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Abstract 

Classical models of decision-making do not incorporate for the role of influence and honesty that 

affects the process. This paper develops on the theory of influence in social network analysis. We 

study the role of influence and honesty of individual experts on collective outcomes. It is assumed that 

experts have the tendency to improve their initial predilection for an alternative, over the rest, if they 

interact with one another. It is suggested that this revised predilection may not be proposed with 

complete honesty by the expert. Degree of honesty is computed from the preference relation 

provided by the experts. This measure is dependent on average fuzziness in the relation and its 

disparity from an additive reciprocal relation. Moreover, an algorithm is introduced to cater for 

incompleteness in the adjacency matrix of interpersonal influences. This is done by analysing the 

information on how the expert has influenced others and how others have influenced the expert. 

Keywords: Honesty; group decision making; social network analysis; confined influence; predilection 

1. Introduction 

Group decision making (GDM) does not include the role of influence and honesty in the process of 

achieving final decisions. However, in real life, these factors may alter the process significantly and 

hence they need to be incorporated. In social networks, significant personalities have impact on 

choices of the masses. However, it is up to an individual to admit the intensity of influence and propose 

his revised opinion with complete honesty. 

GDM is a process in which collective choices are exhibited by a panel of experts. The aim of this process 

can be articulated as finding a satisfactory solution for a given problem. In a complex social 

environment, opinions are rarely in agreement. It is important for the experts of the group to interact 

and reason with each other about the choices that they have made. A more realistic model must 

encompass the changes that may take place in opinions of the judges as they interact and influence 

one another. 

At the beginning of the process of decision making, experts present their predilections for a particular 

alternative over others. But these initial opinions may undergo modifications after discussions due to 

social influence (Capuano, Chiclana, Fujita, Viedma, & Loia, 2018). In ( Qian, Liao, & Liu, 2017) a social 

influence is defined in terms of changes incurred by an individual after interaction with another 

individual or a group. In this paper we model the possible changes in experts' opinions after they 

express their predilections for one alternative over others based on how honest they are in the 

decision making process. 

We introduce the notion of honesty and its role in an influence based decision making problem. 

Researchers who explore a dispositional notion of honesty focus heavily on the identification of 

character traits that allow for the consistent prediction of behaviour. In this paper, we propose that 

intensity of predilection for one alternative over other alternatives may alter as experts interact and 
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influence one another. However, this does not ensure that they will present their revised predilections 

exactly as they are. Experts may misrepresent or withhold their predilections to manipulate the 

outcome or to preserve a certain outcome. There can be various other reasons to withhold the true 

information. In order to study this, we measure honesty of an expert based on the preference relation 

provided by them. We propose two indicators, average fuzziness of the relation and how adrift the 

relation is from additive reciprocity, to measure the degree of honesty of an expert. If a preference 

relation has less average fuzziness and is closer to an additive reciprocal relation then the expert has 

a higher degree of honesty on a scale of 0 to 1. Since honesty is a diagonal matrix, the iterative model 

remains convergent. 

Social influence network (SIN) builds on the idea that there exists interdependence among actors and 

their actions (John & Carrington, 2011; Stanley & Faust, 1994). The network structural environment 

may facilitate the individual actions or put constraints on them. Relationship among social bodies is 

studied in SIN accompanied with the patterns and implications of these relationships (Pérez, Mata, 

Chiclana, Kou, & Herrera-Viedma, 2016).A fuzzy adjacency matrix 𝑊 = (𝜔𝑖𝑗)𝑚×𝑚 summarizes the 

social influence network involving a set of experts 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}. In (DeGroot, 1974) it is 

suggested that the weights 𝜔𝑖1, 𝜔𝑖2, . . . , 𝜔𝑖𝑚 are directly chosen by the expert 𝑒𝑖  before she has 

information about preferences expressed by other experts. The expert assigns relative importance to 

the opinion of other experts, including herself. It should be noted that normalization property is to be 

satisfied by these weights ∑ 𝜔𝑖𝑗 = 1𝑚𝑗=1  for all 𝑖 ∈  {1,2, . . . , 𝑚}. This means that the influence of peers 

on each expert must add up to 1. In this paper, we study the problem when 𝑊 is not complete and 

some information has been confined by the expert. An expert may be somewhere between influenced 

or not influenced by others, which is why degree is assigned from the unit interval. But an expert may 

not be able to state the exact degree by which another expert has influenced his decision (Khalid & 

Beg, 2019). This incompleteness may arise due to many reasons. However, the available information 

states how other experts have influenced this expert and how this expert has influenced others on 

average. Since, the adjacency matrix of interpersonal influences has a row sum of 1, we derive an 

interval to which the missing influence degrees may belong to. We propose an algorithm that utilizes 

the information provided by this particular expert to estimate the confined information in 𝑊. This 

algorithm ensures that the normalization property is not disturbed. 

In influence based decision making, opinion of an expert is revised after each session of interaction 

with other experts. We have not used preference relations provided by experts in the model. 

Preference relations are first converted into matrices of predilections before using them in the 

influence and honesty based group decision model. So the focus is more on predilections than it is on 

the original preference relations. As discussed before, our model is affected by honesty of each expert. 

If degree of honesty of all experts is 1 then it means that all experts are completely honest in 

expressing their revised predilections for an alternative over the set. This is a specific case where the 

diagonal matrix of honesty becomes the identity matrix. If degree of honesty is closer to 0 then the 

expert has withheld the revised information and expresses a dishonest predilection for every 

alternative. We use the honesty induced ordered weighted averaging operator to aggregate the final 

opinions. The final opinions are then ranked to find the best possible alternative. 

The paper is arranged in the following manner: Section 2 presents preliminaries for the sequel. Section 

3 proposes treatment for incomplete interpersonal influences. Section 4 describes the role of honesty 

in modelling influence based decision making. This is followed by ranking of alternatives from the 

aggregated matrix of predilections. Finally, section 5 concludes the paper and proposes some future 

directions. 
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2. Preliminaries 

In this section, we summarize a few concepts that are required to understand the proposed work. In 

group decision modelling, a panel of experts decides which alternative is the best to solve a problem. 

Each expert provides a preference intensity for every possible pair of alternatives in a non-empty and 

finite set 𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛} . 
Definition 1: 

A fuzzy preference relation 𝑅 on 𝑋 is defined by the membership function 𝜇𝑅: 𝑋 ×   𝑋 →  [0,1] . The 

membership function 𝜇𝑅(𝑥𝑖, 𝑥𝑗) = 𝑟𝑖𝑗 is interpreted as follows: 

If 𝑥𝑖 is absolutely preferred over the alternative 𝑥𝑗 when 𝑟𝑖𝑗 = 1. 𝑥𝑗 is absolutely preferred over the 

alternative 𝑥𝑖 when 𝑟𝑖𝑗 = 1.  𝑥𝑖 is preferred over 𝑥𝑗 when 𝑟𝑖𝑗 ∈ (0.5, 1].  𝑥𝑗 is preferred over 𝑥𝑖  when 𝑟𝑗𝑖 ∈ (0.5, 1].  There exists indifference between the alternatives 𝑥𝑖 and 𝑥𝑗 when 𝑟𝑖𝑗 = 0.5. 

A fuzzy preference relation 𝑅 is additive reciprocal if it satisfies the property 𝑟𝑖𝑗 + 𝑟𝑗𝑖 = 1 for all  𝑖, 𝑗 ∈ {1,2, . . . , 𝑛}  (Bezdek, , Bonnie , & Spillman, 1978; Hannu, 1981). Moreover, for all   𝑖, 𝑗, 𝑘 ∈ {1,2, . . . , 𝑛}, 𝑖 ≠  𝑗 the fuzzy preference relation 𝑅 satisfies additive consistency or additive transitivity 

if it satisfies 𝑟𝑖𝑗 = 𝑟𝑖𝑘 + 𝑟𝑘𝑗 − 0.5  (Herrera-Viedma, Herrera, Francisco, & Luque, 2004; Tanino, 1984) 

We define ordered weighted averaging operator OWA (Yager, 1988) quantifier guided OWA (Yager, 

Quantifiers in the formulation of multiple objective decision functions, 1983) and Induced ordered 

weighted averaging operators (IOWA) operators in the following definition. The main difference 

between an OWA and an IOWA operator is the re-ordering step of the argument variable. In OWA 

operators, it is the magnitude of the values to be aggregated that determine the reordering step 

whereas in the case of IOWA operator an order-inducing vector is used to induce the reordering. These 

aggregation operators will be used in the aggregation phase. 

Definition 2: 

An OWA operator of dimension 𝑛 is a mapping 𝜙: 𝑅𝑛 →  𝑅 

 with associated weights 𝑊𝑂𝑊𝐴 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 such that 𝑤𝑖 ∈  [0,1], ∑ 𝑤𝑖𝑛𝑖=1 = 1,  

 𝜙(𝑎) = 𝜙(𝑝1, 𝑝2, . . , 𝑝𝑛) =∑𝑤𝑖𝑛
𝑖=1 𝑝𝜎𝑖 

 where 𝜎𝑖: {1,2, . . , 𝑛} → {1,2, . . , 𝑛} is a permutation function such that 𝑝𝜎𝑖 ≥ 𝑝𝜎𝑖+1 for all 𝑖 =1,2, . . . , 𝑛 − 1. These weighting vectors can be obtained using the soft majority concept fuzzy majority 

by using quantifier guided aggregation given by Yager (Yager, Quantifiers in the formulation of 

multiple objective decision functions, 1983). We use the linguistic quantifier (Zadeh, 1983) "necessary 

for good solution" in the aggregation phase. We use regular increasing monotone (RIM) quantifier 𝑄 

to compute the weights using the following expression: 

                                                                 𝑤𝑖 = 𝑄 (1𝑛) − 𝑄 (𝑖−1𝑛 ) 

A generalization of OWA operator is the IOWA operator (Mitchell & D, 1997).An IOWA operator of 

dimension 𝑛 is a mapping ϕ𝐼: 𝑅 × 𝑅 → 𝑅 with associated set of vectors 𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 such 

that 𝑤𝑖 ∈   [0,1], ∑ 𝑤𝑖𝑛𝑖=1 = 1 such that 
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𝜙𝐼(< 𝑢1, 𝑝1 >, . . . , < 𝑢𝑛, 𝑝𝑛 >) =∑𝑤𝑖𝑝𝜎𝑖𝑛
𝑖=1  

where 𝜎 is a permutation function 𝑝𝜎𝑖 ≥ 𝑝𝜎𝑖+1  for all 𝑖 ∈  {1,2, . . , 𝑛 − 1 }. The vector of values (𝑢1, 𝑢2, . . . , 𝑢𝑛), is the order inducing vector whereas {𝑝1, 𝑝2, . . . , 𝑝𝑛} are the values of the argument 

variable. Here, the reordering of {𝑝1, 𝑝2, . . . , 𝑝𝑛} is induced by the reordering of (𝑢1, 𝑢2, . . . , 𝑢𝑛),  which 

is based on their magnitude (Yager, Induced aggregation operators, 2003; Yager & Dimitar, Induced 

ordered weighted averaging operators, 1999). 

Now we define importance IOWA (I-IOWA) operator (Yager, Quantifiers in the formulation of multiple 

objective decision functions, 1983). This method associates an importance degree to each expert 

(Chiclana, Herrera-Viedma, Francisco , & Alonso, 2007). The importance degree of an expert 𝑖 is 𝑢𝑖 ∈[0, 1]. An expert with no importance is assigned a weight of zero and for some expert, 𝑢𝑖 = 1 if the 

importance is the highest. For quantifier guided aggregation, a procedure to evaluate overall 

satisfaction of 𝑄 important criteria by alternative 𝑥 is presented in (Yager, Quantifiers in the 

formulation of multiple objective decision functions, 1983), where 𝑄 is a linguistic quantifier. Once 

satisfaction values have been ordered, the associated OWA weighting vector is calculated using 𝑄 as 

defined the following definition. 

Definition 3: 

Let 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} be a non-empty set of 𝑚 experts and 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} denote the vector 

associated to their importance where 𝑢𝑖 ∈  [0,1]. Then, an I-IOWA operator 𝜙𝐼𝐼 of dimension 𝑛 has 𝑈 

as the order inducing vector and the associated set of weights 𝑊 = (𝑤1, . . . , 𝑤𝑛) defined as follows: 

𝜙𝐼𝐼(< 𝑢1, 𝑝1 >, . . . , < 𝑢𝑛, 𝑝𝑛 >) =∑𝑤𝑖𝑛
𝑖=1 𝑝𝜎(𝑖) 

with 𝑤𝑖 = 𝑄 (𝑆(𝑖)𝑆(𝑛)) − 𝑄 (𝑆(𝑖−1)𝑆(𝑛) ) where 𝑆(𝑖) = ∑ 𝑢𝜎(𝑠)𝑖𝑠=1  where 𝜎 is a permutation as defined above. 

Definition 4: 

 

(Giles, 1976; Siegfried, 1983) Let ∇∶  [0, 1] × [0, 1] →  [0, 1]  denote a t-conorm, then for 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ [0, 1] 
i. ∇(𝑥, 𝑦) = ∇(𝑦, 𝑥) (commutativity) 

ii. ∇(𝑥, 𝑦) ≤ ∇(𝑥, 𝑧) if and only if 𝑦 ≤  𝑧 (monotonicity) 

iii. ∇(𝑥, ∇(𝑦, 𝑧)) = ∇(∇(𝑥, 𝑦), 𝑧) (associativity) 

iv. ∇(𝑥, 0) = 𝑥 

An example of a tconorm that is used in later sections is probabilistic tconorm defined as ∇(𝑥, 𝑦) =𝑥 + 𝑦 − 𝑥𝑦. 
3. Estimation of confined interpersonal influences 

Human beings are embedded in social networks that affect their lives in different ways. Social 

networks are elaborate, complex and in fact, ubiquitous. It is important to understand how they are 

formed, what they are and how they affect us.  In real life problems, decision makers form their 

opinions in a complex interpersonal environment in which preferences change due to social influence. 
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Liang et al ( Qian, Liao, & Liu, 2017) define social influence as changes in individuals' thoughts, feelings, 

attitudes or behaviours resulting from interaction with another individual or a group. In (DeGroot, 

1974; Friedkin & Johnsen, 1999) it was suggested that in social influence network (SIN), influence can 

be modelled with the help of a directed graph among the experts in set 𝐸. According to this, each arc 

between 𝑒𝑖  and 𝑒𝑗  has a weight 𝑤𝑖𝑗 ∈  [0,1] representing the intensity of influence of the 𝑗 − 𝑡ℎ 

expert on the 𝑖 − 𝑡ℎ expert. This is represented by the adjacency matrix  𝑊 = (𝜔𝑖𝑗)𝑚×𝑚 .  The weights 𝜔𝑖1, … , 𝜔𝑖𝑚  are chosen by the expert 𝑒𝑖 before knowing the preferences of other experts. These 

weights satisfy the normalization property so that influence of peers on each expert sums up to 1. In 

this section, we will consider the situation when 𝑊  is incomplete. 

To start with, the fuzzy preference relations provided by the experts are converted into matrices of 

predilections. The initial opinion of the experts on a given alternative is collected in an 𝑚 ×  1 vector 

denoted as 𝑦(1) . After interacting with the group, due to interpersonal influence, the opinion may 

change to 𝑦(2) = 𝑊 𝑦(1). Similarly, when each experts knows the opinions of other experts in the 

group, it is probable that their own opinion will change as well. The expert's opinion after time 𝑡 is 

given as follows: 𝑦(𝑡) = 𝑊𝑦(𝑡−1) 
 Consider the following matrix of interpersonal influence among two experts as  𝑊 = (0 11 0) 

 Suppose that expert 1 has initial predilection for one solution over others with a degree of 0.6 whereas the second expert states it as 0.8. Accordingly, 𝑦(2) = (0 11 0) (0.60.8) = (0.80.6) 

            Whereas,  𝑦(3) = (0 11 0) (0.80.6) = (0.60.8) 

  This results in a never ending cycle and because of such a choice of 𝑊 the iterative scheme will not 

converge. This problem has been tackled in (DeGroot, 1974). It is suggested that choice of 𝑊  is such 

that there exists a positive integer 𝑡 for which 𝑊(𝑡) is positive. Because of this condition, the opinions 

will converge to a value. 

 Friedkin et al (Friedkin & Johnsen, 1999) suggested to include susceptibility of each expert to the 

interpersonal influence as 𝑎𝑖𝑖 = 1 − 𝜔𝑖𝑖 ∈  [0,1]. The closer the degree of 𝑎𝑖𝑖  is to 1, the more 

susceptible the expert is to interpersonal influence. This helps in forming the matrix of susceptibility 𝐴 = 𝑑𝑖𝑎𝑔(𝑎11 , . . . , 𝑎𝑚𝑚).  The improved opinions are obtained iteratively as 

                                                               𝑦(𝑡) = 𝐴𝑊𝑦(𝑡−1) + (𝐼 − 𝐴)𝑦(1)                                    (1) 

where 𝐼 is an 𝑚 ×  𝑚 identity matrix. Here, opinion of an expert at time 𝑡 is stated as a linear 

combination of his initial opinion and the influenced opinion at the time 𝑡 − 1. 

For this iteration to reach an equilibrium, 𝐼 − 𝐴𝑊 must be non-singular. That is, if 𝑦(∞) = lim𝑡→∞𝑦(𝑡) 
exists, then,  

                                                              𝑦(∞) = (𝐼 − 𝐴𝑊)−1(𝐼 − 𝐴)𝑦(1)                                    (2) 
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Note that equation (1) can be re-written as 

𝑦(𝑡) = (𝐴𝑊𝑦(𝑡−1) + (𝐼 − 𝐴)∑(𝐴𝑊)𝑖) 𝑦(1)  𝑡−2
𝑖=0  

= (𝐴𝑊)(𝑡−1)𝑦(1) + (𝐼 − 𝐴)(𝐴𝑊)(𝑡−2)𝑦(1) +⋯+ (𝐼 − 𝐴)(𝐴𝑊)𝑦(1) + (𝐼 − 𝐴)𝑦(1) 
Note that from the second term onwards, it is a geometric series that is bounded and monotonic 

hence convergent. In this section, we study the problem where an expert withholds the intensity with 

which he is influenced by other experts. Instead, he displays an interval in which this value lies. Using 

the property of the matrix 𝑊, we complete the missing degrees of interpersonal influences. 

Example 1: 

Consider a panel of four experts 𝐸 = {𝑒1 = 𝐹𝑎𝑖𝑠𝑎𝑙 , 𝑒2 = 𝐴𝑚𝑦 , 𝑒3 =  𝑀𝑎𝑎𝑧 , 𝑒4 = 𝐽𝑢𝑛𝑎𝑖𝑛} in a 

household. After an interactive session, Faisal knows the extent to which he is influenced by his wife 

Amy, but he has withheld information about the degree of influence that his children Maaz and Junain 

has made on him. The situation is summarized in the adjacency matrix of interpersonal influences 

among this family as follows: 

𝑊 = (0.3 0.2 0.3 0.20 0.7 0.2 0.10.30.2 −0.3 0.10.4 −0.1) 

Faisal may be indecisive or he may be withholding this information because of some reason. This is 

represented graphically in diagram 1. The dashed line represents withheld information. 

 

We propose an algorithm with the help of which withheld interpersonal influence can be estimated 

by using the influence that the third expert has had on other experts, and the average degree of 

influence that other experts have on this expert. In the following, an algorithm is designed to estimate 

the withheld or missing degrees of interpersonal influences. 
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If degrees of interpersonal influences 𝜔𝑖𝑘′, 𝑘′ ≠ 𝑖 and 𝜔𝑖𝑙′ , 𝑙′ ≠ 𝑖 exhibiting influence of experts 𝑘′ and 𝑙′ on expert 𝑖 are withheld, then we can estimate them using the following algorithm. 

Algorithm: 

 Case 1: Suppose that (∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2 ≥  4(∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 ) , then if, 

 Case (1a): max{∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1 , ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 } = ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1   find, 

𝜔𝑖𝑙′ = max{  
  (1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )+√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12  ,
(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )−√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12   }  

  
  

And, 

𝜔𝑖𝑘′ = min{  
  (1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )+√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12  ,
(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )−√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12   }  

  
  

Case (1b): Otherwise if, max {∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1 , ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 } = ∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1   then find, 

 𝜔𝑖𝑘′ = min{  
  (1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )+√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12  ,
(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )−√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12   }  

  
 and 

  𝜔𝑖𝑙′ = min{  
  (1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )+√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12  ,
(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )−√(1−∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2−4∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−12   }  

  
 

Case 2: On the other hand, if (∑ 𝜔𝑖𝑡𝑡=1,𝑡≠𝑙′,𝑘′ )2 <  4 (∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 ) then there are two 

options that need to be considered.  

Case (2a): Firstly if, max{∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘=𝑘′𝑚−1 , ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 } = ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1   , then 𝜔𝑖𝑙′ = 1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′  and 𝜔𝑖𝑘′ = 0 
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Case (2b): Whereas if, max {∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚−1 , ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 } = ∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚−1  then 𝜔𝑖𝑘′ = 1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′  

and 𝜔𝑖𝑙′ = 0 

Note that if expert 𝑖 does not display, or is indecisive of the degree to which he is influenced by just 

one other expert 𝑘′ then this problem is easier to handle. What we are suggesting is that suppose 𝜔𝑖𝑘′ , 𝑘′ ≠ 𝑖 is unknown, then it can easily be determined as 1 − ∑ 𝜔𝑖𝑗𝑚𝑗=1,𝑗≠𝑘′ . However, if expert 𝑖 
has has more than one unknowns in the row of an adjacency matrix, then following theorem proves 

that the unknowns can be determined using the proposed algorithm. 

Theorem 1:  

 If degrees of interpersonal influences 𝜔𝑖𝑘′ , 𝑘′ ≠ 𝑖  and 𝜔𝑖𝑙′ , 𝑙′ ≠ 𝑖 exhibiting influence of experts 𝑘′ and 𝑙′ on expert 𝑖 are hidden but all  𝜔𝑖𝑘 , 𝑘 ≠  𝑘′  and 𝜔𝑖𝑙 , 𝑙 ≠  𝑙′ are known then  𝜔𝑖𝑘′ ∈ [0, 1 −∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ] and 𝜔𝑖𝑙′ ∈  [0, 1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ]  can be estimated using algorithm 1. Moreover, 

the estimated values do not void the normalization property. 

Proof: 

If expert 𝑖 is unable to express the degree of influence of just one expert say 𝑘′ on him, then it can 

easily be estimated as 𝜔𝑖𝑘′ = ∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′,𝑘′ . Also, the 𝑖 − 𝑡ℎ row will satisfy ∑ 𝜔𝑖𝑘𝑘𝑖=1 = 1.  We 

assume here that at most one influence value is withheld in one column. 

To prove the theorem, we have two unknown values in a row that satisfy the property 

                                               𝜔𝑖𝑘′ +𝜔𝑖𝑙′ = 1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′                                                  (3) 

Suppose that ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ < 1 because otherwise if ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ = 1 then the missing influence 

values 𝜔𝑖𝑙′  and 𝜔𝑖𝑘′ = 0. Also, consider the average of the column sum that has missing influence 

values, 
∑ 𝜔𝑖𝑘 𝑘𝑖=1,𝑘≠𝑘′  𝑚−1  and 

∑ 𝜔𝑖𝑙 𝑘𝑖=1,𝑙≠𝑙′,𝑘′  𝑚−1  . This depicts that on average, the influence of the 𝑘 − 𝑡ℎ expert 

on all the other experts is 
∑ 𝜔𝑖𝑘 𝑘𝑖=1,𝑘≠𝑘′  𝑚−1 . Similarly, expert 𝑙 − 𝑡ℎ expert has influenced other experts on 

average by an intensity of  
∑ 𝜔𝑖𝑙 𝑘𝑖=1,𝑙≠𝑙′  𝑚−1 . The following formula is based on the fact that since ∑ 𝜔𝑖𝑗𝑛𝑗=1 =1, therefore, the unknowns 𝜔𝑖𝑘′ and 𝜔𝑖𝑙′  are inversely proportional. 

                                                     𝜔𝑖𝑘′𝜔𝑖𝑙′ = ∑ 𝜔𝑖𝑘 𝑘𝑖=1,𝑘≠𝑘′  𝑚−1 ∑ 𝜔𝑖𝑙 𝑘𝑖=1,𝑙≠𝑙′  𝑚−1                               (4) 

Suppose,  𝜔𝑖𝑘′𝜔𝑖𝑙′ ≠ 0 as we prove Case 1. 

There are two cases to be discussed. According to case (1a) of Algorithm 1, if 

max{∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚 − 1 ,∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚 − 1 } = ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙≠𝑙′𝑚 − 1  

then find 𝜔𝑖𝑙′ using equations 2 and 3, 

𝜔𝑖𝑙′ + 1𝜔𝑖𝑙′ (∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 1 ) = 1 − ∑ 𝜔𝑖𝑡𝑚
𝑡=1,𝑡≠𝑙′,𝑘′  

which implies that 
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𝜔𝑖𝑙′2 + ∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 1 = 𝜔𝑖𝑙′ (1 − ∑ 𝜔𝑖𝑡𝑚
𝑡=1,𝑡≠𝑙′,𝑘′ ) 

That is, 

𝜔𝑖𝑙′2 −𝜔𝑖𝑙′ (1 − ∑ 𝜔𝑖𝑡𝑚
𝑡=1,𝑡≠𝑙′,𝑘′ )+ ∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 1 = 0 

which implies that 

𝜔𝑖𝑙′ = max
{  
  
  (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 ,
 (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 }  

  
  

 

and the smaller value belongs to 𝜔𝑖𝑘′. That is, 

𝜔𝑖𝑘′ = min
{  
  
  (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 ,
 (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 }  

  
  

 

 

  Similarly, according to case (1b) of Algorithm 1, if 

max {∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚 − 1 ,∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚− 1 } = ∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚 − 1  

then find 𝜔𝑖𝑘′  using the above two equations as 

𝜔𝑖𝑘′ + 1𝜔𝑖𝑘′ (∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚−1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚−1 ) = 1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′    

which implies that  

𝜔𝑖𝑘′2 − (1− ∑ 𝜔𝑖𝑡𝑚
𝑡=1,𝑡≠𝑙′,𝑘′ )𝜔𝑖𝑘′ + ∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚 − 1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚 − 1 = 0 

This means that,  
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𝜔𝑖𝑘′ = max
{  
  
  (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 ,
 (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 }  

  
  

 

And  

𝜔𝑖𝑙′ = min
{  
  
  (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 ,
 (1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ ) + √(1 − ∑ 𝜔𝑖𝑡𝑚𝑡=1,𝑡≠𝑙′,𝑘′ )2 − 4∑ 𝜔𝑖𝑘  𝑘𝑖=1,𝑘≠𝑘′  𝑚 − 1 ∑ 𝜔𝑖𝑙  𝑘𝑖=1,𝑙≠𝑙′  𝑚 − 12 }  

  
  

 

It is easy to see that the row sum will be 1 in case 1a and 1b. Also, if case 2a or 2b is followed, then 

again, the missing influence values will be estimated and the row sum will be equal to 1. 

In figure 1, we note that the third expert, Faisal, has withheld information on degree to which he is 

influenced by his children, expert 2 and expert 4. In this case, we already know that that both the 

unknown degrees belong to the interval (0, 0.6]. According to the algorithm, we see that 

  

1 − ∑ 𝜔𝑖𝑡𝑚
𝑡=1,𝑡≠𝑙′,𝑘′ ≥ 4(∑ 𝜔𝑖𝑘𝑘𝑖=1,𝑘≠𝑘′𝑚 − 1  ∑ 𝜔𝑖𝑙𝑘𝑖=1,𝑙=𝑙′𝑚 − 1 ) 

Therefore, the example falls under case 1 of the algorithm. Here, note that max {∑ 𝜔𝑖24𝑖=1,𝑖≠33 , ∑ 𝜔𝑖44𝑖=1,𝑖≠33  } = ∑ 𝜔𝑖24𝑖=1,𝑖≠33  

Therefore, 𝜔32 = 0.492 and 𝜔34 = 0.108. The reason for allocating both values to the unknowns in 

this manner is because on average, the second expert has influenced the experts more as compared 

to the fourth expert. Because of this information, we claim that the greater value should be 𝜔32 inferring that the second expert has influenced the third expert with a greater intensity. 

4. Role of honesty in modelling influence 

 Once the confined interpersonal influences are estimated, we work our way towards the influence 

model. In this section, we modify the recursive definition of the influence process by introducing the 

degree of honesty of the experts. Consider ℘ to be the set of all preference relations.  Then 𝑝𝑗 , 𝑗 ∈{1,2,… ,𝑚} ∈ ℘ is the fuzzy preference relation provided by the 𝑗 − 𝑡ℎ expert. An important aspect 

of this iterative model is the diagonal matrix of honesty denoted as ℋ. Honesty of an expert is 

calculated from the preference relation provided by the expert. It is measured as a function of average 

fuzziness in the matrix and how adrift this matrix is from an additive reciprocal preference relation. 

That is, ℋ = ∇(𝔽̅, 𝐴𝑅̅̅ ̅̅ ) where 𝔽̅ is an 𝑚 ×  𝑚 diagonal matrix defined as𝔽̅ = 𝑑𝑖𝑎𝑔(𝔽(𝑃1),… , 𝔽(𝑃𝑚)) 
where average fuzziness 𝔽:℘ → [0, 1] is defined as follows 
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𝔽(𝑃𝑘) = 1 − ∑ 𝐹(𝑎𝑖𝑗𝑘 )𝑛(𝑛 − 1)𝑛
𝑖≠𝑗,𝑖,𝑗=1  

Where 𝐹: [0, 1] → [0, 1] is defined in the following equation.  

                                              𝐹(𝑎𝑖𝑗𝑘 ) = 1 − {  
  𝑎𝑖𝑗𝑘0.5−𝜖 𝑖𝑓 𝑎𝑖𝑗𝑘 ∈ [0, 0.5 − 𝜖)1  𝑖𝑓 𝑎𝑖𝑗𝑘 ∈ [0.5 − 𝜖, 0.5 + 𝜖)𝑎𝑖𝑗𝑘−1𝜖−0.5 𝑖𝑓 𝑎𝑖𝑗𝑘 ∈ (𝜖 + 0.5, 1]                                 (5) 

The idea is that if the preference values are closer to 0.5, then the matrix has more fuzziness. If all 

values provided by an expert in his preference relation are 0.5 then it means that there is maximum 

fuzziness in his preference relation which in turn reflects in the degree of honesty with which he has 

proposed his preferences. But, this must also depend on the decision problem under consideration. 

For instance, if all experts in the panel express preferences closer to 0.5 then there may be ambiguity 

in the decision problem. This is the reason why 𝜖 ∈  [0, 1] is introduced in the function. It varies 

according to how the panel collectively behaves. If there is ambiguity in the decision problem, the 

preference values provided by all experts may be closer to 0.5 and hence the function proposed above 

is dependent on it and will vary from problem to problem. We define  𝜖 as the average dispersion of 

all preference values from 0.5. 

𝜖 = 0.5 −∑ ∑ |𝑎𝑖𝑗 − 0.5|𝑚𝑛(𝑛 − 1)𝑛
𝑖≠𝑗,𝑖,𝑗=1

𝑚
𝑘=1  

 It needs to be noted that 𝜖   will vary depending on how all experts have responded to a decision 

problem. Suppose we have a 3 by 3 preference relation comprising of 0s and 1s as the non-diagonal 

entries, then  𝜖 = 0.5 − 0.5(6)3(2) = 0. Accordingly, 𝐹(𝑎𝑖𝑗) will be 1, indicating that there is no fuzziness 

in the choices of the expert. 

 Whereas, if all non-diagonal entries in the supposed matrix are 0.5 then 𝜖 = 0.5 − 0.5(6)3(2) = 0. 

Accordingly, 𝐹(𝑎𝑖𝑗) will be 0 indicating that there is maximum fuzziness in the choices of the expert. 

Now we define the second function 𝐴𝑅̅̅ ̅̅ . It is dependant on how different the preference relation is 

from an additive transitive preference relation  𝐴𝑅̅̅ ̅̅ = 𝑑𝑖𝑎𝑔(𝐴𝑅̃(𝑃1), … , 𝐴𝑅̃(𝑃𝑚)) 
where, 

𝐴𝑅̃(𝑃𝑘) = 1 − 2 ∑ 𝐴𝑅(𝑎𝑖𝑗𝑘 , 𝑎𝑗𝐼𝑘 )𝑛(𝑛 − 1)𝑛
𝑖≠𝑗,𝑖,𝑗=1  

Here 𝐴𝑅: [0, 1] × [0, 1] →  [0, 1] is defined as 𝐴𝑅(𝑎𝑖𝑗𝑘 , 𝑎𝑗𝑖𝑘) = |𝑎𝑖𝑗𝑘 − 𝑎𝑗𝑖𝑘 + 1|. 
 For the 𝑘 − 𝑡ℎ expert, this measures the distance between the sum of 𝑎𝑖𝑗  and 𝑎𝑗𝑖   from 1. 

Again, we emphasize that preference relation has more average fuzziness 𝔽 ∈ [0, 1] if the value is 

closer to 0. Similarly, fuzziness in the preference relation is less if it is closer to 1. Moreover, a 

preference relation is farther from being an additive reciprocal relation if 𝐴𝑅 ∈  [0, 1] is closer to 1 

and it is closer to an additive reciprocal relation if the value is closer to 0. 
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Now we define the honesty function ℋ = 𝑑𝑖𝑎𝑔(ℎ1, … , ℎ𝑚) = ∇(𝔽̅, 𝐴𝑅̅̅ ̅̅ ) by using the probabilistic t-

conorm defined in section 2. Here, ℎ𝑖 = ∇(𝔽(𝑃𝑖), 𝐴𝑅̃(𝑃𝑖)). We elaborate the calculation of honesty 

of an expert by finding average fuzziness and distance to additive reciprocity of his preference relation 

in the following example. 

Example 2:  Suppose that there are four options 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} for investing a fixed amount of 

money, where, 𝑥1 = buying a house, 𝑥2  = investing in Silicon valley, 𝑥3 = invest in sports car rental 

business, 𝑥4 = invest in airplane ownership. A panel of experts 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}  have proposed 

their preference relations 𝑃1, 𝑃2, 𝑃3, 𝑃4 over 𝑋 as follows. These preference relations will be converted 

into matrices of predilections later. 

𝑃1 = 𝑃3 = (0.5 0.4 0.6 0.90.7 0.5 0.5 0.30.20.3 0.60.2 0.50.3 0.10.5),  𝑃2 = (0.5 0.3 0 0.20.1 0.5 1 0.30.20.8 00.4 0.50.2 0.60.5) and  

𝑃4 = (0.5 0.9 0.8 0.40.1 0.5 0.7 0.90.20.6 0.30.1 0.50.4 0.60.5)    

In this example, we calculate 𝜖 = 0.25. Accordingly, 

                                              𝐹(𝑎𝑖𝑗𝑘 ) = 1 − { 4𝑎𝑖𝑗𝑘 𝑖𝑓 𝑎𝑖𝑗𝑘 ∈ [0, 0.25)1  𝑖𝑓 𝑎𝑖𝑗𝑘 ∈ [0.25, 0.75)−4(𝑎𝑖𝑗𝑘 − 1) 𝑖𝑓 𝑎𝑖𝑗𝑘 ∈ (0.75, 1]  
We calculate, 𝔽(𝑃1) = 𝔽(𝑃3) = 0.08, 𝔽(𝑃2) = 0.28  and 𝔽(𝑃4) = 0.233   

Accordingly, 𝔽̅ = 𝑑𝑖𝑎𝑔(𝔽(𝑃1), 𝔽(𝑃2), 𝔽(𝑃3), 𝔽(𝑃4)). That is, 

𝔽̅ = (0.08 0 0 00 0.28 0 000 00 0.080 00.233) 

Similarly, 𝐴𝑅̃(𝑃1) = 0.7167, 𝐴𝑅̃(𝑃2) = 0.6834, 𝐴𝑅̃(𝑃3) = 0.7167, 𝐴𝑅̃(𝑃4) = 1. Consequently, 

𝐴𝑅̅̅ ̅̅ = (0.7167 0 0 00 0.6834 0 000 00 0.71670 01)  
With the help of these matrices, we use the t-conorm to state the diagonal matrix of honesty as 

follows. 

ℋ = (0.739 0 0 00 0.772 0 000 00 0.7390 01)  
If all experts are honest, then the diagonal entries in ℋ will be 1. This is a specific case, and it will keep 

the model as it originally is because ℋ will be an identity matrix. After interactions, the interpersonal 

influences revise the initial opinions and since the expert is honest, he states the revised opinion as is. 

However, in a more general case, if experts are not completely honest, then the revised opinions are 
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not exhibited as they are but they are misinformed. This affects the revised opinions in each iteration. 

The expert wants the group to believe that their opinion is different from what it really is. 

We now reform the iterative method 𝑦(𝑡) = 𝐴𝑊𝑦(𝑡−1) + (𝐼 − 𝐴)𝑦(1), (for 𝑡 = 2,3, . . . ), that is used 

to model the process of influence among experts belonging to the social network, to also incorporate 

for honesty. The idea is that when an expert undergoes the process of discussion and reforms his 

opinion because of interpersonal influence, he may not express it exactly as it has been reformed. This 

information may be changed due to various reasons. 

                                                                 𝑥(𝑡) = 𝐴𝑊𝑦(𝑡−1) + (𝐼 − 𝐴)𝑦(1)                         (7) 

                                                                  𝑦(𝑡) = ℋ𝑥(𝑡)                                                          (8) 

  for 𝑡 = 2,3, … where 𝑦(1)is an 𝑛 × 1column vector of experts' initial opinion in a decision model. 𝑊 

is an 𝑛 ×  𝑛 matrix of interpersonal influences such as 𝜔𝑖𝑗 ∈  [0, 1] and ∑ 𝜔𝑖𝑗𝑛𝑗=1 = 1 . Also, 𝐴 =𝑑𝑖𝑎𝑔(𝑎11, . . . 𝑎𝑛𝑛)𝑛×𝑛 where 𝑎𝑖𝑖 ∈  [0,1], 𝑎𝑖𝑖 = 1 −𝜔𝑖𝑖 , is the diagonal matrix of experts' 

susceptibility to interpersonal influences on the problem. Note that, 𝑥(𝑡) is the 𝑛 × 1 column vector 

of the experts' revised opinion at time 𝑡 whereas, 𝑦(𝑡) is the 𝑛 × 1 column vector of experts' exhibition 

of their reviewed opinion at time 𝑡. 
It is easy to see that this recursive definition of honesty based influence process is convergent. Assume 

that the process reaches equilibrium eventually and that 𝐼 −ℋ𝐴𝑊 is non-singular. We have, lim𝑡→∞𝑦(𝑡) = 𝑦(∞) = 𝑘 <  ∞ , so the equation is rewritten as, 𝑦(𝑡) = ℋ𝑥(𝑡) 𝑦(𝑡) = ℋ(𝐴𝑊𝑦(𝑡−1) + (𝐼 − 𝐴)𝑦(1)) 
                                                   lim𝑡→∞𝑦(𝑡) = lim𝑡→∞ (ℋ(𝐴𝑊𝑦(𝑡−1) + (𝐼 − 𝐴)𝑦(1)))  𝑦(∞) = ℋ(𝐴𝑊𝑦(∞) + (𝐼 − 𝐴)𝑦(1)) (𝐼 −ℋ𝐴𝑊)𝑦(∞) = ℋ(𝐼 − 𝐴)𝑦(1) 
Where 𝑉ℋ = (𝐼 −ℋ𝐴𝑊)−1ℋ(𝐼 − 𝐴) represents the total interpersonal effects that transform the 

initial opinion along with the role of honesty on transforming the actual revisions into final ones. 

We now portray how to model influence by incorporating the role of honesty in a decision model. We 

base this model basically on two steps. The first step is to transform each preference relation into 

matrix exhibiting predilection of each alternative over others. We do not alter or improve the given 

preference relation because we do not want to void originality of the data provided by the decision 

makers. This provides us with 𝑚 matrices, each representing predilection of expert 𝑖 on each 

alternative over the other 𝑛 − 1 alternatives. This is represented as 

𝜌𝑖 = (𝑝𝑖1.𝑝𝑖𝑛) , 𝑖 = 1,2, . . , 𝑚 

This represents the predilection of expert 𝑖 over all the alternatives. We now model how these choices 

evolve as they interact with one another. Moreover, we assert that honesty plays a vital role when it 

comes to deliverance of opinions. Before the expert expresses his predilections for a certain 

alternative over all the other alternatives, he may choose to alter the information. Experts may differ 

with one another, but with the exchange of dialogues, they mend and improve their wants. However, 
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experts who are honest, portray their predilections as they are but those that are not, make the 

amendments that they deem necessary before expressing their revisions publicly. Since, experts are 

providing preference relations on 𝑛 alternatives, the matrices of predilections are column vectors of 

order 𝑛 ×  1 and hence the model is applied to each alternative. So, for 𝑖 = {1,2, . . , 𝑛},  𝑦𝑥𝑖(∞) = 𝑉ℋ(𝑦 (1))  
We transform the information provided by the decision maker so that it can be used in the influence 

model. Therefore, (𝑦 𝑥𝑖(1))   represents the initial opinion of the experts over alternative 𝑥𝑖. Hence, 

relevant information is gathered in the following column vector. 

𝑦𝑥𝑖(1) = (𝑝1𝑖.𝑝𝑚𝑖) , 𝑖 = 1,2, . . , 𝑛 

We compute 𝑉ℋ = (𝐼 −ℋ𝐴𝑊)−1ℋ(𝐼 − 𝐴) and apply the honesty based influence model, the final 

opinion are obtained as follows. 

𝑦𝑥𝑖(∞) = (𝑦1𝑖(∞).𝑦𝑚𝑖(∞)) , 𝑖 = 1,2, . . , 𝑛 

This information is used to obtain the final vectors for each expert 

𝜌𝑖(∞) = (𝑦𝑖1(∞).𝑦𝑖𝑛(∞)) , 𝑖 = 1,2, . . , 𝑚 

For illustration, we consider example 2. The first step is to transform the preference relations into 

matrices of predilections. For this purpose, we measure the dominance degree by using the weighting 

vector 𝑊𝑂𝑊𝐴 = (0.5,0.21,0.16,0.13), calculated with the linguistic quantifier "most of" defined as (𝑟) = 𝑟12  . 
𝜌1 = 𝜌3 = (0.7080.5740.450.387), 𝜌2 = (0.3450.660.4370.595), 𝜌4 = (0.7470.690.4790.482) 

Adjacency matrix of interpersonal influence among the experts is defined in example 1 as: 

𝑊 = (0.3 0.2 0.3 0.20 0.7 0.2 0.10.30.2 0.4920.3 0.10.4 0.1080.1 )  
The diagonal elements represent susceptibility of each expert to interpersonal influence. The closer 

the value 𝑤𝑖𝑖  is to 1, the more susceptible the expert is to interpersonal influence. Similarly, 𝑤12 =0.2 indicates the degree of direct relative influence of the second expert on the first expert. We have 

already calculated degree of honesty of each expert based on the preference values that they 

provided. Now, we calculate 

𝑉ℋ = ( 0.2866 0.1809 0.0222 0.017920.00626 0.6714 0.00608 0.004130.07010.0863 0.30130.3542 0.08920.0415 0.014540.1204 )  
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to apply in the process. Here, 

𝐴 = (0.7 0 0 00 0.3 0 000 00 0.90 00.9) 

   It is obvious that all elements in (𝐼 −ℋ𝐴𝑊)−1ℋ(𝐼 − 𝐴) are well defined. The final opinion on 

alternative 𝑥1  is 

𝑦𝑥1(∞) = ( 0.2866 0.1809 0.0222 0.017920.00626 0.6714 0.00608 0.004130.07010.0863 0.30130.3542 0.08920.0415 0.014540.1204 ) . (0.7080.3450.7080.747) = (
0.29450.24350.22760.3062) 

It can be studied that the first expert, for instance, has an initial predilection for alternative 𝑥1  over 

other alternatives with a degree of 0.708. Due to interpersonal influences, his final opinion changed 

which was presented to the panel affected by his degree of honesty as 0.437. Similarly, 

𝑦𝑥2(∞) = ( 0.2866 0.1809 0.0222 0.017920.00626 0.6714 0.00608 0.004130.07010.0863 0.30130.3542 0.08920.0415 0.014540.1204 ) . (0.5740.660.5740.69 ) = (
0.3090.4530.30030.3902) 

𝑦𝑥3(∞) = ( 0.2866 0.1809 0.0222 0.017920.00626 0.6714 0.00608 0.004130.07010.0863 0.30130.3542 0.08920.0415 0.014540.1204 ) . ( 0.450.4370.450.479) = (
0.22660.3010.21030.27 ) 

𝑦𝑥4(∞) = ( 0.2866 0.1809 0.0222 0.017920.00626 0.6714 0.00608 0.004130.07010.0863 0.30130.3542 0.08920.0415 0.014540.1204 ) . (0.3870.5950.3870.482) = (
0.24030.32660.23740.2583) 

Accordingly, 

𝜌1(∞) = (0.29450.3090.22660.2403) , 𝜌2(∞) = (
0.24350.4530.3010.3266) , 𝜌3(∞) = (

0.22760.30030.21030.2374) , 𝜌4(∞) = (
0.30260.39020.270.2583),  

In the next section, we find the collective matrix of predilection. This matrix is ranked to find the 

alternative that is most liked by the group of experts. 

5. Ranking of collective matrix of predilection 

 We have calculated the final matrices of predilections that incorporate for the changes in the initial 

opinions due to interpersonal communications and also the experts' honesty to present their actual 

predilections for each alternatives over others. Now we need to draw meaning and identify the best 

possible alternative according to the experts' revised opinions. This is done by aggregating the 

matrices of predilections using honesty based induced ordered weighted averaging operator defined 

below. 

 Definition 5: 

 Let 𝐸 be the set of experts and 𝑈 = {ℎ1, . . . ℎ𝑚} ∈  [0,1]𝑛 be the vector of their associated degree of 

honesty. An 𝑛 dimensional ℋ − 𝐼𝑂𝑊𝐴 operator 𝜙𝑊ℋ is an operator in which the vector of degree of 

honesty is the order inducing vector and the associated set of weights are 𝑊 = (𝑤1, . . . , 𝑤𝑛). So, 
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𝜙𝑊ℋ(< ℎ1, 𝑝1 >,< ℎ2, 𝑝2 >,… , < ℎ𝑛, 𝑝𝑛 >) =∑𝑤𝑖𝑝𝜌(𝑖)𝑛
𝑖=1  

Here, 𝑤𝑘 = 𝑄 (𝑆(𝑘) 𝑆(𝑛) − 𝑄 (𝑆(𝑘−1)𝑆(𝑛) ) ) where 𝑆(𝑘) = ∑ 𝑢𝜎(𝑙)𝑘𝑙=1  and 𝜎  is a permutation such that ℎ𝜎(𝑖) ≥ℎ𝜎(𝑖+1) for all 𝑖 = 1,2, . . , 𝑛 − 1. 

In this paper, we use honesty based IOWA operator in the selection phase. In literature, the use of 

quantifier guided dominance degree for this purpose. With the help of this, the best alternative for 

majority (𝑄) is computed. 

 

                                                                             Figure 1: Honesty based influence model 

 Definition 6: 

(Chiclana, Herrera-Viedma, Francisco , & Alonso, 2007) To calculate the dominance of one alternative 

over all others in a fuzzy majority sense, the quantifier-guided dominance degree (𝑄𝐺𝐷𝐷𝑖) is defined 

as 𝑥𝑆 = {𝑥𝑖  ∶  𝑥𝑖 ∈  𝑋, 𝑄𝐷𝐷𝐷𝑖 = 𝑠𝑢𝑝𝑗   𝑄𝐺𝐷𝐷𝑗} where 𝑄𝐺𝐷𝐷𝑗 = 𝜙𝑄(𝑝𝑖1̂, … , 𝑝𝑖𝑛)̂  and (𝑝𝑖1̂, … , 𝑝𝑖𝑛)̂  

represents a tuple of collective outcome. 

We use the ℋ − 𝐼𝑂𝑊𝐴 operator to accomplish the selection phase. Here, 𝜙𝑊ℋ(< 1,0.3026 >,< 0.772,0.2435 >,< 0.739,0.2957 >,< 0.739,0.2276 >) = 0.5(0.3026) + 0.21(0.2435) + 0.16(0.2957) + 0.13(0.2276) = 0.279335 

Similarly, for all alternatives, we have 
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𝜌𝑠 = (0.2793350.37810.268110.2670 )  
This implies that all experts exhibit predilection for the second alternative over other alternatives by 

the highest degree. Hence, order of alternatives from best to worst is (𝑥2, 𝑥1, 𝑥3, 𝑥4). Some of the 

important steps undertaken in the process are stated in figure 1. 

6. Conclusion 

Classical models of decision making do not incorporate for the role of influence and honesty that 

affects the process. However, in real life, these factors may alter the process significantly and hence 

they need to be incorporated. In social networks, significant personalities have impact on choices of 

the masses. However, it is up to an individual to admit the influence and propose his revised opinion 

with complete honesty. 

This paper further develops the theory of social network analysis by introducing the notion of honesty 

of experts. Honesty plays a vital role in the decision making process and hence needs to be 

incorporated in modelling of decision problems. Preference relations provided by the experts are used 

to measure degree of honesty of the experts. These relations are transformed into matrices of 

predilections and used in influence based model inspired by degree of honesty of the experts. 

We calculate the degree of honesty from the preference relation provided by the expert. Honesty is 

estimated with the help of two measures; average fuzziness in the preference relation and how adrift 

the relation is from being additive reciprocal. Another contribution of this paper is that it deals with 

incompleteness in matrix of interpersonal influence. At times, an expert may deliberately withhold 

information about the degree to which other experts have influenced him or he may just not be sure 

to put down an exact number from the unit interval. We propose an algorithm to deal with this 

problem using the information available in the matrix of interpersonal influences. 

 Social networks are very important in the modern day. Decisions are based and affected by 

interpersonal interactions. It is important to understand how these models vary according to how 

honest they are in representing their revised opinions. In future, more traits from human psychology 

can be studied to improve the honesty based influence model. Moreover, improved ranking 

techniques  (Benferhat, et al., 2016; Beg & Rahid, 2017) can be included to rank the alternatives for 

final outcome and applications of crowd detection (Benferhat, et al., 2016; Bezdek, , Bonnie , & 

Spillman, 1978; Chaudhry, Karim, Abdul Rahim, & BenFerhat, 2017)  can be used in future to develop 

the theory of influence further. 
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