Skip to main content
Log in

Parameter estimation of regression model with AR(p) error terms based on skew distributions with EM algorithm

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In the linear regression model, the errors are usually assumed to be uncorrelated. However, in real-life data, this assumption is not often plausible. In this study, first, we will assume that the errors of the regression model have autoregressive structure. This type of regression models has been considered before. However, in those papers under this assumption usually, the symmetric distributions are used as error distribution. The main contribution of this work is to use skew distributions instead of symmetric distributions as error distribution in regression models with autoregressive errors. We provide expectation maximization algorithm to compute the maximum likelihood estimates for the parameters. The performances of the proposed estimators are demonstrated with a simulation study and a real data example. We also provide the confidence intervals using the observed Fisher information matrix for the corresponding estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alpuim T, El-Shaarawi A (2008) On the efficiency of regression analysis with AR(p) errors. J Appl Stat 35(7):717–737

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson RL (1954) The problem of autocorrelation in regression analysis. J Am Stat Assoc 49(265):113–129

    Article  MathSciNet  MATH  Google Scholar 

  • Ansley CF (1979) An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66(1):59–65

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12(2):171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1986) Further results on a class of distributions, which includes the normal ones. Statistica 46(2):199–208

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (2005) The skew-normal distribution and related multivariate families (with discussion). Scand J Stat 32(2):159–188

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A (2017) The R package ‘sn’: The skew-normal and skew-t distributions (version 1.5-0). http://azzalini.stat.unipd.it/SN. Accessed 20 Feb 2018

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation symmetry with emphasis on a multivariate skew t distribution. J R Stat Soc Ser B (Stat Methodol) 65(2):367–389

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2014) The skew-normal and related families. IMS monographs. Cambridge University Press, Cambridge, p 270

    Google Scholar 

  • Beach CM, Mackinnon JG (1978) A maximum likelihood procedure for regression with autocorrelated errors. Econometrica 46(1):51–58

    Article  MathSciNet  MATH  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79(1):99–113

    Article  MathSciNet  MATH  Google Scholar 

  • Cochrane D, Orcutt GH (1949) Application of least regression to relationships containing autocorrelated error terms. J Am Stat Assoc 44(245):32–61

    MATH  Google Scholar 

  • Durbin J (1960) Estimation of parameters in time-series regression models. J R Stat Soc Ser B (Methodol) 22(1):139–153

    MathSciNet  MATH  Google Scholar 

  • Genton MG (2004) Skew-elliptical distributions and their applications: a journey beyond normality. Chapman & Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Gupta AK, Chang FC, Huang WJ (2002) Some skew symmetric models. Random Oper Stoch Equ 10:133–140

    Article  MathSciNet  MATH  Google Scholar 

  • Henze N (1986) A probabilistic representation of the skew-normal distribution. Scand J Stat 13(4):271–275

    MathSciNet  MATH  Google Scholar 

  • Lange KL, Little RJ, Taylor JM (1989) Robust statistical modeling using the t distribution. J Am Stat Assoc 84(408):881–896

    MathSciNet  Google Scholar 

  • Lin TI, Lee JC, Hsieh WJ (2007) Robust mixture modeling using the skew t distribution. Stat Comput 17(2):81–92

    Article  MathSciNet  Google Scholar 

  • Olaomi JO, Ifederu A (2008) Understanding estimators of linear regression model with AR(1) error which are correlated with exponential regressor. Asian J Math Stat 1(1):14–23

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 5 Jan 2018

  • Tiku ML, Wong W, Bian G (1999) Estimating parameters in autoregressive models in nonnormal situations: symmetric innovations. Commun Stat Theory Methods 28(2):315–341

    Article  MATH  Google Scholar 

  • Tuaç Y, Güney Y, Şenoğlu B, Arslan O (2018) Robust parameter estimation of regression model with AR (p) error terms. Commun Stat Simul Comput 47(8):2343–2359

    Article  MathSciNet  Google Scholar 

  • Wong W, Bian G (2005) Estimating parameters in autoregressive models with asymmetric innovations. Stat Probab Lett 71(1):61–70

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee, the editor and the associate editor for their careful reading, suggestions and encouragement about this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tuaç.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Skew-normal distribution

In “Appendix A” and “Appendix B,” we give the partial second derivatives of the conditional complete likelihood function with respect to the unknown parameters to obtain the observed Fisher information matrix for the regression model defined in Eq. (4) with both skew-normal and skew-t distributed error terms. Note that the observed Fisher information matrices are used to compute the standard errors and the confidence intervals in the simulation study and the real data examples.

$$ \begin{aligned} \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \beta_{k} }} = & - \,\mathop \sum \limits_{t = p + 1}^{N} \left( {\frac{1}{{\sigma^{2} }} + \frac{{\lambda^{3} }}{{\sigma^{2} }} + \frac{{\lambda^{2} }}{{\sigma^{2} }}w_{t}^{2} } \right)\varPhi \left( B \right)x_{t,j} \varPhi \left( B \right)x_{t,k} \\ \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \phi_{i} }} = & - \,\mathop \sum \limits_{t = p + 1}^{N} \left[ {\left( {\frac{1}{{\sigma^{2} }} + \frac{{\lambda^{2} }}{{\sigma^{2} }}w_{t} \left( {\frac{\lambda }{\sigma }\eta_{t} + w_{t} } \right)} \right)e_{t - i} \varPhi \left( B \right)x_{t,j} + \left( {\frac{1}{\sigma }\eta_{t} - \frac{\lambda }{\sigma }w_{t} } \right)x_{t - i,j} } \right] \\ \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \sigma }} = & \mathop \sum \limits_{t = p + 1}^{N} \left( { - \frac{2}{{\sigma^{2} }}\eta_{t} + \frac{\lambda }{{\sigma^{2} }}w_{t} } \right)\varPhi \left( B \right)x_{t,j} - \frac{{\lambda^{2} }}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\frac{\lambda }{\sigma } + w_{t} } \right)w_{t} \eta_{t}^{2} \varPhi \left( B \right)x_{t,j} \\ \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \lambda }} = & \frac{\lambda }{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\frac{1}{\sigma } + \lambda \eta_{t}^{2} + w_{t} \eta_{t} } \right)w_{t} \varPhi \left( B \right)x_{t,j} \\ \frac{{\partial^{2} \ln L}}{{\partial \phi_{i} \partial \phi_{r} }} = & - \,\mathop \sum \limits_{t = p + 1}^{N} \left[ {\left( {\frac{1}{{\sigma^{2} }} + \frac{{\lambda^{3} }}{{\sigma^{2} }}w_{t} \eta_{t} + \frac{{\lambda^{2} }}{{\sigma^{2} }}w_{t}^{2} } \right)e_{t - i} e_{t - r} } \right] \\ \frac{{\partial^{2} \ln L}}{{\partial \phi_{i} \partial \sigma }} = & \mathop \sum \limits_{t = p + 1}^{N} \left( { - \frac{2}{{\sigma^{2} }}\eta_{t} + \frac{\lambda }{{\sigma^{2} }}w_{t} - \frac{{\lambda^{2} }}{{\sigma^{2} }}\left( {\lambda \eta_{t} + w_{t} } \right)w_{t} \eta_{t} } \right)e_{t - i} \\ \frac{{\partial^{2} \ln L}}{{\partial \phi_{i} \partial \lambda }} = & \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\lambda^{2} \eta_{t}^{2} + \lambda w_{t} \eta_{t} - 1} \right)w_{t} e_{t - i} \\ \frac{{\partial^{2} \ln L}}{{\partial \sigma^{2} }} = & \frac{N - p}{{\sigma^{2} }} - \mathop \sum \limits_{t = p + 1}^{N} \left[ {\frac{3}{{\sigma^{2} }}\eta_{t} + \frac{{\lambda^{2} }}{{\sigma^{2} }}\left( {\lambda \eta_{t} + w_{t} } \right)w_{t} \eta_{t} - \frac{2\lambda }{{\sigma^{2} }}w_{t} } \right]\eta_{t} \\ \frac{{\partial^{2} \ln L}}{\partial \sigma \partial \lambda } = & \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\lambda^{2} \eta_{t}^{2} + \lambda w_{t} \eta_{t} - 1} \right)w_{t} \eta_{t} \\ \frac{{\partial^{2} \ln L}}{{\partial \lambda^{2} }} = & - \,\frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\lambda \eta_{t} + w_{t} } \right)w_{t} \eta_{t}^{2} \\ \end{aligned} $$

Here \( \eta_{t} = \frac{{\left( {\phi \left( B \right)y_{t} - \phi \left( B \right)x_{t}^{T}\varvec{\beta}} \right)}}{\sigma }, \)\( w_{t} = \frac{{\phi \left( {\lambda \eta_{t} } \right)}}{{\varPhi \left( {\lambda \eta_{t} } \right)}}, \)\( i,r = 1,2, \ldots ,p \) and \( j,k = 1,2, \ldots ,M. \)

Appendix B: Skew-t distribution

$$ \begin{aligned} \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \beta_{k} }} = & \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\alpha_{t} \eta_{t} - \frac{{w_{t} }}{\sigma } - \lambda w_{t}^{1/2} \left( {\psi_{1,t} w_{t} + \frac{3}{2}\gamma_{t} \alpha_{t} } \right)} \right)\varPhi \left( B \right)x_{t,j} \varPhi \left( B \right)x_{t,k} \\ \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \phi_{i} }} = & \mathop \sum \limits_{t = p + 1}^{N} \left( {\alpha_{t} \eta_{t} - \frac{{w_{t} }}{\sigma } - \lambda w_{t}^{1/2} \left( {\psi_{1,t} w_{t} + \frac{3}{2}\gamma_{t} \alpha_{t} } \right)} \right)e_{t - i} \varPhi \left( B \right)x_{t,j} - \left( {\frac{1}{\sigma }w_{t} \eta_{t} - \lambda \gamma_{t} w_{t}^{3/2} } \right)x_{t - i,j} \\ \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \sigma }} = & \mathop \sum \limits_{t = p + 1}^{N} \left[ { - \frac{1}{{\sigma^{2} }}\left( {w_{t} \eta_{t} - \lambda \gamma_{t} w_{t}^{{\frac{3}{2}}} } \right) + \frac{1}{\sigma }\left( {\alpha_{t} \eta_{t} - \frac{1}{\sigma }w_{t} \eta_{t} - \lambda \left( {\psi_{1,t} w_{t}^{3/2} + \frac{3}{2}\gamma_{t} w_{t}^{1/2} \alpha_{t} } \right)} \right)} \right]\varPhi \left( B \right)x_{t,j} \\ \frac{{\partial^{2} \ln L}}{{\partial \beta_{j} \partial \lambda }} = & - \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\gamma_{t} + \lambda \psi_{2,t} } \right)w_{t}^{3/2} \varPhi \left( B \right)x_{t,j} \\ \frac{{\partial^{2} \ln L}}{{\partial \phi_{i} \partial \phi_{r} }} = & \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left[ {\left( {\alpha_{t} \eta_{t} - \frac{{w_{t} }}{\sigma }} \right) - \frac{\lambda }{\sigma }w_{t}^{1/2} \left( {\psi_{1,t} w_{t} + \frac{3}{2}\gamma_{t} \alpha_{t} } \right)e_{t - i} e_{t - r} } \right] \\ \frac{{\partial^{2} \ln L}}{{\partial \phi_{i} \partial \sigma }} = & \mathop \sum \limits_{t = p + 1}^{N} \left[ { - \frac{1}{{\sigma^{2} }}\left( {w_{t} \eta_{t} - \frac{\lambda }{\sigma }\gamma_{t} w_{t}^{{\frac{3}{2}}} } \right) + \frac{1}{\sigma }\left( {\alpha_{t} - \frac{{w_{t} }}{\sigma }} \right)\eta_{t} + \frac{\lambda }{{\sigma^{2} }}\gamma_{t} w_{t}^{3/2} } \right]e_{t - i} \\ & \quad - \,\frac{\lambda }{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\psi_{1,t} w_{t}^{3/2} + \frac{3}{2}\gamma_{t} w_{t}^{1/2} \alpha_{t} } \right)e_{t - i} \\ \frac{{\partial^{2} \ln L}}{{\partial \phi_{i} \partial \lambda }} = & - \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\gamma_{t} + \lambda \psi_{2,t} } \right)w_{t}^{3/2} e_{t - i} \\ \frac{{\partial^{2} \ln L}}{{\partial \sigma^{2} }} = & \frac{N - p}{{\sigma^{2} }} - \mathop \sum \limits_{t = p + 1}^{N} \left[ {\frac{3}{{\sigma^{2} }}w_{t} - \frac{1}{\sigma }\alpha_{t} } \right]\eta_{t}^{2} + \mathop \sum \limits_{t = p + 1}^{N} \left[ {\frac{2\lambda }{{\sigma^{2} }}\gamma_{t} w_{t}^{{\frac{3}{2}}} - \frac{\lambda }{\sigma }\left( {\psi_{1,t} w_{t}^{3/2} + \frac{3}{2}\gamma_{t} w_{t}^{1/2} \alpha_{t} } \right)} \right]\eta_{t} \\ \frac{{\partial^{2} \ln L}}{\partial \sigma \partial \lambda } = & - \frac{1}{\sigma }\mathop \sum \limits_{t = p + 1}^{N} \left( {\gamma_{t} + \lambda \psi_{2,t} } \right)w_{t}^{3/2} \eta_{t} \\ \frac{{\partial^{2} \ln L}}{{\partial \lambda^{2} }} = & \frac{\nu + 1}{\nu }\mathop \sum \limits_{t = p + 1}^{N} \psi_{2,t} w_{t}^{1/2} \eta_{t} , \\ \end{aligned} $$

Here \( \eta_{t} = \frac{{\left( {\phi \left( B \right)y_{t} - \phi \left( B \right)x_{t}^{T}\varvec{\beta}} \right)}}{\sigma } \), \( w_{t} = \frac{\nu + 1}{{\nu + \eta_{t}^{2} }} \), \( \gamma_{t} = \frac{\nu }{\nu + 1}\frac{{t_{\nu + 1} \left( {\lambda \eta_{t} \sqrt {w_{t} } } \right) }}{{T_{\nu + 1} \left( {\lambda \eta_{t} \sqrt {w_{t} } } \right)}} \), \( i,r = 1,2, \ldots ,p \), \( j,k = 1,2, \ldots ,M, \)\( \alpha_{t} = \frac{2}{\sigma }w_{t} \frac{{\eta_{t} }}{{\nu + \eta_{t}^{2} }} \), \( \psi_{1,t} = \frac{{\lambda^{2} }}{\sigma }\frac{{\nu \left( {\nu + 3} \right)}}{{\left( {\nu + 1} \right)}}w_{t}^{2} \eta_{t} \frac{{\gamma_{t} }}{{\left( {\nu + 1 + \lambda^{2} \eta_{t}^{2} w_{t} } \right)}} - \frac{\lambda }{\sigma }\frac{{\left( {\nu + 1} \right)}}{\nu }w_{t}^{3/2} \gamma_{t}^{2}, \) and \( \psi_{2,t} = - \lambda \left( {\nu + 3} \right)w_{t} \eta_{t}^{2} \frac{{\gamma_{t} }}{{\left( {\nu + 1 + \lambda^{2} \eta_{t}^{2} w_{t} } \right)}} - \frac{{\left( {\nu + 1} \right)}}{\nu }w_{t}^{1/2} \gamma_{t}^{2} \eta_{t} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuaç, Y., Güney, Y. & Arslan, O. Parameter estimation of regression model with AR(p) error terms based on skew distributions with EM algorithm. Soft Comput 24, 3309–3330 (2020). https://doi.org/10.1007/s00500-019-04089-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04089-x

Keywords

Navigation