes and related necessary and sufficient optimality conditions. Optim Methods Softw 30(3):516–530

    Article  MathSciNet  MATH  Google Scholar 

  • Liu ST, Kao C (2009) Matrix games with interval data. Comput Ind Eng 56(4):1697–1700

    Article  Google Scholar 

  • Moore R, Lodwick W (2003) Interval analysis and fuzzy set theory. Fuzzy Sets Syst 135(1):5–9 (interfaces between fuzzy set theory and interval analysis)

    Article  MathSciNet  MATH  Google Scholar 

  • Mostafaee A, Hladík M, Černý M (2016) Inverse linear programming with interval coefficients. J Comput Appl Math 292:591–608

    Article  MathSciNet  MATH  Google Scholar 

  • Oettli W, Prager W (1964) Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer Math 6(1):405–409

    Article  MathSciNet  MATH  Google Scholar 

  • Rohn J (1997) Complexity of some linear problems with interval data. Reliab Comput 3(3):315–323

    Article  MathSciNet  MATH  Google Scholar 

  • Rohn J (2006a) Interval linear programming. Linear optimization problems with inexact data. Springer, Boston, pp 79–100

    Chapter  Google Scholar 

  • Rohn J (2006b) Solvability of systems of interval linear equations and inequalities. Linear optimization problems with inexact data. Springer, Boston, pp 35–77

    Chapter  Google Scholar 

  • Xie F, Butt MM, Li Z, Zhu L (2017) An upper bound on the minimal total cost of the transportation problem with varying demands and supplies. Omega 68:105–118

    Article  Google Scholar 

  • Zelený M (1990) Optimizing given systems vs. designing optimal systems: the de novo programming approach. Int J Gen Syst 17(4):295–307

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Huang G, Zhang X (2009) Inexact de novo programming for water resources systems planning. Eur J Oper Res 199(2):531–541

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou F, Huang GH, Chen GX, Guo HC (2009) Enhanced-interval linear programming. Eur J Oper Res 199(2):323–333

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by the Czech Science Foundation (Grant P403-18-04735S) and by the Charles University (Project GA UK No. 156317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Garajová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by P. Beraldi, M. Boccia, C. Sterle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garajová, E., Hladík, M. Checking weak optimality and strong boundedness in interval linear programming. Soft Comput 23, 2937–2945 (2019). https://doi.org/10.1007/s00500-018-3520-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3520-3

Keywords

Navigation