Skip to main content

Advertisement

Log in

A new hybrid discriminative/generative model using the full-covariance multivariate generalized Gaussian mixture models

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Discriminative models have been shown to be more advantageous for pattern recognition problem in machine learning. For this study, the main focus is developing a new hybrid model that combines the advantages of a discriminative technique namely the support vector machines (SVM) with the full efficiency offered through covariance multivariate generalized Gaussian mixture models (MGGMM). This new hybrid MGGMM applies the Fisher and Kullback–Leibler kernels derived from MGGMM to improve the kernel function of SVM. This approach is based on two different learning techniques explicitly: the Fisher scoring algorithm and the Bayes inference technique based on Markov Chain Monte Carlo and Metropolis–Hastings algorithm. These learning methods work with two model selection approaches (minimum message length and marginal likelihood) to determine the number of clusters. The effectiveness of the framework is demonstrated through extensive experiments including synthetic datasets, facial expression recognition and human activity recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adama DA, Lotfi A, Langensiepen C, Lee K, Trindade P (2018) Human activity learning for assistive robotics using a classifier ensemble. Soft Comput 22(21):7027–7039

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    MathSciNet  MATH  Google Scholar 

  • Bartlett MS, Littlewort G, Fasel I, Movellan JR (2003) Real time face detection and facial expression recognition: development and applications to human computer interaction. In: Conference on computer vision and pattern recognition workshop, 2003. CVPRW’03, vol. 5. IEEE, pp 53–53

  • Baxter RA, Oliver JJ (2000) Finding overlapping components with mml. Stat Comput 10(1):5–16

    Google Scholar 

  • Bouguila N (2011) Bayesian hybrid generative discriminative learning based on finite liouville mixture models. Pattern Recognit 44(6):1183–1200

    MATH  Google Scholar 

  • Bouguila N (2012) Hybrid generative/discriminative approaches for proportional data modeling and classification. IEEE Trans Knowl Data Eng 24(12):2184–2202

    Google Scholar 

  • Bouguila N, Ziou D (2007) High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans Pattern Anal Mach Intell 29(10):1716–1731

    Google Scholar 

  • Boukouvalas Z, Fu GS, Adalı T (2015) An efficient multivariate generalized gaussian distribution estimator: Application to iva. In: 49th Annual conference on information sciences and systems (CISS), 2015. IEEE, pp 1–4

  • Bourouis S, Al-Osaimi FR, Bouguila N, Sallay H, Aldosari F, Al Mashrgy M (2019) Bayesian inference by reversible jump mcmc for clustering based on finite generalized inverted dirichlet mixtures. Soft Comput 23(14):5799–5813

    Google Scholar 

  • Carlo M (1992) Comment: one long run with diagnostics: implementation strategies for Markov chain. Stat Sci 7(4):493–497

    Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings algorithm. Am Stat 49(4):327–335

    Google Scholar 

  • Cohen I, Sebe N, Cozman FG, Huang TS (2003) Semi-supervised learning for facial expression recognition. In: Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval. ACM, pp 17–22

  • Conway JH, Sloane NJA (2013) Sphere packings, lattices and groups, vol 290. Springer, Berlin

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–22

    MathSciNet  MATH  Google Scholar 

  • Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal features. VS-PETS, Beijing

    Google Scholar 

  • Elguebaly T, Bouguila N (2015) A hierarchical nonparametric Bayesian approach for medical images and gene expressions classification. Soft Comput 19(1):189–204

    Google Scholar 

  • Fan W, Bouguila N (2013) Online facial expression recognition based on finite beta-liouville mixture models. In: 2013 International conference on computer and robot vision (CRV). IEEE, pp 37–44

  • Fan W, Bouguila N (2014) Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications. Multimed Tools Appl 70(3):1685–1702

    Google Scholar 

  • Fan W, Sallay H, Bouguila N, Bourouis S (2016) Variational learning of hierarchical infinite generalized Dirichlet mixture models and applications. Soft Comput 20(3):979–990

    Google Scholar 

  • Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Google Scholar 

  • Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Hershey JR, Olsen PA (2007) Approximating the kullback leibler divergence between gaussian mixture models. In: IEEE international conference on acoustics, speech and signal processing, 2007. ICASSP 2007. vol. 4. IEEE, pp IV–317

  • Jaakkola T, Haussler D (1999) Exploiting generative models in discriminative classifiers. In: Advances in neural information processing systems, pp 487–493

  • Kanade T, Tian Y, Cohn JF (2000) Comprehensive database for facial expression analysis. In: Proceedings fourth IEEE international conference on automatic face and gesture recognition. IEEE, p 46

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    MathSciNet  MATH  Google Scholar 

  • Kelker D (1970) Distribution theory of spherical distributions and a location-scale parameter generalization. Sankhyā Indian J Stat Ser A 32:419–430

    MathSciNet  MATH  Google Scholar 

  • Kotz S (1975) Multivariate distributions at a cross-road. Stat Distrib Sci Work 1:247–270

    Google Scholar 

  • Lajevardi SM, Hussain ZM (2009) Zernike moments for facial expression recognition. rn 2, 3

  • Lindley DV and Rao CR (1953) Advanced statistical methods in biometric research. J R Stat Soc 116(1):86–87

  • Marin JM, Robert C (2007) Bayesian core: a practical approach to computational Bayesian statistics. Springer, Berlin

    MATH  Google Scholar 

  • Moreno PJ, Ho PP, Vasconcelos N (2004) A Kullback–Leibler divergence based kernel for svm classification in multimedia applications. In: Advances in neural information processing systems, pp 1385–1392

  • Najar F, Bourouis S, Bouguila N, Belghith S (2018) A fixed-point estimation algorithm for learning the multivariate ggmm: application to human action recognition. In: 2018 IEEE Canadian conference on electrical & computer engineering (CCECE). IEEE, pp 1–4

  • Najar F, Bourouis S, Bouguila N, Belghith S (2019) Unsupervised learning of finite full covariance multivariate generalized Gaussian mixture models for human activity recognition. Multimed Tools Appl 78:1–23

    Google Scholar 

  • Neal RM (1992) Bayesian mixture modeling. In: Maximum entropy and Bayesian methods. Springer, pp. 197–211

  • Niebles JC, Wang H, Fei-Fei L (2008) Unsupervised learning of human action categories using spatial-temporal words. Int J Comput Vis 79(3):299–318

    Google Scholar 

  • Pascal F, Bombrun L, Tourneret JY, Berthoumieu Y (2013) Parameter estimation for multivariate generalized gaussian distributions. IEEE Trans Signal Process 61(23):5960–5971

    MathSciNet  MATH  Google Scholar 

  • Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471

    MATH  Google Scholar 

  • Robert C (2007) The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer, Berlin

    MATH  Google Scholar 

  • Robert C, Casella G (2000) Monte carlo statistical methods. Springer Text in Statistics, Springer. https://doi.org/10.1007/978-1-4757-4145-2

  • Roberts GO, Tweedie RL (1999) Bounds on regeneration times and convergence rates for Markov chains. Stoch Process Appl 80(2):211–229

    MathSciNet  MATH  Google Scholar 

  • Roh SB, Oh SK, Yoon JH, Seo K (2018) Design of face recognition system based on fuzzy transform and radial basis function neural networks. Soft Comput 23:1–17

    Google Scholar 

  • Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004. vol. 3. IEEE, pp 32–36

  • Tsai HH, Chang YC (2018) Facial expression recognition using a combination of multiple facial features and support vector machine. Soft Comput 22(13):4389–4405

    Google Scholar 

  • Verdoolaege G, Rosseel Y, Lambrechts M, Scheunders P (2009) Wavelet-based colour texture retrieval using the Kullback–Leibler divergence between bivariate generalized Gaussian models. In: 2009 16th IEEE international conference on image processing (ICIP). IEEE, pp 265–268

  • Verdoolaege G, Scheunders P (2012) On the geometry of multivariate generalized Gaussian models. J Math Imaging Vis 43(3):180–193

    MathSciNet  MATH  Google Scholar 

  • Vrigkas M, Nikou C, Kakadiaris IA (2015) A review of human activity recognition methods. Front Robot AI 2:28

    Google Scholar 

  • Wallace CS, Boulton DM (1968) An information measure for classification. Comput J 11(2):185–194

    MATH  Google Scholar 

  • Wong SF, Cipolla R (2007) Extracting spatiotemporal interest points using global information. In: 2007 IEEE 11th international conference on computer vision. Citeseer, pp 1–8

  • Yeasin M, Bullot B, Sharma R (2004) From facial expression to level of interest: a spatio-temporal approach. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004. vol. 2. IEEE, pp II–II

  • Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Najar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, F., Bourouis, S., Bouguila, N. et al. A new hybrid discriminative/generative model using the full-covariance multivariate generalized Gaussian mixture models. Soft Comput 24, 10611–10628 (2020). https://doi.org/10.1007/s00500-019-04567-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04567-2

Keywords

Navigation