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Abstract

Uncertain random simulation plays an important role in solving uncertain
random optimization problems that include random variables and uncer-
tain variables. In this paper, an uncertain random simulation is proposed
and developed to obtain the chance distribution, α-pessimistic value and
α-optimistic value. Further, an α-optimal model for the uncertain random
bottleneck assignment problem under the Hurwicz criterion is presented. Fi-
nally, a numerical example is given to illustrate how to use the proposed
simulation algorithm to solve an uncertain random bottleneck assignment
problem.

Keywords:
α−pessimistic value; α−optimistic value; uncertain random variable;
assignment problem

1. Introduction

Uncertain random variable is introduced by Liu for modeling complex
systems in which uncertain variables and random variables coexist [1]. For
instance, when we have historical product sales data, we can estimate the
probability distribution of the daily demand for this product. But when
we sell a new product at the same time, we can not obtain the probability
distribution of the daily demand for this new product due to lack of data.
However, we can invite experts to estimate the daily demand for this new
product according to their knowledge. In such a case, randomness and human
uncertainty simultaneously coexist. To address such as a case, some schol-
ars firstly studied the problem where there exists only human uncertainty.
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Liu founded uncertainty theory in 2007 [2]. Yang and Gao discuss uncer-
tain differential game [3, 4]. Gao and Qin calculate the edge-connectivity
of an uncertain graph [5]. Dalman studies an uncertain multi-item solid
transportation problem [6]. Hosseini and Wadbro carry out connectivity
reliability analysis in uncertain networks [7] . In order to deal with uncer-
tain random phenomenon, Liu proposes the chance theory [1]. Liu applies
the chance theory to network optimization problem [8]. Dalman presents
an uncertain random programming model for the fixed charge multi-item
solid transportation problem [9]. Zhou et al. study the uncertain the ran-
dom multi-objective programming [10]. Based on Taylor series, Dalman and
Bayram reduce a class of multiobjective nonlinear programming problems
into a single objective linear programming problem [11]. Ahmadzade et al.
derive some properties of uncertain random partial quadratic entropy [12].

By using concepts and theorems of chance theory, Ke et al. investi-
gate an uncertain random project scheduling problem [13]. They design an
uncertain random simulation which randomly generates the sample points.
However, their algorithm produces different values at different time. Sheng
and Gao develop a simulation algorithm to solve uncertain random short-
est path problem [14]. Their algorithm is designed specifically for uncertain
random networks.

In this paper, we develop a new algorithm. Our algorithm uses the inverse
uncertainty distribution and uniformly generates the sample points. It has
better performances on the reliability and stability than the algorithm in [13].
In addition, our algorithm is a more general one than the previous algorithm
in [14]. It can simulate the chance distribution function that is not only
increasing with respect to some uncertain variables but also decreasing with
respect to other uncertain variables.

The classic bottleneck assignment problem, which is raised from the par-
allel manufacturing systems, is how to assign the jobs to the machines such
that the longest completion time is minimized. The classic bottleneck assign-
ment problem is a deterministic one in which the completion times are con-
stants. The deterministic bottleneck assignment problem is first introduced
by Fulkerson et al. [15]. Gross proves the minmax theorem for the bottle-
neck assignment problem [16]. Researchers propose many solution methods
for the bottleneck assignment problem. Threshold methods are proposed
by to Edmonds and Fulkerson [17] and Garfinkel [18]. Carpaneto and Toth
[19] develop a dual method. Other researchers study different bottleneck
assignment problems. Malhotra et al. study three dimensional bottleneck
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assignment problem [20]. Aneja and Punnen consider a multiple bottleneck
assignment problem [21]. Dokka et al. solve a multi-level bottleneck assign-
ment problem [22].

Some other scholars investigate the random bottleneck assignment prob-
lem in which the costs are not constants but random variables. Yechiali
is the first to investigate the random bottleneck assignment problem whose
costs are independent random variables with exponential distributions [23].
Prabuddha et al. consider how to maximize the probability that the bottle-
neck time satisfies a specified threshold [24]. Pferschy studies the asymptotic
behavior of the random bottleneck assignment problem [25]. Krokhmal and
Pardalos provide a good overview of random bottleneck assignment prob-
lems [26]. Haus studies a random multidimensional bottleneck assignment
problem and present a swapping algorithm [27].

In this paper, we propose a new uncertain random bottleneck assignment
problem. It includes both random variables and uncertain variables. Our
problem is different from the previous considered problems in [13-25]. In
order to solve this problem, we combine uncertain random simulation with
threshold techniques to design an algorithm.

The rest of this paper is organized as follows. In Section II, we introduce
some basic knowledge on uncertainty theory and chance theory. In section
III, we prove some formulas for uncertain random variables and present an
uncertain random simulation algorithm. In Section IV, we propose an un-
certain random bottleneck assignment model under the Hurwicz criterion.
Then, an algorithm to solve this problem is presented. At the end of the
paper, a conclusion section is given.

2. Preliminaries

2.1. Uncertainty Theory

Definition 1. (Liu [28]): An uncertainty distribution Φ(x) is said to be
regular if it is a continuous and strictly increasing function with respect to x
at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

Definition 2. (Liu [28]): Let ξ be an uncertain variable with regular un-
certainty distribution Φ(x). Then the inverse function Φ−1(α) is called the
inverse uncertainty distribution of ξ.

3



Theorem 1. (Liu [28]): Let ξ1, ξ2, · · · , ξn be independent uncertain vari-
ables with regular uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. If
f(ξ1, ξ2, · · · , ξn) is strictly increasing with respect to ξ1, ξ2, · · · , ξm and strictly
decreasing with respect to ξm+1, ξm+2, · · · , ξn, then

ξ = f(ξ1, ξ2, · · · , ξn) (1)

has an inverse uncertainty distribution.

Ψ−1(α) =f(Φ−1
1 (α), · · · ,Φ−1

m (α),

Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α)).
(2)

2.2. Chance Theory

Definition 3. (Liu [1]): Let (Γ,L,M) be an uncertainty space and let (Ω,A,Pr)
be a probability space. Then the product (Γ,L,M) × (Ω,A,Pr) is called a
chance space

(Γ,L,M)× (Ω,A,Pr) = (Γ× Ω,L× A,M× Pr).

Theorem 2. (Liu [29]): Let η1, η2, · · · , ηm be independent random variables
with probability distributions Ψ1,Ψ2, · · · ,Ψm, respectively, and let τ1, τ2, · · · , τn
be independent uncertain variables. Assume f is a measurable function.
Then the uncertain random variable

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has a chance distribution

Φ(x) =

∫
ℜm

F (x; y1, y2, · · · , ym)dΨ1(y1)

dΨ2(y2) · · · dΨm(ym).

(3)

where F (x; y1, y2, · · · , ym) is the uncertainty distribution of the variable

f(y1, y2, · · · , ym, τ1, τ2, · · · , τn).

Definition 4. (Liu [1]): Let ξ be an uncertain random variable. Then its
chance distribution is defined by

Φ(x) = Ch{ξ ≤ x} (4)

for any x ∈ ℜ.

In order to obtain the chance distribution, we prove following theorems
and develop a simulation algorithm.
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3. Uncertain random simulation

In fact, Formula (3) is a theoretical one, which is not easy to use in most
cases due to the complexity of chance distribution function. To overcome
the difficulty, an uncertain random simulation is proposed to construct the
chance distribution. First, we introduce the concepts of α−pessimistic value
and α−optimistic value for an uncertain random variable. Then, we obtain
the chance distribution, α−pessimistic value and α−optimistic value by using
a numerical integration method.

Definition 5. Let ξ be an uncertain random variable on chance space (Γ,L,M)×
(Ω,A,Pr) and α ∈ (0, 1]. Then,

ξinf(α) = inf{r|Ch{ξ ≤ r} ≥ α} (5)

and
ξsup(α) = sup{r|Ch{ξ ≥ r} ≥ α} (6)

are called the α−pessimistic value and the α−optimistic value of ξ, respec-
tively.

Theorem 3. Let ξ be an uncertain random variable and α ∈ (0, 1]. Then,
we have

ξinf(α) = Φ−1(α). (7)

Proof: It follows from Definition 5 immediately.

Theorem 4. Let ξ be an uncertain random variable and α ∈ (0, 1]. Then,
we have

ξinf(α) = ξsup(1− α). (8)

Proof: It follows from Equation (6) that

Ch{ξ ≥ ξsup(1− α)} = 1− α.

Thus,

Ch{ξ ≤ ξsup(1− α)} = 1− Ch{ξ ≥ ξsup(1− α)}
= 1− (1− α)

= α

Thus, we have ξinf(α) = ξsup(1− α). The theorem is proved.
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Theorem 5. Let ξ be an uncertain random variable and α ∈ (0, 1]. Then,
we have

ξsup(α) = Φ−1(1− α) and ξsup(1− α) = Φ−1(α). (9)

Proof: It follows from Theorems 3 and 4.
According to Theorems 3, 4 and 5, we design the following uniform dis-

cretization algorithm to calculate Φ(x), α-pessimistic value and α-optimistic
value. Our algorithm is very flexible. It can even create the empirical distri-
bution.

Algorithm 1 (Uniform Discretization Algorithm)

Step 1. Discretize the range of the random variable ηi into Ni equally
spaced points.
Step 2. Discretize α into K equally spaced points.
Step 3. Calculate F−1(α; y1, y2, · · · , ym).
Step 4. Calculate F (x; y1, y2, · · · , ym) =

0 if x ≤ x1,

αi + (αi+1 − αi)
x− xi

xi+1 − xi

if xi ≤ x ≤ xi+1,

1 ≤ i ≤ K,
1 if x ≥ xK ,

Step 5. Apply numerical integration to calculate Φ(x), α-pessimistic
value and α-optimistic value.

We illustrate the uniform discretization algorithm by the following exam-
ple.
Example 1. Suppose that η1 and η2 are independent random variables with
probability distributions U(1, 2) and U(2, 4), and suppose that τ1 and τ2 are
independent uncertain variables with uncertainty distributions L(1, 5) and
L(1, 3). Then ξ = η1 + η2 + τ1 − τ2 is an uncertain random variable. Assume
that ξ has chance distribution Φ(x).

For the sake of simplicity, we set N1 = 10, N2 = 10, K = 10. We also can
assign a large number to N1, N2 and K to improve accuracy. The probability
distribution function of η1 and η2 are

Ψ1(y1) =


0 if y1 ≤ 1,
y1 − 1 if 1 ≤ y1 ≤ 2, and
1 if y1 ≥ 2,
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Ψ2(y2) =


0 if y2 ≤ 2,
y2 − 2

2
if 2 ≤ y2 ≤ 4,

1 if y2 ≥ 4.

Then, we can have discrete forms of Ψ1(y1) and Ψ1(y2) in which y1 =
1 + 0.1 · i and y2 = 2 + 0.2 · j for i = 1, 2, · · · , 10 and j = 1, 2, · · · , 10.
The inverse uncertainty distribution function of τ1 and τ2 are (τ1)inf(α) =
(1−α) · 1+α · 5 = 1+4 ·α and (τ2)inf(1−α) = α · 1+ (1−α) · 3 = 3− 2 ·α.

The chance distribution of ξ is

Φ(x) =
1

2

∫ 4

2

∫ 2

1

F (x; y1, y2)dy1dy2 (10)

where F (x; y1, y2) is obtained by the inverse uncertainty distribution func-
tion F−1(α; y1, y2) = y1+ y2+(1+4 ·α)− (3− 2 ·α) for each α ∈ (0, 1]. This
implies that F−1(α; y1, y2) = xk, 1 ≤ k ≤ 10 for each α ∈ (0, 1]. The value of
F−1(α; y1, y2) is listed on the Table I.

Table 1 Inverse uncertainty distribution function F−1(α; y1, y2)

i j y1 = 1 + 0.1 · i y2 = 2 + 0.2 · j α F−1

1 1 1.1 2.2 0.1 1.9
1 1 1.1 2.2 0.2 2.5
· · · · · · · · · · · · · · · · · ·
1 1 1.1 2.2 1 7.3
1 2 1.1 2.4 0.1 2.1
1 2 1.1 2.4 0.2 2.7
· · · · · · · · · · · · · · · · · ·
1 2 1.1 2.4 1 7.5
· · · · · · · · · · · · · · · · · ·
10 10 2 4 0.1 4.6
· · · · · · · · · · · · · · · · · ·
10 10 2 4 1 10

Then, according to Step 4, we obtain F (x; y1, y2). Now, we get the chance
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distribution function of ξ.

Φ(x) =
1

2

∫ 4

2

∫ 2

1

F (x; y1, y2)dy1dy2

=
1

2

10∑
i=1

10∑
j=1

F (x; 1 + 0.1 · i, 2 + 0.2 · j) · 0.1 · 0.2

By Uniform Discretization Algorithm, we get the chance distribution of
ξ (Fig. 1), ξinf(0.2)=3.9 and ξsup(0.2)=7.4.

x
1.9 3.3 3.9 4.5 5 5.6 6.2 6.8 7.4 8.2 10

Φ
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The chance distribution of ξ.

The advantage of our simulation algorithm is that it is easy to implement
and provides a way to calculate the α-optimistic and α-pessimistic values for
all types of uncertain random variables. The disadvantage is that, as the
number of variables increases, much more storage space is needed.

In the next section, we will use the proposed uncertain random simulation
to solve the uncertain random bottleneck assignment problem. An α-optimal
model will be presented and an algorithm will be designed to obtain the
solution for the α-optimal model.
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4. Uncertain random bottleneck assignment model

The uncertain random bottleneck assignment problem is defined as fol-
lows:

min max
1≤i,j≤n

(ρ(ξij)sup(α) + (1− ρ)(ξij)inf(α))xij (11)

s.t. Ch {ξij ≥ (ξij)sup(α)} ≥ α (12)

Ch{ξij ≤ (ξij)inf(α)} ≥ α (13)
n∑

j=1

xij = 1, i = 1, 2, 3, . . . , n, (14)

n∑
i=1

xij = 1, j = 1, 2, 3, . . . , n, (15)

xij = 0 or 1, i, j = 1, 2, 3, . . . , n (16)

where the cost coefficient ξij is the completion time of assigning men j to
task i. xij is an indicator of whether or not man j is assigned to do the task
i.

We apply Hurwicz criterion to model the uncertain random bottleneck
assignment problem. The Hurwicz criterion under uncertain random environ-
ment is ρξsup(α)+(1−ρ)ξinf(α), where ξsup(α) and ξinf(α) are the α-optimistic
completion time and α-pessimistic completion time. It means that the com-
pletion time is less than ξsup(α) and more than ξinf(α). α is the belief degree
of accomplishing a task. Under the Hurwicz criterion, the decision payoffs
are weighted by a coefficient of optimism ρ. When ρ=1, the criterion is the
optimistic one. When ρ=0, it is a pessimistic criterion.

The essential idea of the α-optimal model is to arrive at a rational com-
promise between the optimistic and pessimistic criterions subject to chance
constraints. Chance constraint (12) represents that the chance that the α-
optimistic time is shorter than the completion time is greater than α. Chance
constraint (13) shows that the chance that the α-pessimistic time is longer
than completion time is greater than α.

In summary, there are three main differences between our model and pre-
vious models. First, in order to describe the uncertain random phenomena,
uncertain random variables are added into our model. Second, the objective
function is formulated according to the Hurwicz criterion. Third, new chance
constraints are contained in our model.
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Considering the above uncertain random bottleneck assignment model,
we propose the following algorithm in which uncertain random simulation is
used to simulate uncertain random cost coefficients.

Algorithm 2 (Uncertain Random Bottleneck Assignment Algo-
rithm)

Step 1. Set values of α and ρ.
Step 2. Apply Uniform Discretization Algorithm to calculate (ξij)sup(α)
and (ξij)inf(α). Compute wij = ρ(ξij)sup(α) + (1 − ρ)(ξij)inf(α) and let
W = (wij).
Step 3. Set a=min(W) and a=max(W).
Step 4. If find the median a∗ between a and a in W, goto Step5. Otherwise,
goto Step 7.
Step 5. Let wij with wij ≤ a∗ be admissible and create a new threshold
matrix C.
Step 6. If find a perfect matching in C by using Hungarian method, set
a = a∗, goto Step 4. Otherwise, set a = a∗, goto Step 4.
Step 7. Stop. The optimal value is a∗ and the optimal assignment is
obtained.

We illustrate Algorithm 2 through the next numerical example.
Example 2. Suppose that η1, η2, · · · , η5 are independent random variables
and τ1, τ2, · · · , τ7 are independent uncertain variables. They are given as the
following Table II.

Table 2 Random variables and uncertain variables in Example 2

i ηi j τj

1 η1 ∼ U(1, 2) 1 τ1 ∼ L(2, 4)
2 η2 ∼ U(3, 4) 2 τ2 ∼ 5
3 η3 ∼ U(3, 4) 3 τ3 ∼ L(2, 3)
4 η4 ∼ U(4, 5) 4 τ4 ∼ L(5, 8)
5 η5 ∼ U(5, 6) 5 τ5 ∼ 7
− − 6 τ6 ∼ L(9, 10)
− − 7 τ7 ∼ L(1, 2)
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Random variables and uncertain variables are special uncertain random
variables. Uncertain random variables are listed in the following cost matrix

ξ =

 τ6 η1 + τ1 τ2
η1 + τ1 τ5 η3 + τ3
η2 η4 + η5 + 2 · τ7 τ4

 .

Let us explain the meaning of the matrix element. For instance, ξ32 means
man 2 needs η4+η5+2 ·τ7 time in order to do task 3. The values of variables
η4 and η5 are the outcomes of statistical experiments. Variables η4 and η5
are random variables. The value of variable τ7 is the outcome of expert
estimation. Variable τ7 is an uncertain variable. Thus, ξ32 is an uncertain
random variable.

Here let us assume α = 0.4 and ρ = 0.1. Of course, we can choose
different values according to the requirements of a decision maker. Let wij =
ρ(ξij)sup(α) + (1 − ρ)(ξij)inf(α). Tabel III lists the α−pessimistic value, the
α−optimistic value and cost wij.

Table 3 α−pessimistic value, α−optimistic value and cost wij

i j (ξij)sup(α) (ξij)inf(α) wij

1 1 9.6 9.4 9.42
1 2 5.34 4.35 4.45
1 3 5 5 5
2 1 5.34 4.35 4.45
2 2 7 7 7
2 3 6.15 5.95 5.97
3 1 3.46 2.54 2.63
3 2 13.3 12.9 12.94
3 3 6.8 6.2 6.26

Then, we can obtain the cost matrix

W =

 9.42 4.45 5
4.45 7 5.97
2.63 12.94 6.26

 .
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We find a=2.63, a=12.94 and a∗ = 5.97.
Thus, the threshold matrix becomes

C =

 × 4.45 5
4.45 × 5.97
2.63 × ×

 .

The maximum matching has cardinality 3. Then, we repeat Step 4 to
Step 6. Finally, we obtain that it is optimal to assign Man 1 to Task 3, Man
2 to Task 1 and Man 3 to Task 2. The final completion time associated with
this solution is a∗ = 5.97. This completes the solution of the problem.

5. Conclusion

In this paper, an uncertain random simulation algorithm is designed to
construct the chance distribution. Our uncertain random simulation can be
used in the uncertain random optimization for solving chance constraints.
Further, we propose an uncertain random bottleneck assignment model un-
der the Hurwicz criterion, in which random variables and other uncertain
variables coexist. We then apply the proposed uncertain random simulation
algorithm to optimize the model. A numerical example is presented to illus-
trate the algorithm. The uncertain random simulation algorithm can be used
to obtain the chance distributions for all kinds of uncertain random variables
with high accuracy. However, when the number of uncertain random vari-
ables increases, a large size of storage spaces is needed. How to overcome
such a limitation is one of our future research topics.
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