Skip to main content

Advertisement

Log in

Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The early and accurate detection of brain tumors is key to improve the quality of life and the survival of cancer patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. Consequently, automatic and reliable segmentation methods are required. However, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this contribution, we present a new model of segmentation of brain magnetic resonance images. In order to obtain the region of interest, we propose a hybrid approach that carries out both fuzzy c-mean algorithm and multiobjective optimization taking into account both compactness and separation in the clusters with the purpose of improving the cluster center detection and speed up the convergence time. This new segmentation approach is a key component of the proposed magnetic resonance image-based classification system for brain tumors. Experimental results are presented to demonstrate the effectiveness and efficiency of the proposed approach using the DICOM MRI database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24(Supplement C):522–533

    Article  Google Scholar 

  • Ananthi VP, Balasubramaniam P, Kalaiselvi T (2016) A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput 20(12):4859–4879

    Article  Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Bakhshali MA (2017) Segmentation and enhancement of brain mr images using fuzzy clustering based on information theory. Soft Comput 21(22):6633–6640

    Article  Google Scholar 

  • Bauer S, Wiest R, Nolte1 L, Reyes M (2013) A survey of mri-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129

  • Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  • Bong C, Mandava R (2011) Multi-objective nature-inspired clustering and classification techniques for image segmentation. Appl Soft Comput 11(4):3271–3282

    Article  Google Scholar 

  • Coello C (2000) Handling preferences in evolutionary multiobjective optimization: a survey. IEEE Evol Comput 1:30–37

    Google Scholar 

  • De Oliveira J, Machado A, Chavez G, Lopes A, Deserno T, Arajo A (2010) Mammosys: a content-based image retrieval system using breast density patterns. Comput Med Imaging Graph 99:289–297

    Google Scholar 

  • DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

    Article  Google Scholar 

  • Deb K, Beyer H (2001) Self-adaptive genetic algorithms with simulated binary crossover. Evol Comput 9(2):197–221

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Dou W, Wu Q, Chen Y, Ruan S, Constans J (2005) Fuzzy modelling of different tumorous cerebral tissues on mri images based on fusion of feature information. In: Engineering in Medicine and Biology Society, 2005, pp. 3104–3107

  • Drevelegas A, Papanikolaou N (2011) Imaging modalities in brain tumors. Springer, Berlin, pp 13–33

    Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57

    Article  MathSciNet  MATH  Google Scholar 

  • El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through mri: A survey and a new algorithm. Expert Syst Appl 41(11):5526–5545

    Article  Google Scholar 

  • Emre C, Kingravi H, Vela P (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

    Article  Google Scholar 

  • Friston K, Chu C, Mourao-Miranda J, Hulme O, Rees G, Penny W, Ashburner J (2008) Bayesian decoding of brain images. Neuroimage 39(1):181–205

    Article  Google Scholar 

  • Georgiadis P, Cavouras D, Kalatzis I, Daskalakis A, Kagadis G, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2008) Improving brain tumor characterization on mri by probabilistic neural networks and non-linear transformation of textural features. Comput Methods Programs Biomed 89(1):24–32

    Article  Google Scholar 

  • Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on mri brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438

    Article  Google Scholar 

  • Huang CW, Lin KP, Wu MC, Hung KC, Liu GS, Jen CH (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19(2):459–470

    Article  Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  • Kinani JMV, Rosales-Silva AJ, Gallegos-Funes FJ, Arellano A (2014) Fuzzy c-means applied to mri images for an automatic lesion detection using image enhancement and constrained clustering. In: 2014 4th International conference on image processing theory, tools and applications (IPTA), pp. 1–7 . https://doi.org/10.1109/IPTA.2014.7001987

  • Kumar D, Nguyen T, Gauthier S, Raj A (2012) Bayesian algorithm using spatial priors for multiexponential t(2) relaxometry from multiecho spin echo MRI. Magn Reson Med 12(4):1536–1543

    Article  Google Scholar 

  • Maulik U (2009) Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 13(2):166–173

    Article  Google Scholar 

  • Meschino G, Comas D, Vallarin V, Scandurra A, Passoni L (2014) Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps. Neurocomputing 147(5):47–59

    Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S (2011) Gene expression data analysis using multiobjective clustering improved with svm based ensemble. Silico Biol 11(1–2):19–27

    Google Scholar 

  • Pham D, Prince J (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752

    Article  Google Scholar 

  • Phillips W, Velthuizen R, Phuphanich S, Hall L, Clarke L, Silbiger M (1995) Application of fuzzy c-means segmentation technique for tissue differentiation in mr images of a hemorrhagic glioblastoma multiforme. Magn Reson Imaging 13(2):277–290

    Article  Google Scholar 

  • Rosas-Romero R, Rodriguez-Asomoza J (2003) 4-d active contour snake model for object representation from medical images. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No.03CH37439), vol. 1, pp. 717–719 Vol 1

  • Schad LR, Blml S, Zuna I (1993) Ix. mr tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 11(6):889–896

    Article  Google Scholar 

  • Shattuck D, Leahy R (2002) Brainsuite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142

    Article  Google Scholar 

  • Somasundaram K, Kalaiselvi T (2011) Automatic brain extraction methods for t1 magnetic resonance images using region labeling and morphological operations. Comput Biol Med 41(8):716–725

    Article  Google Scholar 

  • Stephen T, Wong C, Huang H (1996) Design methods and architectural issue and integrated medical image data base systems. Comput Med Imaging Graph 20(4):285–299

    Article  Google Scholar 

  • Ureña R, Chiclana F, Fujita H, Herrera-Viedma E (2015) Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations. Knowl Based Syst 89:86–96

    Article  Google Scholar 

  • Ureña R, Martínez-Cañada P, Gómez-López JM, Morillas C, Pelayo F (2012) Real-time tone mapping on gpu and fpga. EURASIP Journal on Image and Video Processing (1)

  • Ureña R, Morillas C, Pelayo FJ (2013) Real-time bio-inspired contrast enhancement on gpu. Neurocomputing 121(Supplement C):40–52

    Article  Google Scholar 

  • Vaidyanathan M, Clarke L, Velthuizen R, Phuphanich S, Bensaid A, Hall L, Bezdek J, Greenberg H, Trotti A, Silbiger M (1995) Comparison of supervised mri segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 13(5):719–728

    Article  Google Scholar 

  • Vescan A, Grosan C, Pop HF (2008) Evolutionary algorithms for the component selection problem. In: 2008 19th International workshop on database and expert systems applications, pp. 509–513 . https://doi.org/10.1109/DEXA.2008.138

  • Wang XY, Bu J (2010) A fast and robust image segmentation using fcm with spatial information. Digit Signal Process 20(4):1173–1182

    Article  Google Scholar 

  • Wells W, Grimson W, Kikinis R, Jolesz F (1996) Adaptive segmentation of mri data. IEEE Trans Med Imaging 15(4):429–442

    Article  Google Scholar 

  • Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  • Xu C, Pham D, Rettmann M, Yu D, Prince J (1999) Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467–480

    Article  Google Scholar 

  • Yang X, Fei B (2011) A multiscale and multiblock fuzzy c-means classification method for brain mr images. Med Phys 38(6):2879–2891

    Article  Google Scholar 

  • Yang Y, Chen JX, Kim W (2003) Gene expression clustering and 3d visualization. Comput Sci Eng 5(5):37–43

    Article  Google Scholar 

  • Yu J, Cheng Q, Huang H (2004) Analysis of the weighting exponent in the fcm. IEEE Trans Syst Man Cybern Part B (Cybern) 34(1):634–639

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by PhD scholarship subprogram SENACYT-IFARHU (Secretaría Nacional de Ciencia, Tecnología e Innovación y el Instituto para la Formación y Aprovechamiento de Recursos Humanos), CN2070-2013-052, Panamá, Republic of Panama, the scholarship program COOPEN-Erasmus Mundus external cooperation windows: Polytechnic University of Valencia, Spain, the Autonomous University of Chiriqui, David, Panama. UNACHI (Universidad Autónoma de Chiriquí, David, Panamá) and FEDER funds (Grant number TIN2016-75850-R) and H2020-MSCA-IF Funds (Project DeciTrustNET ID: 746398). The authors would like to thank Ph.D. Del Fresno Mariana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Herrera-Viedma.

Ethics declarations

Conflict of interest

This study was funded by SENACYT-IFARHU (Grant number CN2070-2013-052) and FEDER funds (Grant number TIN2016-75850-R) and H2020-MSCA-IF Funds (Project DeciTrustNET ID: 746398). Author Iván Ariel Rodríguez Méndez declares he has no conflict of interest. Author Raquel Ureña declares she has no conflict of interest. Author Enrique Herrera-Viedma declares he has no conflict of interest. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Méndez, I.A., Ureña, R. & Herrera-Viedma, E. Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images. Soft Comput 23, 10105–10117 (2019). https://doi.org/10.1007/s00500-018-3565-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3565-3

Keywords

Navigation