Skip to main content

Advertisement

Log in

Modeling and simulation of novel dynamic control strategy for PV–wind hybrid power system using FGS−PID and RBFNSM methods

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

During the past years, hybrid solar-wind power systems containing photovoltaic (PV) and wind generators are used to minimize the intermittency problem of renewable power generation units. The improved modeling and control schemes for a grid-tied hybrid PV–wind system is presented in the current research work. The maximum power point tracking namely “MPPT” algorithm together with controlling the pitch angle are used, respectively, for the PV system and wind power generation to attain the maximum power for any given external weather conditions. A radial basis function network sliding mode known as the RBFNSM method is used to control the pitch angle in the wind energy system, while the PV system uses a proportional–integral–derivative controller equipped with the fuzzy gain scheduling in order to enhance the transient state and mitigate the settling time to ensure the stability of the mentioned system. To test the suggested control scheme’s effectiveness, MATLAB simulations are carried out under various scenarios of the wind speed as well as solar irradiation. The obtained results show the efficiency of the adaptive MPPT method to harness the highest power under very challenging scenarios. The merits of the developed schemes are quickly and precisely tracking the maximum power output of the hybrid PV–wind system. Besides, the power flowing between the utility grid and the hybrid source with a fast transient response and improved stability performance is effectively controlled using the offered schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

PV:

Photovoltaic

WT:

Wind turbine

MPPT:

Maximum power point tracking

RBFNSM:

Radial basis function network-sliding mode

PID:

Proportional–integral–derivative

FGS:

Fuzzy gain scheduling

VSC:

Voltage source converter

HC:

Hill climbing

P&O:

Perturb and observe

INC:

Incremental conductance

FLC:

Fuzzy logic controllers

ANFIS:

Adaptive neuro fuzzy inference system

PSO:

Particle swarm optimization

GA:

Genetic algorithm

TSA:

Tabu search algorithm

BFA:

Bacterial foraging algorithm

ANA:

Ant colony algorithm

ABC:

Artificial bee colony

Z–N:

Ziegler–Nichols

PSF:

Power signal feedback

TSR:

Tip speed ratio

RBFN:

Radial basis function network

HCS:

Hill climb searching

SMV:

Sliding mode variable

ANN:

Artificial neural network

DFIG:

Doubly fed induction generator

STC:

Standard test condition

DC:

Direct current

PQ:

Power quality

PWM:

Pulse width modulation

OD:

Ordinary differential

FIS:

Fuzzy inference system

PCC:

Point of common coupling

DG:

Distributed generation

PLL:

Phase-locked loop

ud/uq :

Grid voltage

i ref :

Current reference

R s :

Series resistances

R sh :

Shunt resistances

I ph :

Photocurrent of the PV cell

T :

Temperature

n :

Ideality factor of p–n junction

IPVO :

Reverse saturation current

K :

Boltzmann constant

q :

Electronic charge

t 1 :

Startup time

t 2 :

Closedown time

P :

PV’s output power

S :

Radiation

D :

Duty cycle

V out :

Output voltage

V s :

Input voltage

T i :

Integral time

T d :

Derivative time

G 0 :

Nominal value of the control

E (k):

Input of fuzzy rules

CE (k):

Output of fuzzy rules

ρ :

Air density

A :

Area swept by blades

\( \upsilon \) :

Wind velocity

Pa :

Aerodynamic power

CP :

Power coefficient

β′:

Pitch angle of the blade

λ :

Speed ratio of tip

ω r :

Turbine speed

P ref :

Wind output power

P out :

Real output power of wind

e :

Tracking error

\( s_{1}^{1} (k) \) :

Switching surface

c j :

Central vector of jth

b j :

Base width constant of jth

\( y_{0}^{3} (k) \) :

Output of the RBFNSM

ω :

Rotation frequency

θ :

Rotation angle

id/iq :

Inverter current

References

  • Ali ES (2015) Speed control of induction motor supplied by wind turbine via imperialist competitive algorithm. Energy 1(89):593–600

    Article  Google Scholar 

  • Anto EK, Asumadu JA, Okyere PY (2016) PID control for improving P&O-MPPT performance of a grid-connected solar PV system with Ziegler–Nichols tuning method. In: 2016 IEEE 11th conference on industrial electronics and applications (ICIEA). IEEE, pp 1847–1852

  • Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610

    Article  Google Scholar 

  • Arqub OA, Mohammed AS, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302

    Article  Google Scholar 

  • Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206

    Article  Google Scholar 

  • Ateş A, Yeroglu C (2016) Optimal fractional order PID design via Tabu Search based algorithm. ISA Trans 1(60):109–118

    Article  Google Scholar 

  • Baghban A, Jalali A, Shafiee M, Ahmadi MH, Chau KW (2019) Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids. Eng Appl Comput Fluid Mech 13(1):26–39

    Google Scholar 

  • Benadli R, Sellami A (2014) Sliding mode control of a photovoltaic-wind hybrid system. In: 2014 international conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE, pp 1–8

  • Blaabjerg F, Teodorescu R, Liserre M (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  • Chuntian C, Chau KW (2002) Three-person multi-objective conflict decision in reservoir flood control. Eur J Oper Res 142(3):625–631

    Article  Google Scholar 

  • Deniz E (2017) ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array. Neural Comput Appl 28(10):3061–3072

    Article  Google Scholar 

  • Doss MA, Christy AA (2013) Modified hybrid multilevel inverter with reduced number of switches for PV application with smart IoT system. J Ambient Intell Humaniz Comput, pp 1–3

  • Harrag A, Messalti S (2015) Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew Sustain Energy Rev 1(49):1247–1260

    Article  Google Scholar 

  • Hemanand T, Subramaniam NP, Venkateshkumar M (2018) Comparative analysis of intelligent controller based microgrid integration of hybrid PV/wind power system. J Ambient Intell Humaniz Comput, pp 1–20

  • Khaksar M, Rezvani A, Moradi MH (2018) Simulation of novel hybrid method to improve dynamic responses with PSS and UPFC by fuzzy logic controller. Neural Comput Appl 29(3):837–853

    Article  Google Scholar 

  • Kumar M, Sandhu KS, Kumar A (2014) Simulation analysis and THD measurements of integrated PV and wind as hybrid system connected to grid. In: 2014 IEEE 6th India international conference on power electronics (IICPE). IEEE, pp 1–6

  • Laabidi H, Mami A (2015) Grid connected wind-photovoltaic hybrid system. In: 2015 5th international youth conference on energy (IYCE). IEEE, pp 1–8

  • Ming CM, Chen CH (2014) Intelligent control of grid-connected wind-photovoltaic hybrid power systems. Electric Power Energy Syst 55:554–561

    Article  Google Scholar 

  • Mirzapour F, Lakzaei M, Varamini G, Teimourian M, Ghadimi N (2019) A new prediction model of battery and wind-solar output in hybrid power system. J Ambient Intell Humaniz Comput 10(1):77–87

    Article  Google Scholar 

  • Mokryani G, Siano P, Piccolo A (2013) Optimal allocation of wind turbines in microgrids by using genetic algorithm. J Ambient Intell Humaniz Comput 4(6):613–619

    Article  Google Scholar 

  • Morimoto S, Nakamura T, Sanada M, Takeda Y (2005) Sensorless output maximization control for variable-speed wind generation system using IPMSG. IEEE Trans Ind Appl 41(1):60–67

    Article  Google Scholar 

  • Oshaba AS, Ali ES, Elazim SA (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667

    Article  Google Scholar 

  • Oskouei AB, Banaei MR, Sabahi M (2016) Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number. Ain Shams Eng J 7(2):579–592

    Article  Google Scholar 

  • Parida A, Chatterjee D (2016) Cogeneration topology for wind energy conversion system using doubly-fed induction generator. IET Power Electron 9(7):1406–1415

    Article  Google Scholar 

  • Rajesh K, Kulkarni AD, Ananthapadmanabha T (2015) Modeling and simulation of solar PV and DFIG based wind hybrid system. Procedia Technology. 1(21):667–675

    Article  Google Scholar 

  • Rezvani A, Gandomkar M (2017) Simulation and control of intelligent photovoltaic system using new hybrid fuzzy-neural method. Neural Comput Appl 28(9):2501–2518

    Article  Google Scholar 

  • Rezvani A, Izadbakhsh M, Gandomkar M (2015) Enhancement of microgrid dynamic responses under fault conditions using artificial neural network for fast changes of photovoltaic radiation and FLC for wind turbine. Energy Syst 6(4):551–584

    Article  Google Scholar 

  • Rezvani A, Izadbakhsh M, Gandomkar M (2016) Microgrid dynamic responses enhancement using artificial neural network-genetic algorithm for photovoltaic system and fuzzy controller for high wind speeds. Int J Numer Model Electron Networks Devices Fields 29(2):309–332

    Article  Google Scholar 

  • Roman E, Alonso R, Ibañez P, Elorduizapatarietxe S, Goitia D (2006) Intelligent PV module for grid-connected PV systems. IEEE Trans Industr Electron 53(4):1066–1073

    Article  Google Scholar 

  • Samadianfard S, Majnooni-Heris A, Qasem SN, Kisi O, Shamshirband S, Chau KW (2019) Daily global solar radiation modeling using data-driven techniques and empirical equations in a semi-arid climate. Eng Appl Comput Fluid Mech 13(1):142–157

    Google Scholar 

  • Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovolt 3(3):1070–1078

    Article  Google Scholar 

  • Sheikhan M, Shahnazi R, Yousefi AN (2013) An optimal fuzzy PI controller to capture the maximum power for variable-speed wind turbines. Neural Comput Appl 23(5):1359–1368

    Article  Google Scholar 

  • Talaq J, Al-Basri F (1999) Adaptive fuzzy gain scheduling for load frequency control. IEEE Trans Power Syst 14(1):145–150

    Article  Google Scholar 

  • Vafaei S, Rezvani A, Gandomkar M, Izadbakhsh M (2015) Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances. Front Energy 9(3):322–334

    Article  Google Scholar 

  • Zhao ZY, Tomizuka M, Isaka S (1993) Fuzzy gain scheduling of PID controllers. IEEE Trans Syst Man Cybern 23(5):1392–1398

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Natural Science Foundation of Guangdong Province under Grant 2018A0303130115 and the National Science and Technology Major Project(2017ZX05018- 003) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Rezvani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 8.

Table 8 Description of the detailed model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Nariman, G.S., Mohammed, S.Q. et al. Modeling and simulation of novel dynamic control strategy for PV–wind hybrid power system using FGS−PID and RBFNSM methods. Soft Comput 24, 8403–8425 (2020). https://doi.org/10.1007/s00500-019-04408-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04408-2

Keywords

Navigation