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Abstract
The rate of transient faults has increased significantly as the technology scales up. The tolerance of transient faults has

become an important issue in the system design. Dual modular redundancy (DMR) and triple modular redundancy (TMR)

are two commonly used techniques that can achieve fault detection and masking through executing redundant tasks. As

DMR and TMR have different time and cost overheads, we must carefully determine which one should be used for each

task (i.e., task hardening) to achieve the optimal system design. Furthermore, for multi-core systems, the system-level

design includes the allocation of cores for the tasks (i.e., task mapping) as well. This paper aims at task hardening and

mapping simultaneously for independent tasks on multi-cores with heterogeneous performances, in order to minimize the

maximum completion time of all tasks (i.e., makespan). We demonstrate that once task hardening is given, task mapping of

independent tasks can be achieved by employing min–max-weight perfect matching with a polynomial time complexity.

Besides, as there is a trade-off between cost and time performance, we propose a multi-objective memetic algorithm

(MOMA)-based task hardening method to obtain a set of solutions with different numbers of cores (i.e., costs), so the

designer can choose different solutions according to different requirements. The key idea of the MOMA is to incorporate

problem-specific knowledge into the global search of evolutionary algorithms. Our experimental studies have demonstrated

the effectiveness of the proposed method and have shown that by combining the results of MOMA and MOEA we can

provide a designer with a highly accurate set of solutions within a reasonable amount of time.

Keywords Fault tolerance � Multi-cores � Task hardening � Task mapping � Multi-objective optimization �
Memetic algorithms

Communicated by V. Loia.

& Xin Yao

xiny@sustc.edu.cn

Bo Yuan

yuanb@sustc.edu.cn

Bin Li

binli@ustc.edu.cn

Huanhuan Chen

hchen@ustc.edu.cn

Zhigang Zeng

zgzeng@hust.edu.cn

1 Department of Computer Science and Engineering, Southern

University of Science and Technology, Shenzhen 518055,

China

2 School of Information Science and Technology, University of

Science and Technology of China, Hefei 230026, China

3 School of Computer Science and Technology, University of

Science and Technology of China, Hefei 230026, China

4 School of Artificial Intelligence and Automation, Huazhong

University of Science and Technology, Wuhan 430074,

China

5 CERCIA, School of Computer Science, University of

Birmingham, Birmingham B15 2TT, UK

123

Soft Computing (2020) 24:981–995
https://doi.org/10.1007/s00500-019-03937-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9899-8961
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-03937-0&amp;domain=pdf
https://doi.org/10.1007/s00500-019-03937-0


1 Introduction

The rapid technology advances, such as transistor size

scaling, high operation frequency, and low voltage supply,

have led to multiple reliability threats to circuits and sys-

tems (Constantinescu 2003). For example, the rate of

transient faults in circuits has dramatically increased in the

past years. A transient fault is usually caused by high-

energy particle that strikes to flip the state of bits in an

unpredictable way, which can corrupt the correct applica-

tion execution state (Baumann 2005). Since the rate of

transient faults is much higher than that of permanent

faults, any reliable system should employ an effective

scheme to tolerate transient faults in the future (Henkel

et al. 2013a).

Multi-cores have emerged to be a popular and powerful

computing platform for many recent systems (Ebi et al.

2009; Henkel et al. 2013b; Jahn et al. 2011). As the tech-

nology keeps scaling down, more and more cores can be

integrated into a single chip to meet the growing computing

demand of modern applications. Such applications depend

on high-performance computing (HPC), and a high relia-

bility in the presence of transient faults is required as well.

On the other hand, the individual cores may exhibit sig-

nificant frequency variations (e.g., up to 30%) because of

process variations (result from fabrication imprecision)

(Bowman et al. 2002; Dighe et al. 2011). This situation is

worsening with technology scaling because of the difficulty

of precise fabrication with reduced dimensions at a

nanoscale.

To achieve reliability against transient faults, three types

of redundancies have conventionally been applied, i.e.,

time redundancy, space redundancy, and hybrid redun-

dancy. Time redundancy (i.e., re-execution) is based on

checkpointing and to execute the task again in case of a

fault (Kandasamy et al. 2003; Nikolov and Larsson 2016;

Salehi et al. 2016a); it is applicable only after a fault can be

detected. The overhead of local fault detection is not free

since it is hard to achieve perfect transient fault detection.

Space redundancy (i.e., replication), based on executing

redundant replicas of task independently on different cores,

does not require any specific fault detection mechanism

and uses result comparison (majority voting) for fault

detection and masking (Koren and Krishna 2007; Pradhan

1996; Salehi et al. 2016b). To make a majority voting, the

number of replicas should be an odd number so that triple

modular redundancy (TMR) is commonly used (Chen et al.

2016; Lyons and Vanderkulk 1962). Although TMR is

simple and predictable for tasks with deadlines, it requires

more resources and energy than dual modular redundancy

(DMR) (Dave and Jha 1999; Vadlamani et al. 2010). On

the other hand, DMR is only capable of detecting fault

since it is unable to decide which one is correct. Therefore,

another way to implement fault masking is to combine

DMR-based detection and checkpoint-based re-execution,

which can be regarded as the hybrid redundancy (Kang

et al. 2015; Pradhan and Vaidya 1994; Ziv and Bruck

1997). Both TMR and DMR are well suited for multi-core

platforms as multi-cores can provide multiple processing

units and low-overhead communication for comparing and

voting.

Since different fault-tolerant techniques are usually

characterized by different time and space overheads, there

is an optimization trade-off in task hardening, i.e., deter-

mining one of the fault-tolerant techniques (e.g., DMR or

TMR) for each task. This trade-off, together with the tra-

ditional optimization in task mapping, i.e., mapping each

task to one of the cores, makes the design of fault-tolerant

multi-cores very challenging (Das et al. 2014; Gan et al.

2012; Khosravi et al. 2014; Pop et al. 2009; Stralen and

Pimentel 2012). It is notable that replication-based task

hardening will introduce new tasks, i.e., replicas, into the

system, and these replicas should be mapped as well. In

this case, the design of fault-tolerant multi-cores can be

regarded as a bi-level optimization problem due to its

nested structure. Specifically, the upper-level optimization

subproblem is task hardening and the lower-level opti-

mization subproblem is task (including all original tasks

and new tasks) mapping, thereby making the overall opti-

mization computationally very intensive.

As both task hardening and task mapping are NP-hard in

general cases (Bolchini et al. 2011), most of the previous

methods are based on meta-heuristics, especially evolu-

tionary algorithms (EAs). Through mapping a task to a set

of cores, replication-based task hardening can be implicitly

implemented, e.g., the number of mappings and the list of

cores for each task are encoded as an integer vector in

(Glaß et al. 2007; Huang et al. 2011; Huang et al. 2012;

Reimann et al. 2008), or the mappings to all cores for each

task are encoded as a 0–1 vector in Kang et al. (2014a, b).

As task hardening is implicitly implemented in task map-

ping, the chromosome length of task mapping must be

overestimated according to the maximum number of

replicas that are probably introduced by replication-based

hardening (Glaß et al. 2007; Huang et al. 2011; Huang

et al. 2012; Reimann et al. 2008) or introduced by the total

number of cores on the multi-core platforms (Kang et al.

2014a, b). The problem of overestimation is relaxed in the

nested two-layer EA (Bolchini and Miele 2013; Bolchini

et al. 2011), where the outer layer EA is used to explore

task hardening, while the inner layer EA is used to explore

task mapping on each extended task graph (Jhumka et al.

2005) independently. Nested two-layer structure is a

commonly used framework for bi-level optimization

problems, but the EA-based inner layer makes the whole
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optimization process very time-consuming. Tabu search

(TS) seems to be an alternative way of exploring both task

hardening and task mapping at the same time (Izosimov

et al. 2009; Lifa et al. 2010). As an individual/trajectory-

based metaheuristic, the encoding strategy of TS is simple

and flexible. But the performance of TS highly depends on

the initial solution which is generated greedily in the TS-

based methods, and generally TS is easy to get trapped in

local optima, especially for problems with complex

landscape.

As stated above, it is very difficult to develop efficient

method for joint task hardening and task mapping for

general cases, because of the nested structure of the two

NP-hard problems. This paper builds upon the analysis

that, for independent tasks (Bleuse et al. 2017; Hong and

Prasanna 2007) (i.e., there is no data dependence between

tasks), if the solution of task hardening is given, the

solution of task mapping can be optimally obtained by

employing min–max-weight perfect matching (MMW-

PM). Specifically, both DMR- and TMR-based hardening

techniques are considered, and we show how to link the

problem of task mapping with the goal of minimizing the

worst-case makespan (i.e., the maximum completion time

of all tasks) to the MMW-PM model, and then, based on

binary search and Hungarian algorithm (Kuhn 1955), we

use an efficient heuristic algorithm [proposed in our pre-

vious work (Zhong et al. 2016) to obtain an MMW-PM

from a bipartite graph with polynomial time complexity.

Besides, as there is a trade-off between cost and time

performance (Erbas et al. 2006), we propose a multi-ob-

jective memetic algorithm (MOMA) -based task hardening

method to obtain a set of solutions with different numbers

of cores (i.e., costs), so the designer can choose a solution

from the Pareto front according to user preferences, such as

cost budget or performance requirement. The key idea of

MA (Chen et al. 2011; Wang et al. 2010) is to incorporate

problem-specific knowledge into the global search of EAs.

Our experimental studies have demonstrated the effec-

tiveness of the proposed method and have shown that by

combining the results of MOMA and MOEA we can pro-

vide a designer with a highly accurate set of solutions in a

reasonable amount of time.

Figure 1 shows an overview of our novel contributions:

According to the nested structure of the design of fault-

tolerant multi-cores, the proposed MOMA-based task

hardening can be regarded as the upper-level optimizer for

the alternative between DMR and TMR for each task,

while the proposed MMW-PM-based task mapping can be

regarded as the lower-level solver for task-to-core assign-

ments (for all original tasks and new tasks) in an optimal

way.

The rest of this paper is organized as follows. In Sect. 2,

we introduce the adopted problem model. The proposed

design method of fault-tolerant multi-cores, including the

optimal MMW-PM-based task mapping and MOMA-based

task hardening, is detailed in Sects. 3 and 4. The simulation

results and discussions are given in Sect. 5. Finally, Sect. 6

concludes this paper.

2 Problem definition

2.1 System model

We consider a resource library C = {c1, c2,…, cM} con-

sisting of M ISA-compatible RISC cores, which only has

single thread per core. Each core ci has its own instruction

and data cache to execute tasks. Due to the performance

heterogeneity, e.g., process variations (Herbert et al. 2012;

Raghunathan et al. 2013), each core ci has its own fre-

quency, denoted as fi, which represents the number of

instructions invoked by the core per second. For notational

brevity, we index the M cores by a non-decreasing order of

the current frequencies, i.e., fmax = f1 C f2… C fM = fmin.

Independent tasks have been used in modeling some

practical applications (Bleuse et al. 2017; Hong and Pra-

sanna 2007), e.g., Monte Carlo simulations and computa-

tional phylogeny. In these scenarios, each task is to process

a fixed amount of source data. The source data of all the

tasks initially reside on a single node in the system, which

we call the root node.

An instance of the problem is described as a set T = {t1,

t2,…, tN} of N independent tasks (Bleuse et al. 2017; Hong

and Prasanna 2007). Task is the atomic unit executed by

the multi-core platform. Due to the functional difference,

each task ti has its own program to be executed by the core,

and the number of instructions of the compiled program is

denoted as di. For notational brevity, we index the N tasks

by a non-increasing order of the number of instructions,

i.e., dmax = d1 C d2… C dN = dmin. And, the execution

time of task ti on core cj can be evaluated as et(ti, cj)-

= CPI�di/fj, where CPI represents the clock cycle per

instruction.

Fig. 1 Overview of the proposed method, illustrating interactions

between different contributions
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2.2 Hardening technique

In this paper, both DMR with re-execution (Kang et al.

2015; Pradhan and Vaidya 1994; Ziv and Bruck 1997) and

TMR (Chen et al. 2016; Lyons and Vanderkulk 1962) are

considered to be against transient faults. For a task hard-

ened by DMR with re-execution, fault detection is achieved

by DMR. If a fault is detected, the tasks are executed again

by rolling back. For a task hardened by TMR, fault

masking is directly achieved by majority voting. Both

DMR with re-execution and TMR with major voting can

achieve very high reliability even given a high fault rate.

For example, if the fault rate of a task on a core is k = 10-6

or 10-7 (in the unit of #fault/cycles) to realize high fault

scenarios as adopted by the related works (Hu et al. 2006;

Li et al. 2004), the fault rate of the task hardened by TMR

can be evaluated as kTMR = k3 ? 3(1 - k)k2 & 3 9

10-12 or 3 9 10-14, and the fault rate of the task hardened

by DMR with re-execution can be evaluated as kDMR =

1 - {(1 - k)2 ? (1 - (1 - k)2)((1 - k)2)} & 4 9 10-12

or 4 9 10-14; here, it is assumed that the maximum number

of faults during the execution of each task is no more than 1.

Both DMR with re-execution and TMR can achieve

very high reliability, and they are characterized by different

overheads in cost and time. Obviously, three cores are

required in TMR, while only two cores are required in

DMR with re-execution. On the other hand, the worst-case

execution time (WCET) of a task ti in TMR mode can be

evaluated as wcet(ti) = max{et(ti1), et(ti2), et(ti3)} ? etv,

where tasks ti1, ti2, and ti3 are replicas of task ti, and ev is

the execution time of major voting, while the WCET of a

task ti in DMR mode can be evaluated as wcet(ti) = 2

max{et(ti1), et(ti2)} ? etr ? etc., where tasks ti1 and ti2 are

replicas of task ti, etc. is the execution time of comparison,

and etr is the execution time of rollback. Since multi-core

platform can provide low-overhead communication for

comparing and voting, compared with et(ti), both etc. and

etv are negligible. Therefore, TMR mode is more efficient

than DMR mode in terms of WCET.

2.3 Problem statement

Assume we are given a resource library C = {c1, c2,…, cM}

with different frequencies fmax = f1 C f2… C fM = fmin,

and an instance consisting of independent tasks T = {t1,

t2,…, tN} with different numbers of instructions dmax = d1-
C d2… C dN = dmin, the goal of this paper is to (1)

determine TMR mode or DMR mode for each task, and (2)

allocate a core for each task (including all original tasks

and new tasks), such that (1) the number of cores used, i.e.,

K = 2KDMR ? 3KTMR, is minimized, where KDMR and

KTMR are the number of tasks hardened by DMR and TMR,

respectively, and KDMR ? KTMR = N, and (2) the worst-

case makespan, i.e., wcet(T) = max{wcet(t1), wcet(t2),…,

wcet(tN)}}, is minimized. It is assumed that we have

enough cores in the library so that we do not map two tasks

or replicas to the same core in order to fully explore the

parallelism of the multi-core platform.

To our knowledge, this is the first work specialized for

independent tasks in the design of fault-tolerant multi-

cores, as all the previous works (Das et al. 2014; Gan et al.

2012; Khosravi et al. 2014; Pop et al. 2009; Stralen and

Pimentel 2012) consider general task sets (e.g., there are

data dependences between tasks). As mentioned above,

task mapping for general task sets is a well-known NP-hard

problem. Independent task set, as a special kind of task

sets, has been widely applied in modeling many real-world

applications (Alazzoni and Down 2008; Bleuse et al. 2017;

Cortadella et al. 2006; Hong and Prasanna 2007), but

without considering faults. As shown in Sect. 3, under the

assumption that the execution modes for all tasks are

already known beforehand (Sect. 4), the task mapping of

independent tasks can be optimized by employing min–

max-weight perfect matching (MMW-PM) to minimize the

worst-case makespan with polynomial time complexity.

2.4 Optimal task mapping

2.4.1 Greedy mapping algorithm and a motivational
example

The greedy mapping algorithm (Algorithm 1) is to map

tasks to the cores that can be completed as fast as possible.

In the following, we provide a motivational example to

explain why greedy mapping is not good enough for task

mapping. Suppose that we are given three tasks, i.e., t1, t2,

and t3. Task t1 is executed in TMR mode, while task t2 and

t3 are executed in DMR mode. Now, we consider the task

mapping problem to allocate the cores to the tasks for

minimizing the worst-case makespan, and the execution

times of tasks on the cores are shown in Table 1. For

simplicity, etv, etc., and etr are supposed to be zeroes here.

In this example, we can check all the possible mappings to

obtain the optimal result that will be 74.16 ms, where TMR

mode task t1 uses core group {c1, c2, c6}, while DMR mode

tasks t2 and t3 use core groups {c3, c7} and {c4, c5}. By

using greedy mapping to assign the tasks and cores, the

result is 79.08 ms, where TMR mode task t1 uses core

group {c3, c4, c7}, while DMR mode tasks t2 and t3 use

core groups {c2, c5} and {c1, c6}. In the above example, we

can observe that the greedy mapping strategy is not good

enough. As a consequence, it is clear that such a task

mapping problem requires a better strategy, whereas the

straightforward exhaustive search is obviously not feasible

in practice with the expected high time complexity.
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Algorithm 1: Greedy Mapping for Task Mapping
Input: the given task hardening solution th
Output: the task mapping solution tm
01: while there are unmapped tasks do
02:   select an unhardened task ti with maximum di
03: if thi = 0 %DMR
04:     select two unallocated cores cj, cl with maximum fj, fl

05:     tmi ← {cj, cl}
06:   else if thi = 1 %TMR
07:    select three unallocated cores cj, cl, ck with maximum fj, fl, fk

08:     tmi ← {cj, cl, ck}
09: end if
10: mark task ti mapped and cores {cj, cl} or {cj, cl, ck} allocated
11: end while
12: return tm
Algorithm 2: Heuristic Algorithm for MMW-PM [60]
Input: Weighted bipartite graph: G = (U, V, E, W)
Output: MMW-PM: M
01: M ← Hungarian algorithm for perfect matching (G)
02: E’ ← Sort E in ascending order of their weights W
03: low ← 1, high ← |E’|
04: while low < high
05:   mid ← ⎣low/2+high/2⎦
06:   e ← E’(mid)
07:   G’ ← Remove all the edges whose weights are no less than that of e
08:   M’ ← Hungarian algorithm for perfect matching (G’)
09:   if |M’| = |M| then
10:     M ←M’
11:     mid ←high
12:   else 
13:     low ←mid+1
14:   end if
15: end
16: return M

2.5 Min–max-weight perfect matching

Given a bipartite graph G = (U, V, E), where U and V are

disjoint and all edges in E go between U and V. A matching

is a subset of edges M [ E, such that for all vertices v [ U [
V, at most one edge of M is incident on v, that is, no two

edges share a common vertex. We say that a vertex v[U [
V is matched by matching M if some edge in M is incident

on v; otherwise, v is unmatched. A perfect matching is a

matching which matches all vertices of the graph, that is,

every vertex of the graph is incident to exactly one edge of

the matching. The problem of finding a perfect matching

can be solved by Hungarian algorithm (Kuhn 1955).

Min–Max-weight perfect matching (MMW-PM) is

defined on a weighted bipartite graph as a perfect match-

ing, where the maximal weight of the edges in the

matching has a minimal value among all perfect matchings

of the given graph. One should note that the MMW-PM

problem is different from the maximum (or minimum)-

weight perfect matching, where the sum of the weights of

the edges in the matching has a maximal (or minimal)

value among all perfect matchings of the given graph.

It is easy to link the task mapping problem to the pro-

posed MMW-PM model. Given a task hardening solution,

we can construct a new task set as T 0 ¼ t01; t
0
2; . . .; t

0
K

� �
by

replicating each task in T = {t1, t2,…, tN} by 2 (DMR

mode) or 3 (TMR mode) one by one, where K = 2KDMR-

? 3KTMR, and KDMR and KTMR are the number of tasks

hardened by DMR and TMR, respectively. On the other

hand, we can obtain the resource allocation,

C0 ¼ c01; c
0
2; . . .; c

0
K

� �
, by selecting the first K cores with

the highest frequencies from C = {c1, c2,…, cM}. Then, a

bipartite graph can be built as G0 ¼ T 0;C0;E0ð Þ, and E0 go

between each pair of t
0
i and c0j. The associated weight of

each edge t0i; c
0
j

� �
can be calculated according to: 1)

w t0i; c
0
j

� �
¼ et t0i; c

0
j

� �
þ etv; if task t0i is executed in TMR

mode, or 2) w t0i; c
0
j

� �
¼ 2et t0i; c

0
j

� �
þ etr þ etc, if task t0i is

executed in DMR mode. Then, for a MMW-PM M0 from
G0, the matchings in M0 represent the mappings from task

replicas to cores, and the associated maximum weight of

the edges is the worst-case makespan.

It is notable that the associated weight w t0i; c
0
j

� �
of each

edge is not the WCET of t0i on c0j, because comparing and

voting are invoked until all replicas of the same task are

completed. Actually, there is no way to know the execution

time of other replicas of t0i beforehand, because we do not

know the mappings at all. But, the worst-case makespan

can be evaluated as:

wcet Tð Þ ¼ max wcet t1ð Þ;wcet t2ð Þ; . . .f g
¼ max max et t11ð Þ; et t12ð Þ; et t13ð Þf gf
þetv or 2max et t11ð Þ; et t12ð Þf g þ etr

þ etc;max et t21ð Þ; et t22ð Þ; et t23ð Þf
þetv or 2max et t21ð Þ; et t22ð Þf g þ etr þ etc; . . .g

¼ max et t11ð Þ þ etv; et t12ð Þ þ etv; et t13ð Þ þ etvf gf or 2et t11ð Þf
þetr þ etc; 2et t12ð Þ þ etr

¼ þetcg; et t21ð Þ þ etv; et t22ð Þ þ etv; et t23ð Þ þ etvf g or 2et t21ð Þf
þetr þ etc; 2et t22ð Þ þ etr

þ etc; . . .gmax w t
0

1

� �
;w t

0

2

� �
; . . .

n o
:

Table 1 Execution time of tasks

on cores (ms)
Execution time c1 c2 c3 c4 c5 c6 c7

t1 44.19 39.14 38.08 38.10 38.80 41.54 29.24

t2 43.03 38.11 37.08 37.10 37.78 40.45 28.47

t3 39.54 35.02 34.07 34.09 34.72 37.17 26.16

Multi-objective redundancy hardening with optimal task mapping for independent tasks on… 985

123



Therefore, we can obtain the real worst-case makespan

of T by employing the above weighting strategy.

2.6 MMW-PM heuristic

The above section shows how to link the task mapping

problem to the MMW-PM model. A naive way to find an

MMW-PM (i.e., the optimal mapping) is to find all perfect

matchings in the given bipartite graph first and then select

the one whose maximal edge weight is minimal. Instead of

using such an enumeration method, we use an efferent

heuristic algorithm [proposed in our previous work (Zhong

et al. 2016) for MMW-PM problem with low time

complexity.

Given an undirected weighted bipartite graph G = (U, V,

E, W), where U and V are disjoint and all edges in E go

between U and V. At first, we sort the edges in G in

ascending order of their weights. Our heuristic is to select

an edge e in G and remove all the edges whose weights are

larger than that of e in G, while a perfect matching method

(i.e., Hungarian algorithm (Kuhn 1955)) is used to check

whether a perfect matching exists. The framework of the

heuristic method is iterative based on binary search, as

shown in Algorithm 2 (Zhong et al. 2016). The algorithm

starts with an initial perfect matching M obtained by the

Hungarian algorithm (line 1), and then we have E0 by

sorting E in ascending order according to their weights

(line 2). At each iteration, an edge e in E0 is selected by

binary search (lines 5 and 6) and a new graph G0 is

obtained through removing all the edges with larger

weights in G (line 7), and then we can obtain a new

matching M0 by running the Hungarian algorithm on G0

(line 8). If the cardinality of M0 equates to that of M, i.e.,

M0 is a perfect matching as well, we update M to M0 (line
10) and set mid as high (line 11), otherwise, we increase

low by 1 (line 13). The final solution M is returned until the

loop terminates (line 16).

Obviously, Algorithm 2 (Zhong et al. 2016) would

return a perfect matching of the input graph, as the

resulting matching M has the same cardinality as the ini-

tialized M obtained from the input graph (line 1). Besides,

the edges in G are removed according to the ascending

order of their weights, so the resulting matching M satisfies

that the maximal weight of the edges in M has a minimal

value among all perfect matchings of the input graph.

Therefore, Algorithm 2 can indeed find an MMW-PM from

the given graph with the advantage of a high efficiency

over the enumeration method. Given an undirected

weighted bipartite graph G = (U, V, E, W), with

|U| = |V| = n (n = K in our case), the time complexities of

Hungarian algorithm and binary search are O(n3) and

O(logn), respectively. Therefore, the time complexity of

Algorithm 2 is O(n3logn).

3 Multi-objective redundancy hardening

3.1 Trade-offs in task hardening

As analyzed in Sect. 2, DMR mode and TMR mode are

characterized by different overheads in cost and time, and

there is a trade-off in determining DMR or TMR for each

task. Figure 2 shows a simple example of the trade-offs in

task hardening for a problem instance, where the green

circle represents the solution that all tasks are hardened by

DMR, and the magenta star represents the solution that all

tasks are hardened by TMR. ‘‘DMR for all tasks’’ uses the

least number of cores, while ‘‘TMR for all tasks’’ achieves

the best performance in terms of worst-case makespan. In

order to provide the designer with a set of solutions with

different trade-offs in cost and performance, we model the

problem as a multi-objective optimization problem.

Specifically, in terms of cost, the objective is to minimize

the number of cores used, while in terms of performance,

the objective is to minimize the worst-case makespan, so

we have:
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Fig. 2 An example to show the trade-offs in task hardening
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Object1 : K ¼ 2KDMR þ 3KTMR ð1Þ

Object2 : wcet Tð Þ
¼ max wcet t1ð Þ;wcet t2ð Þ; . . .;wcet tNð Þf g: ð2Þ

3.2 MOEA-based task hardening

In recent years, MOEAs have been successfully applied to

many kinds of multi-objective optimization problems

(Shen and Yao 2015; Wang et al. 2015). While there is a

wide variety of MOEAs, in this paper, we just consider the

most popular one, i.e., nondominated sorting genetic

algorithm II (NSGA-II) (Deb et al. 2002). The key ideas of

NSGA-II include a fast nondominated sorting approach

with low computational complexity and a novel selection

process that creates a mating pool by combining the parent

and offspring populations and selecting the best (with

respect to fitness and spread) solutions. Genetic algorithm

(GA) is adopted in the NSGA-II framework to work as the

evolutionary engine for the population. GA generates

solutions to the optimization problem using operations

inspired by Darwinian principles of natural evolution, such

as recombination (crossover), mutation, and selection. The

detailed design of the elementary steps for evolving the

population of solutions of task hardening is given as

follows.

(1) Encoding

In GA, the solution to the optimization problem is

encoded in a chromosome as a set of parameters. In our

implementation, each chromosome in the task hardening

population is represented by a N-dimensional 0–1 vector

th = {th1, th2, … thN} [ {0, 1}N, where N is the number of

tasks. Each position of the vector describes the fault-tol-

erant technique that assigned to the task, i.e., thi = 0 indi-

cates that task ti is hardened by DMR with re-execution and

thi = 1 indicates that task ti is hardened by TMR.

(2) Crossover

In GA, crossover is a genetic operator that recombines

more than one (generally two) parent chromosomes to

produce one or two child chromosomes from them. In our

implementation, we use one-point crossover, the simplest

one, i.e., a single crossover point on both parent vectors is

selected first, and then all data beyond that point in either

vector are swapped between the two parent vectors, the

resulting vectors are the child chromosomes. In this way,

the applied fault-tolerant techniques are mixed for the task

hardening solutions.

(3) Mutation

In GA, mutation is a genetic operator that alters one or

more gene values in a chromosome from its initial state to

maintain the genetic diversity of the population. In general,

mutation operators involve a probability that an arbitrary

gene in a chromosome would be changed from its original

state, and this probability should be set low. In our

implementation, we use flip mutation for the 0–1 vector,

i.e., the value of the chosen gene is inverted. In this way,

the applied fault-tolerant technique is changed for the task

in the task hardening solution.

Algorithm 3: MOEA-based Task Hardening
N: the number of tasks
M: the number of cores
PS: the population size of task hardening solutions
TH: the parent population of task hardening solutions
NTH: the offspring population of task hardening solutions
Pc: the probability of crossover
Pm: the probability of mutation
Input: resource library C = {c1, c2,…, cM} and problem instance T = {t1, t2,…, tN}
Output: a set of nondominated task hardening solutions ths
01: TH = {thi}, thi = {th1, th2, … thN}∈{0, 1}N, i = {1, 2, … PS}
02: evaluate FitnessTH = {Object1

i, Object2
i} based on Eq. (1) and Eq. (2), i = {1, 2, … PS}

03: repeat
04: for i = 1 to PS do // evolve the task hardening population
05:     (thj, thk) ← Selection for Reproduction (TH)
06: nthi ← Crossover (thj, thk, Pc)
07:   end for
08: for i = 1 to PS do
09: nthi ← Mutation (nthi, Pm)
10:   end for
11: evaluate FitnessNTH ={Object1

i, Object2
i} based on Eq. (1) and Eq. (2), i = {1, 2, … PS}

12:   TH ← Nondominated Sorting (TH, NTH, FitnessTH, FitnessNTH)
13: until maximum number of fitness evaluations is reached
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(4) Selection

Selection occurs two times during each generation in

GA. In our implementation, selection for reproduction is

performed before the crossover operator is applied, which

is based on a purely random basis without bias to filter any

individual, and selection for survival is performed

according to NSGA-II, i.e., a fast nondominated sorting

approach and a novel selection process with the consider-

ation of both fitness and spread.

The outline of the MOEA-based hardening is given in

Algorithm 3, where PS, Pc, and Pm indicate the population

size, probability of crossover, and probability of mutation,

respectively. The algorithm starts with a population TH

consisting of PS random individuals for task hardening

(line 1). The fitness in terms of cost, i.e., Object1, is

evaluated according to Eq. (1), and the fitness in terms of

performance, i.e., Object2, is evaluated based on the pro-

posedMMW-PM-based mapping (Algorithm 2) and Eq. (2)

(line 2). During each generation, TH is evolved and the

population of PS individuals generates PS children through

the crossover operation (lines 4–7) and the mutation

operation (lines 8–10). Then, the offspring NTH are eval-

uated (line 11) and used to update the current population

(line 12) based on the fast nondominated sort. When the

given maximum number of fitness evaluations is reached,

the algorithm stops (line 13).

3.3 MOMA-based task hardening

As shown in the following experiments (Sect. 5), it is very

difficult to obtain the whole Pareto front using the proposed

MOEA-based hardening method so that we cannot provide

well-distributed solutions for the designer to choose. In

particular, it is hard to minimize Object2 by NSGA-II, so

the solutions are all partiality located at the range where

Object1 is minimized. This is because Object2 involves a

complex nonlinear mapping from decision variables to

fitness value (i.e., using MMW-PM-based mapping), while

Object1 is just a linear combination of the variables (i.e.,

Eq. 1), and the select pressure on Object2 is too weak in the

adopted NSGA-II framework.

In order to incorporate bias in the search for Object2, we

propose a problem-specific local search operator, and it can

be regarded as a kind of memes in the case of MAs (Rubio-

Largo et al. 2016; Tersi et al. 2015; Yuan and Xu 2015). In

combinatorial optimization, local search operators gener-

ally work in the form of heuristics that are customized to a

specific problem. In our implementation, the key idea of

the heuristic is inherited from the previous greedy reas-

signment local search (GRLS) operators for logic mapping

(Yuan et al. 2016; Yuan et al. 2014), which is to reassign

the gene values of part of the parent chromosome by taking

advantage of the greedy information extracted from the

problem instance. In this paper, this idea is extended for

task hardening.

As analyzed in Sect. 2, TMR mode is more efficient than

DMR mode; it is expected that a task can be completed

earlier if a task is executed in TMR mode. The GRLS

operator designed for task hardening tries to flip the

hardening technique from DMR to TMR for the given task

ti with larger di. It is expected to reduce the worst-case

makespan, i.e., Object2. In order to release the time over-

head added to the iterative process of GA, the time com-

plexity of the operator should be as low as possible. In fact,

for each task, the priority list of tasks in terms of di can be

sorted in advance; thus, the greedy information of the

problem instance only needs to be evaluated once before

the optimization process.

Since the operator is designed to be complementary to

the stochastic search of GA, the incorporation of the

operator should maintain the randomness as well. Besides,

an operator with strong greediness will weaken the

stochastic nature of GA and improve the risk of conver-

gence to the local optima. Therefore, care should be taken

when setting the strength of the GRLS operator in

achieving the best search performance. In our implemen-

tation, for a given solution, a control parameter is intro-

duced to limit the number of tasks that will be applied to by

the GRLS operator. For example, N�l tasks are randomly

selected, where 0 B l B 1 is defined as the greedy strength

factor that provides a flexible control on randomness or

greediness of the GRLS operator.

The outline of the proposed GRLS operator for task

hardening is given in Algorithm 4. N�l tasks are randomly

selected and marked as unhardened (line 1). In the loop

(lines 2–6), an unhardened task ti with maximum di is

selected (line 3); if ti is hardened by DMR, then change

DMR to TMR, and the loop terminates (line 4). By

applying Algorithm 4 to each generated solution during the

MOEA-based hardening algorithm, we obtain the MOMA-

based hardening algorithm.

Algorithm 4: GRLS for Task Hardening
Input: the given task hardening solution th
Output: new task hardening solution th
01: randomly select N·μ tasks, and mark them unhardened
02: while there are unhardened tasks do
03:   select an unhardened task ti with maximum di
04: if thi = 0 then thi = 1; break; end if
05: mark task ti hardened
06: end while
07: return th
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4 Simulations and discussion

In this section, the performance of the proposed method is

experimentally investigated. First, we show that the pro-

posed MMW-PM-based mapping consistently outperforms

greedy mapping, and we test the impact of control

parameter l on the performance of the proposed MOMA-

based hardening. Then, compared with MOEA-based

hardening, the effectiveness of MOMA-based hardening is

verified by extensive experiments, especially on large-scale

benchmarks. At the final, we show that by combining the

results of MOMA-based hardening and MOEA-based

hardening we can provide the designer with a highly

accurate set of solutions in a reasonable amount of time.

In the experiments, a large set of benchmarks with dif-

ferent scales are synthesized, e.g., N = 10, 30, 50, and 100

that indicates the number of tasks in the problem instances,

and M[ 3 N accordingly that indicates the number of

cores in the resource library. We generate four test

instances for each case. The number of instructions (d) of

the compiled tasks ranges from 107 to 5 9 107 and ran-

domly determined, and the value of CPI is assumed to be

1.5. The frequencies (f) of cores are normally distributed

with mean 1 GHz and standard deviation 0.1 GHz. The

voting time (etv) involved in TMR, the comprising time

(etc.) involved in DMR, and the recovering time (etr)

involved in re-execution are assumed to be 2 ms, 2 ms, and

6 ms, respectively.

GA is used as the evolutionary search engine, and the

parameters of population size (PS), probability of crossover

(Pc), and probability of mutation (Pm) are set as PS = 2 N,

Pc = 0.8, and Pm = 0.8/N experimentally. The maximum

number of generations is set to be 50 to limit the runtime

(thus the number of function evaluations is 100 N), and in

most cases, both MOMA and MOEA have converged to

good solutions. Both generational distance (GD) and

inverted generational distance (IGD) are used as perfor-

mance metrics for the proposed MOMA-based hardening

and MOEA-based hardening. GD is defined as the mean

distance in the objective space from each obtained solution

to its nearest Pareto optimal solution, while IGD is defined

as the mean distance in the objective space from each

Pareto optimal solution to its nearest obtained solution. GD

provides a measure of proximity of the nondominated

solutions in the objective space with respect to the Pareto

optimal front, while IGD provides a measure of both

proximity and diversity of the nondominated solutions in

the objective space with respect to the Pareto optimal front;

the smaller the value is, the better the Pareto optimal front

is approximated. As customary, the nondominated solu-

tions obtained by multiple runs of both MOMA and MOEA

with larger populations and more generations are assumed

as the Pareto optimal set, which is the reference set of GD

and IGD. We implement the algorithms in MATLAB. All

the experiments are performed on a 3.2 GHz Intel Core i5-

6500 quad-core platform with 8 GB memory. However, all

the tested algorithms are implemented as monolithic pro-

cesses and no CPU core parallelism is exploited.

4.1 MMW-PM-based mapping versus greedy
mapping

As analyzed in Sect. 3, if the solution of task hardening is

given, the proposed MMW-PM-based mapping can obtain

the optimal task mapping solution. Figure 3 shows the

average worst-case makespan (WCET) of greedy mapping

and MMW-PM-based mapping on test instances of differ-

ent scales. In these simulations, since it is impossible to

evaluate the algorithms with all possible task hardening

solutions, each bar in the presented figures is obtained by

averaging the results through multiple runs (e.g., 29, 210,

211, and 212 for N = 10, 30, 50, and 100, respectively). As

shown in Fig. 3, we can observe that the proposed MMW-

PM-based mapping consistently outperforms greedy map-

ping on all cases, and the average improvements are

3.40%, 3.74%, 2.74%, and 2.54% for different problem

scales (N = 10, 30, 50, and 100, respectively).

4.2 Sensitivity of parameter l

Parameter l controls the randomness or greediness of the

GRLS operator; therefore, it provides a balance between

the two conflicting objectives. Figure 4 shows the evolu-

tionary curves in terms of IGD for MOMAs with different

values of l on middle-size test instances of N = 50. To

make the simulations more convincing, each group result is

averaged over 30 runs. As shown in the figure, the larger

the values of l, the faster the MOMA approximates the

Pareto optimal front in terms of IGD. But, a very large l,
i.e., l = 0.9, results in bad performances at the final stage;

this is because such strong greediness disturbs the

stochastic search of GA too much. On the contrary, a very

small l, i.e., l = 0.1, cannot accelerate the approximation

to the Pareto front significantly, but it indeed leads to good

results if granted a long runtime. Therefore, a moderate

value of l is preferred, e.g., l = 0.3 or 0.5 or 0.7, and the

performance of MOMA-based hardening is not very sen-

sitive to the values of l in this range, i.e., from 0.3 to 0.7.

We use l = 0.5 in the following simulations.

4.3 MOMA-based hardening versus MOEA-based
hardening

Figures 5, 6, 7, and 8 show the evolutionary curves of GD

and IGD for MOMA-based hardening and MOEA-based
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hardening on different test instances of different scales

(N = 10, 30, 50, and 100, respectively). To make the

simulations more convincing, each group result is averaged

over 30 runs. It can be seen that: (1) for small-scale

problem (e.g., N = 10), MOEA-based hardening performs

better thanMOMA-based hardening, and (2) for large-scale

problems (e.g., N = 30, 50 and 100), the mean IGD values

obtained by MOMA-based hardening are much lower than

those obtained by MOEA-based hardening on most test

instances, which is an indication of better approximation to
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the Pareto optimal front. The maximum reductions on IGD

values are about 82%, 75%, and 86%, and the average

reductions are about 64%, 70%, and 80% for different

problem scales (N = 30, 50, and 100, respectively). The

better approximation can be attributed to the introduction

of the problem-specific knowledge, so the effectiveness of

the proposed GRLS for task hardening is demonstrated.

We have performed statistical tests for the GD and IGD

values of MOEA and MOMA on each benchmark instance.

A two-tailed t test is conducted with a null hypothesis,

stating that there is no difference between two algorithms

in comparison. The null hypothesis is rejected if the p value

is smaller than the significance level a = 0.05. We find that

(1) there is no significant difference between the GD values

of MOEA and MOMA on all test instances, (2) the IGD

values of MOEA are statistically better than those of

MOMA on small-scale test instances (N = 10), and (3) the

IGD values of MOMA are statistically better than those of

MOEA on large-scale test instances (N = 30, 50, and 100).

4.4 A comprehensive comparison

Figures 9, 10, 11, and 12 show the Pareto fronts obtained

by multiple runs (e.g., 5 runs each) of both MOMA-based

hardening and MOEA-based hardening on test instances of

different scales (N = 10, 30, 50, and 100, respectively). In

each figure, the green circle represents the all ‘‘0’’ solution,

i.e., th = {0}N, that means all the tasks are hardened by

DMR, while the magenta star represents the all ‘‘1’’ solu-

tions, i.e., th = {1}N, that means all the tasks are hardened

by TMR. Obviously, all ‘‘0’’ solutions minimize the

number of cores according to Eq. (1), while all ‘‘1’’ solu-

tions can achieve the best performance in terms of worst-

case makespan. As shown in the figures, the near ‘‘0’’

solutions can be obtained by usingMOEA-based hardening

method, and we can approach the best performance with

fewer cores by using MOMA-based hardening method.

Another observation is that the results obtained by MOEA-

based hardening are all partiality located at the area where

Object1 (number of cores) is minimized, especially for

large-scale problems (e.g., N = 50 and 100). As analyzed
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above, this is because Object2 (WCET) involves a complex

nonlinear mapping from decision variables to fitness value,

while Object1 is just a linear combination of the values; the

select pressure on Object2 is too weak in the adopted

NSGA-II framework. By incorporating the proposed GRLS

operator, we can see MOMA-based hardening can cover

this absent area; this is because the proposed operator has

bias for minimizing WECT by using more space

redundancy (from DMR to TMR). We can obtain a well-

distributed Pareto front by combining the solutions of both

methods; thus, we can provide the designer with a highly

accurate set of solutions.
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Fig. 10 Pareto front obtained by multiple runs of MOEA and MOMA on test instances of N = 30 scale
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4.5 Hybrid fitness evaluation

As the time complexity (O(n3logn)) of the Hungarian-based

optimal MMW-PM method (Algorithm 2) is high, the

whole EA process is very time-consuming for large-scale

problems, e.g., more than 2 days for n = 100 test instances.

As a remedy, we propose to use hybrid fitness evaluation

method to balance the accuracy and time efficiency of

fitness evaluations. The key idea is to combine the optimal

and greedy MMW-PM methods in the fitness evolution

process (Jin et al. 2002; Jin 2005). Specifically, we use

single optimal MMW-PM evaluation for the whole popu-

lation in every D iterations, where D is called exact eval-

uation gap here. A few different values of exact evaluation

gap D = 1, 5, 10, and 25, are tested as shown in Figs. 13

and 14, where D is marked as ‘‘GAP.’’ The results show

that the runtime can be reduced significantly if the pref-

erence degradation is acceptable by the designers, e.g.,

D = 5.

After obtaining the Pareto front, it is an open problem of

how to make the final decision. From the point of view of

multi-core system design, the designer can choose a solu-

tion from the Pareto front based on the available hardware

resources. For example, if the required resources can be

satisfied, the designer can implement a high-performance

multi-core system with a low hardware cost. Alternatively,

the designer could select the knee point on the Pareto front.

It is important to note that the approximate Pareto front

found by our algorithm can inform the designer about

various trade-offs among conflicting objectives, which is

essential in making an informed final decision.

5 Conclusion

This paper aims at jointly task hardening and task mapping

for independent tasks on heterogeneous multi-core systems

in order to achieve low cost and high performance. In order

to minimize the worst-case makespan with optimal task

mapping, we show that the mapping problem can be

modeled as a min–max-weight perfect matching problem.

Then, we propose a polynomial time complexity heuristic

algorithm that works in a binary search framework and

employs Hungarian algorithm as a subroutine. As there is a

trade-off between the cost and performance in task hard-

ening, we model the task hardening problem as a multi-
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objective optimization problem. Since a MOEA can find a

partial Pareto front only, we propose a problem-specific

local search operator and incorporate it in the MOEA

framework. As shown by our simulation results, the pro-

posed MOMA method can cover the missing part of the

Pareto front, so we can obtain the entire Pareto front by

combining the solutions of MOEA and MOMA.

This work considers independent tasks (or parallel

tasks); we will extend this work to the tasks with data

dependents in our future work, e.g., sequential tasks.

Besides, we will consider dynamic task mapping, where

the frequencies of cores change with heat, etc.
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