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Abstract
Finding the orientation of a ligand (small molecule) with the lowest binding energy to the macromolecule (receptor) is a 
complex optimization problem, commonly called ligand–protein docking. This problem has been usually approached by 
minimizing a single objective that corresponds to the final free energy of binding. In this work, we propose a new multi-
objective strategy focused on minimizing: (1) the root mean square deviation (RMSD) between the co-crystallized and 
predicted ligand atomic coordinates, and (2) the ligand–receptor intermolecular energy. This multi-objective strategy 
provides the molecular biologists with a range of solutions computing different RMSD scores and intermolecular energies. 
A set of representative multi-objective algorithms, namely NSGA-II, SMPSO, GDE3 and MOEA/D, have been evaluated in 
the scope of an extensive set of docking problems, which are featured by including HIV-proteases with flexible ARG8 side 
chains and their inhibitors. As use cases for biological validation, we have included a set of instances based on new 
retroviral inhibitors to HIV-proteases. The proposed multi-objective approach shows that the predictions of ligand’s pose 
can be promising in cases in which studies in silico are necessary to test new candidate drugs (or analogue drugs) to a given 
therapeutic target.
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1 Introduction

Ligand–protein docking is an optimization problem whose
main objective is to predict a position and orientation of a
smallmolecule (ligand) to a larger receptormolecule (macro-
molecule)withminimumbinding energy.Molecular docking
is based on two steps: (1) the prediction of the position and
orientation of the ligand to the receptor and (2) the assess-
ment of the ligand–receptor binding affinity that is obtained.
This technique has been used to do studies in silico in drug
discovery.

In the last years, molecular docking has been focused
on minimizing the final free energy binding using single-
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objective algorithms by using a force-field-based energy
function (Ru et al. 2016; Peh and Hong 2016). In accor-
dance with other past studies (López-Camacho et al. 2015),
the differential evolution algorithm (DE) returned the best
solutions in terms of energy and RMSD score compared to
steady-state genetic algorithm (ssGA), generational genetic
algorithm (gGA) and PSO (particle swarm optimization). A
recent approach is DockThor (Leonhart et al. 2018), which
involves a single-objective approachbasedonminimizing the
final binding energy. DockThor was compared with a set of
mono-objective approaches presented in the state of the art,
including those of jMetalCpp (López-Camacho et al. 2014).
The results showed that DockThor outperforms the selected
jMetalCpp algorithm.

In parallel, a series of studies based on multi-objective
approaches to solve this problem have emerged (Gu et al.
2015; Janson et al. 2008; Sandoval-Perez et al. 2013). In
López-Camacho et al. (2016), we presented a new multi-
objective approach to minimize two objectives based on the
RMSD score and the intermolecular energy (Einter). The first
one corresponds to a similarity measure between the refer-
ence and the co-crystallized ligands. The second one is an
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while analysis of results and discussions are reported in
Sect. 5. Section 6 contains conclusions and future work.

2 Multi-objective ligand–protein docking

Previously to describe the ligand–protein docking problem,
we include a series of formal definitions concerning multi-
objective optimization.Without loss of generality,we assume
that minimization is the goal for all the objectives.

Definition 1 (Multi-objective Optimization Problem) Find a
vector x∗ = [

x∗
1 , x

∗
2 , . . . , x

∗
n

]
which satisfies the m inequal-

ity constraints gi (x) ≥ 0, i = 1, 2, . . . ,m, the p equality
constraints hi (x) = 0, i = 1, 2, . . . , p, and minimizes the
vector function f (x) = [ f1(x), f2(x), . . . , fk(x)]T , where
x = [x1, x2, . . . , xn]T is the vector of decision variables.

The set of all values satisfying the constraints defines the
feasible region Ω and any point x ∈ Ω is a feasible solution.
We seek the Pareto optima.

Definition 2 (Pareto Optimality) for every x ∈ Ω and I =
{1, 2, . . . , k} either ∀i∈I ( fi (x) = fi (x∗)) or there is at least
one i ∈ I such that fi (x) > fi (x∗).

This definition states that x∗ is Pareto optimal if no other
feasible vector x exists which would improve some criteria
without causing a simultaneous worsening in at least one
other criterion.

Definition 3 (ParetoDominance)Avector u = (u1, . . . , uk)
is said to dominate v=(v1, . . . , vk) (denoted by u � v) if
and only if u is partially less than v. ∀i ∈ {1, . . . , k} , ui ≤
vi ∧ ∃i ∈ {1, . . . , k} : ui < vi .

2.1 Ligand–protein docking

The main objective in this problem is to find a ligand’s con-
formation (L) to a receptor (R) that results with minimum
energy. An energy scoring function is then calculated to
evaluate the ligand–receptor interaction according to three
components, which represent degrees of freedom:

– The first one corresponds to the translation of the ligand,
which is represented by the three position values (x, y, z)
in the axis of the Cartesian coordinate space;

– The second one includes the ligand’s orientation, which
is modeled as a four variables quaternion including the
angle slope (θ);

– The third one represents the dihedral angles referring to
the free rotation of torsion of the ligand and side chains
of the receptor’s residues.

aggregation of bound and unbound states of the molecular 
complex. This approach was applied to a set of 11 instances 
that involve flexible receptors and inhibitors. In that study, 
a set of representative multi-objective algorithms were com-
pared and SMPSO (Nebro et al. 2009) was the optimizer 
that obtained the best overall results for the tested molecular 
docking instances.

In the present study, we follow our previous research 
line by performing a thorough experimentation, with the 
motivation of assessing whether our initial claims could be 
generalized or not in the context of a large set of problems. We 
have performed an extended research from our previous study 
(López-Camacho et al. 2016), involving 73 instances used as 
benchmark by a previous study such as Morris et al. (2009). 
The macromolecules are therapeutic targets in which flexi-
bility was applied. The ligands have different sizes (small, 
medium and large), and the obtained results can be analyzed 
taking into account the ligand size.

Our motivation is then to provide molecular biologists 
with a set of trade-off solutions with different RMSD scores 
and Einter. It is worth noting that the optimized ligand struc-
ture, even with outstanding RMSD scores (measured in 
Å), does not necessary correspond to the already known 
best solution. From a pharmacological point of view, the 
macromolecule (the therapeutic target) might have other dif-
ferent ligand binding sites that do not correspond to the 
co-crystallized ligand binding site obtained from in silico 
studies, for example, the case of allosteric modulation, which 
refers to the alteration of the macromolecule functionality by 
the binding of a modulator (a ligand) at a distant binding site 
(Townsend et al. 2015). Other examples refer to those cases 
where the ligand docking avoids the enzyme–substrate inter-
action and its binding site is different from the co-crystallized 
ligand. In this context, the approach proposed in this paper 
provides a wide range of solutions that the practitioner can 
choose, i.e., a solution that corresponds to a ligand confor-
mation with a higher RMSD score and lower Einter. The  
ligand related to this solution can have a position close to 
the entrance of the macromolecule’s active site or to some of 
molecular sites with known allosteric modulation. For this 
approach, the search methods used are several representa-
tive multi-objective algorithms which are: SMPSO, GDE3, 
MOEA/D and NSGA-II. Finally, in order to show the usabil-
ity of this multi-objective strategy, we have chosen a set of 
flexible instances that correspond to flexible macromolecule–
ligand complexes. In these examples, several solutions from 
the front of non-dominated solutions have been chosen and 
analyzed in terms of ligand binding site and molecular inter-
actions.

This paper is organized as follows: Sect. 2 describes the 
ligand–protein docking problem from a multi-objective for-
mulation. Section 3 describes the optimization techniques 
evaluated. Experimental methodology is explained in Sect. 4,



Each problem solution is encoded by a real-value vec-
tor of 7 + n variables, in which the first three values are
used for ligand translation, the following four variables rep-
resent the ligand and/or macromolecule orientation, and the
last n variables represent the dihedral angles of ligand and
receptor positions. In addition, a grid-based methodology is
implemented (Morris et al. 2009) to perform the energy com-
putation of molecular conformations.

More specifically, the Einter is one of the force-field-based
energy function terms used in AutoDock 4.2. This energy
term is calculated as follows:

Einter = QR−L
bound + QR−L

unbound (1)

QR−L
bound and QR−L

bound are the states of bound and unbound
of the ligand–receptor complex, respectively.

Q = Wvdw

∑

i, j

(
Ai j

r12i j
− Bi j

r6i j

)

+ Whbond

∑

i, j

E(t)

(
Ci j

r12i j
− Di j

r10i j

)

+ Welec

∑

i, j

qi q j

ε(ri j )ri j

+ Wsol

∑

i, j

(Si Vj + S j Vi )e
(−r2i j /2σ

2)

(2)

These energetic evaluation terms (Q) take into account
dispersion/repulsion (vdw), hydrogen bonds (hbond), elec-
trostatics (elec) and desolvation (sol). In Eq. 2, constants
for van der Waals, hydrogen bonds, torsional forces, electro-
static interactions and desolvation are included by means of
weights Wvdw, Whbond, Wconf , Welec, and Wsol, respectively.
Value ri j is the interatomic distance. Lennard–Jones param-
eters taken from the Amber force field are represented by Ai j

and Bi j values, whereas Ci j and Di j indicate the maximum
well depth of potential energies between two atoms. The
angle-dependent directionality is represented by E(t). The
third term computes a Coulomb approach for electrostatics,
and the fourth term involves the volume (V ) of surrounding
atoms of a given one weighted by S, with an exponential fac-
tor computing atom distances. A further explanation of the
Einter computation can be obtained fromMorris et al. (2009).

TheRMSD is a quantitativemeasure of similarity between
two superimposed atomic coordinates of the co-crystallized
ligand’s conformation and the predicted position of the lig-
and. In a nutshell, the lower the RMSD score, the better the
solution is (if the co-crystallized ligand is considered as ref-
erence).

According to the literature (Trott andOlson2010;Kufareva
and Ruben 2010), the RMSD cutoff of 2 Å is used as a cri-
terion of the correct bound structure prediction. Ligands’

conformationswith anRMSD score above 2Å indicate a pre-
diction that is not very accurate. However, it is worth noting
that other docking solutions with high RSMD but low Einter

values would indicate alternative ligand–macromolecule
interactions. These solutions should be indeed considered,
since they can be interesting from a pharmacological point
of view, as mentioned in Sect. 1.

RMSD =
√√√
√ 1

N

n∑

i

d2i (3)

where the averaging is performed over the n pairs of equiv-
alent atoms and di is the distance between the two atoms in
the i-th pair.

2.2 Proposedmulti-objective formulation for
ligand–protein docking

As mentioned, our goal is to formulate molecular docking
as a bi-objective optimization problem by considering the
two terms separately, although following a Pareto dominance
scheme as follows:

– Objective 1:The Einter as one of the energy function terms
used in AutoDock 4.2, and expressed in Eq. 1.

– Objective 2: The RMSD (expressed in Eq. 3) as quanti-
tative measure of similarity between two superimposed
atomic coordinates of the co-crystallized ligand’s confor-
mation and the predicted position of the ligand.

In this way, we can now take advantage of specific learn-
ing models of Pareto optimality-based techniques to deal
with the molecular docking, which will result in sets of non-
dominated solutions with different choices of energy and
RMSD. In addition,we avoid the use of additionalweight fac-
tors that could bias the search procedure to one of the different
terms, as usually is seen in single-objective approaches.

3 Optimization strategy

Our optimization strategy includes two main processes act-
ing in parallel: an optimization algorithm and a molecular
docking procedure. The optimization part is carried out
through a multi-objective algorithm provided by jMetalCpp
(López-Camacho et al. 2014), an open-source framework
of single/multi-objective optimization metaheuristics. The
molecular binding procedure is performed by AutoDock 4.2
(Morris et al. 2009), a widely used tool for virtual drug dis-
covery involving rigid and flexible macromolecule–ligand
docking simulations.



Algorithm 1 Pseudocode of CommonAlgorithmic Template
for Multi-objective Molecular Docking
1: alg ∈ {NSGA-II, SMPSO, GDE3, MOEA/D}
2: pop ← initializePopulation()
3: evaluateFitness(pop, Autodock()) // Autodock thread
4: pareto_front ← initializeParetoFront(pop)
5: while not StopCondition() do
6: pop ← performNewAlgorithmIteration(pop, alg)
7: evaluateFitness(pop, Autodock())
8: pareto_front ← updateParetoFront(pareto_front, pop)
9: end while
10: return pareto_front

For this study, as we are interested on evaluating our
multi-objective approach for molecular docking, we have
focusedon four representativemulti-objectivemetaheuristics
in the state of the art. In concrete, we have selected the most
widely used algorithm in the field (NSGA-II), a swarm intel-
ligence optimizer (SMPSO), a solver based on differential
evolution (GDE3), and an algorithm based on decomposi-
tion (MOEA/D). A brief description of these techniques is
given as follows:

– NSGA-II (Deb et al. 2002). The Non-dominated Sorting
Genetic Algorithm II performs a generational strategy to
obtain a new offspring population from the original one,
by means of the application of genetic operators: selec-
tion, crossover and mutation. It uses a non-dominated
sorting procedure based on Pareto ranking together with
crowding distance density estimator to promote conver-
gence and diversity, respectively. In spite of being one
of the classical EMO algorithms in the literature, it still
shows a prominent performance in multiple benchmark-
ing and real-world problems.

– SMPSO (Nebro et al. 2009) (Speed Modulation Particle
Swarm Optimization) is a multi-objective particle swarm
optimization algorithm. Its main feature is a bounding
strategy of particles velocities to guide new particle’s
positions within the problem search space of variables.
SMPSO uses the polynomial mutation as perturbation
factor to avoid fast convergence. It uses an external
archive to store those non-dominated solutions obtained
during the search.

– GDE3 is the Generalized Differential Evolution 3
(Kukkonen andLampinen 2005), which follows the algo-
rithmic design of NSGA-II, although using differential
mutation and selection operators (ofDE), instead of those
topically used by NSGA-II. GDE3 uses an adapted ver-
sion of crowding distance to generate better distributed
sets of solutions.

– MOEA/D (Zhang and Li 2007) (Multi-objective Evolu-
tionary Algorithm Based on Decomposition) has become
the classical representative archive-less optimization

Fig. 1 Overall scheme of the optimization strategy. Solutions gener-
ated by multi-objective algorithms in jMetalCpp are then evaluated by 
AutoDock and finally sent back to jMetalCpp. Once the stop condi-
tion has been met, the best solution is returned to the AutoDock code 
which in turn generates an output file with the results. These results can 
be visualized with any tool that is suitable for visualizing AutoDock 
format (DLG) like AutoDockTool (ADT)

Therefore, jMetalCpp and AutoDock are integrated in 
such a way that the algorithms available in jMetalCpp can 
communicate with AutoDock to cooperate on the molecular 
docking optimization. This integration process consists of 
running AutoDock and jMetalCpp in two different threads 
inside the same task. This way, as the internal memory is 
shared, the two threads can communicate with each other 
and they synchronize using mutexes. This approach is effi-
cient and flexible, allowing any of the algorithms included in 
jMetalCpp to be easily used for solving docking problems.

Figure 1 illustrates the optimization process, which algo-
rithmic steps are also organized through the pseudocode of 
Algorithm 1. Therefore, after population and Pareto front 
are initialized (lines 2 to 4), while a given stop condition 
is not met (e. g., maximum number of iterations), a given 
metaheuristic algorithm in jMetal is executed to iteratively 
generate new solutions (line 6). Whenever the binding qual-
ity of a new solution has to be numerically quantified, it 
is sent to AutoDock to be evaluated in terms of binding 
energy and RMSD. After this evaluation, AutoDock returns 
the corresponding objective values to the algorithm, which 
are assigned to the evaluated solution (line 7). After this, 
the Pareto front is updated (line 8). This process is repeated 
until reaching a given stop condition. As a result, those 
non-dominated solutions found so far by the multi-objective 
algorithms are returned (Line 10). Finally, AutoDock is 
instanced to generate the output data concerning the opti-
mized docking. Thus, the final results follow the standard 
format tailored to AutoDock users.



technique, where a multi-objective problem is decom-
posed into a set of single-objective subproblems that are
optimized simultaneously. In particular, we have focused
in this study on MOEA/D-DE (Li and Zhang 2009),
which is a variant that applies differential evolution as
variation operators. In addition, this algorithm applies
a polynomial mutation to avoid premature convergence,
hence to improve its exploration capability.

4 Experimentation

This section is devoted to explain the set of ligand–protein
instances used for benchmarking the evaluated algorithms.
The experimental methodology is also explained, as well as
the set of parameters used to configure the algorithms.

4.1 Ligand–protein instances

In order to perform a through experimentation, we have
selected an extensive benchmarkof 73 complexes comprising
both ligand and receptor flexibility. These complexes have
been selected to cover an heterogeneous range of molec-
ular samples, comprising from small-size ligand to large
inhibitors. Our aim is to obtaining unbiased conclusions con-
cerning which algorithm performs the best on a wide and
heterogeneous set of complexes, hence to be suggested as
optimizer to the decision-maker.

Other past studies carried out with these molecular
instances (Morris et al. 2009) showed that those complexes
involving small ligands usually represent more difficult
problems, since the flexibility added to the receptor side
chains (ARG8) increases the space of ligand interaction. The
ligand–protein instances have been extracted from the PDB
database,1 so they have been lightly adapted for being used
in our docking simulations for solution evaluation.

The benchmark of ligand–protein instances selected, with
the PDB accession code, the X-ray crystal structures names,
and the structure resolution (Å), is shown inTable 1. For all of
them, the torsional degrees of freedom (flexibility) are 10 for
ligands and 6 for macromolecules (receptors). These torsion
movements are selected to allow the fewest number of atoms
to move around the ligand core. This implies a number of
23 problem variables (n) in solution vectors, consisting of: 3
for translation, 4 for rotation quaternion, and 16 for torsional
degrees.

4.2 Methodology

A series of 31 independent executions have been launched
for each combination of algorithm and molecular instance,

1 In URL http://www.rcsb.org/pdb/home/home.do.

Table 1 X-ray crystal structure coordinates taken from the PDB
database and used in docking experiments. They consist of 73 com-
plexes with accession codes from the PDB database. The range of
resolution (Å) of each subgroup is also shown in the last column

Ligand type PDB code Resolution (Å)

Small size 1A9M, 1AAQ, 1B6L, 1B6M,
1BDL, 1BDQ, 1BDR,
1GNM, 1GNN, 1GNO,
1HBV, 1HEG, 1HIH, 1HPV,
1HSG, 1HTE, 1KZK, 1SBG,
1TCX, 1ZIH, 1ZIR, 3AID

1.09–2.8

Medium size 1B6J, 1B6K, 1B6P, 1D4K,
1D4L, 1HEF, 1HPS, 1HXW,
1IZH, 1IZI, 1JLD, 1K6C,
1K6P, 1K6T, 1K6V, 1MTR,
1MUI, 2BPX, 4HVP, 4PHV,
5HVP

1.75–2.8

Large size 1A94, 1HIV, 1HOS, 1HTG,
1HVI, 1HVJ, 1HVK, 1HVL,
1HVS, 1HWR, 1ODY, 1VIJ,
1VIK, 3TLH, 7HVP, 9HVP

1.8–2.8

Cyclic urea 1BV7, 1BV9, 1BWA, 1BWB,
1DMP, 1G35, 1HPO, 1MES,
1MEU, 1PRO, 1QBR, 1QBT,
1QBU, 7UPJ

1.8–2.5

summing up a total number of: 31 × 73 × 4 = 9052 runs
in the experimentation phase. To carry out the experiments,
we have used a Condor2 middleware platform for distribute
computing, which comprises close to 400 cores acting task
scheduler, each task devoted to one independent run.

The resulting distributions have been computed in terms of
themedian and interquartile range (IQR).Wehave focusedon
twomain quality indicators to assess performance: hypervol-
ume (IHV) and unary additive Epsilon (Iε+) (Deb 2001). The
first indicator quantifies the convergence and diversity of the
resulting Pareto fronts, whereas the second one (Iε+) mea-
sures the convergence degree. For each molecular instance,
a reference Pareto front has been computed with all the non-
dominated solutions obtained in all the executions of all the
algorithms. This is a useful practice when calculating the two
indicators, since we are dealing with a real-world optimiza-
tion problem for which the Pareto fronts are not known.

4.3 Parameter setup

For the common parameters of all the evaluated algorithms,
we have chosen a population size of 150 individuals (particles
in the case of SMPSO) and 1,500,000 function evaluations
as stop condition. These values were chosen, as they are the
default settings used by AutoDock in the reference study
(Norgan et al. 2011).

2 In URL: http://research.cs.wisc.edu/htcondor/.
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In the case of specific parameters of each algorithm, a
different parameter setup has been set by following recom-
mendations of our previous studies (López-Camacho et al.
2015, 2016), as follows:

– NSGA-II: The distribution indexes for SBX crossover
andmutation operators are ηc = 20 and ηm = 20, respec-
tively. For these two operators, pc = 0.9 is the crossover
provability and pm = 1/n the mutation probability, with
n the number of decision variables. It applies binary tour-
nament selection.

– SMPSO: In this algorithm, ϕ1 and ϕ2 are the acceleration
coefficients, which are set to 1.5. The inertia weight is
ω = 0.9, and polynomial mutation is applied to a set of
particles (1/6) in the swarm.

– GDE3 (variant rand/1/bin), the differential mutation and
crossover parameters μ and Cr take a value of 0.5.

– MOEA/D μ is set to 0.5 and Cr is set to 1.0. The poly-
nomial mutation is configured with the same settings
applied in NSGA-II.

SMPSO obtains the best results in 60 of the 73 instances and
the second best in 6 instances. MOEA/D obtains the best
results in 6 instances and the second best in 61 instances.
Finally, GDE3 obtains the best results in 7 instances although
the second best in 6 instances.

Moreover, with the aim at providing the results obtained
with statistical confidence, we have used a formal procedure
by means of nonparametric statistical tests, since in some
cases the distribution of results did not follow the conditions
of normality and heteroscedasticity required (Sheskin 2007).
In this way, the analyses and comparisons are focused on the
distributions of each of the two metrics studied. To this end,
we have used Friedman’s ranking andHolm’s post hocmulti-
comparison tests to check which algorithms are statistically
worse than the best ranked technique,which is used as control
one.

In accordance with this procedure, Table 4 shows the
results of these tests, where SMPSO has the best Friedman’s
ranking value of IHV (with a value of 1.20), followed by
MOEA/D, GDE3, and NSGA-II. This means that SMPSO is
set as the control technique for IHV in the post hoc Holm test,
and hence, it is compared with the remaining algorithms. In
this regard, the adjusted P-values (HolmAp in Table 4) result-
ing from these comparisons are for the last three algorithms
(MOEA/D, GDE3 and NSGA-II), lower than the confidence
level, set toα = 0.05 in this study. In the case of Iε+, SMPSO
also shows the best ranking and is statistically better than
MOEA/D,GDE3 andNSGA-II, for the benchmark ofmolec-
ular instances used here.

From a graphical point of view, Figs. 2, 3, 4 and 5 plot the
approximated reference Pareto fronts from all executions (in
continuous line),with regard to the Pareto fronts of each com-
pared algorithm, for all the molecular instances with small
size, medium size large size and cyclic urea, respectively.
In these graphs, each solution from the four studied algo-
rithms is represented using different shapes and colors as
shown in the plot legend. An interesting observation can
be made with regards to the convergence region of fronts
for each algorithm, where, for example, MOEA/D seems to
converge to the region promoting solutions with low ener-
gies, while SMPSO is more focused on regions biased to
the RMSD objective. This gives us insights into the differ-
ent learning procedures induced by SMPSO and MOEA/D,
which search in different regions of the problem landscape,
therefore obtaining complementary solutions covering dif-
ferent parts in the Pareto fronts approximated.

5.2 Analysis on ligand binding sites andmolecular
interactions

In order to show the applicability of this multi-objective
strategy, we have chosen a set of complexes that include
HIV-protease therapeutic targets. The 1BDR and 1QBU cor-

5 Results

In this section, the obtained results are presented and ana-
lyzed. First, we compare the performance of the algorithms. 
A second analysis with selected solutions is also carried to 
provide insights into biological validation.

5.1 Performance comparisons

In order to evaluate the performance of each algorithm, we 
have taken in consideration the selected quality indicators. 
The first indicator we applied is the IHV, which is calcu-
lated by obtaining the sum of the contributed volume of 
each point of an approximated front with regard to a given 
reference point. Therefore, the higher the converge and diver-
sity degrees, the better the IHV value is. The medians and 
interquartile ranges of the obtained solutions in terms of 
IHV, for the set of 73 docking instances and for the algo-
rithms compared, are shown in Table 2. In accordance with 
these results, SMPSO obtains the best hypervolume for 63 
out of the 73 instances, and the second best results in 5 
instances. MOEA/D obtains the best results in 2 instances 
and the second best results in 31 instances. GDE3 obtained 
the best results in 8 instances and the second best results in 2 
instances. It is observable that many cells have a IHV  equal 
to zero. This happens when all the obtained solutions are out 
of the limits of the reference point, which indicates we are 
facing a very hard optimization problem.

Table 3 shows the median and interquartile ranges com-
puted in terms of Iε+. Similarly to the previous 

observations,



Table 2 Median and interquartile range of I (HV ) for each algorithm and instance

SMPSO GDE3 MOEA/D NSGA-II
1A9M 5.48e − 01 (3.5e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (3.3e − 01) 0.00e+ 00 (0.0e + 00)
1AAQ 6.86e − 01 (2.5e− 02) 0.00e+ 00 (7.3e− 01) 5.31e − 01 (7.6e − 01) 0.00e+ 00 (0.0e + 00)
1B6L 6.86e − 01 (8.3e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (6.4e − 01) 0.00e+ 00 (0.0e + 00)
1B6M 4.77e − 01 (5.5e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (2.6e − 01) 0.00e+ 00 (0.0e + 00)
1BDL 5.87e − 01 (4.8e− 02) 7.81e− 01 (9.3e− 02) 5.52e − 01 (3.8e − 01) 5.21e− 01 (6.2e − 01)
1BDQ 6.87e − 01 (2.9e− 02) 0.00e+ 00 (0.0e+ 00) 2.44e − 01 (6.1e − 01) 0.00e+ 00 (0.0e + 00)
1BDR 5.15e − 01 (6.8e− 02) 0.00e+ 00 (0.0e+ 00) 4.80e − 01 (5.7e − 01) 0.00e+ 00 (0.0e + 00)
1GNM 8.13e − 01 (3.2e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (7.6e − 01) 0.00e+ 00 (0.0e + 00)
1GNN 6.99e − 01 (4.2e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (3.5e − 01) 0.00e+ 00 (0.0e + 00)
1GNO 7.78e − 01 (3.4e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1HBV 6.07e − 01 (4.5e− 02) 0.00e+ 00 (0.0e+ 00) 4.27e − 01 (6.5e − 01) 0.00e+ 00 (0.0e + 00)
1HEG 5.18e − 01 (5.1e− 02) 6.63e− 01 (4.2e− 02) 5.76e − 01 (2.3e − 01) 9.12e− 02 (4.2e− 01)
1HIH 3.54e − 01 (5.6e− 02) 1.20e− 01 (4.2e− 01) 1.55e − 01 (5.6e − 01) 0.00e+ 00 (6.7e − 02)
1HPV 6.57e − 01 (6.0e− 02) 0.00e+ 00 (0.0e+ 00) 4.28e − 01 (6.6e − 01) 0.00e+ 00 (0.0e + 00)
1HSG 4.71e − 01 (7.1e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1HTE 5.55e − 01 (4.6e− 02) 9.59e− 02 (5.7e− 01) 4.02e − 01 (5.4e − 01) 0.00e+ 00 (0.0e + 00)
1KZK 0.00e + 00 (0.0e+ 00) 1.13e− 01 (7.0e− 02) 4.04e − 01 (2.3e − 01) 0.00e+ 00 (6.2e − 02)
1SBG 5.48e − 01 (8.6e− 02) 0.00e+ 00 (0.0e+ 00) 1.56e − 01 (4.9e − 01) 0.00e+ 00 (0.0e + 00)
1TCX 5.62e − 01 (8.7e− 02) 0.00e+ 00 (0.0e+ 00) 5.19e − 01 (5.7e − 01) 0.00e + 00 (0.0e + 00)
1ZIH 8.35e − 01 (4.0e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (8.9e − 01) 0.00e+ 00 (0.0e + 00)
1ZIR 5.21e − 01 (1.4e− 01) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (7.7e − 01) 0.00e+ 00 (0.0e + 00)
3AID 6.67e − 01 (2.8e− 02) 0.00e+ 00 (0.0e+ 00) 5.17e − 01 (7.2e − 01) 0.00e+ 00 (0.0e + 00)
1B6J 8.12e − 01 (2.3e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (6.0e − 01) 0.00e+ 00 (0.0e + 00)
1B6K 9.47e − 01 (9.9e− 03) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (7.9e − 01) 0.00e+ 00 (0.0e + 00)
1B6P 4.53e − 01 (1.4e− 01) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (3.2e − 03) 0.00e+ 00 (0.0e + 00)
1D4K 6.25e − 01 (5.5e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1D4L 7.15e − 01 (5.5e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1HEF 8.90e − 01 (1.0e− 02) 9.16e− 01 (2.7e− 02) 9.00e − 01 (3.8e − 02) 8.76e− 01 (6.4e− 01)
1HPS 7.54e − 01 (4.7e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (4.7e − 01) 0.00e+ 00 (0.0e + 00)
1HXW 5.57e − 01 (6.0e− 02) 6.08e− 01 (4.8e− 01) 4.88e − 01 (5.2e − 01) 0.00e+ 00 (5.0e − 01)
1IZH 7.60e − 01 (3.1e− 02) 0.00e+ 00 (0.0e+ 00) 3.59e − 01 (7.0e − 01) 0.00e+ 00 (0.0e + 00)
1IZI 7.26e − 01 (4.4e− 02) 0.00e+ 00 (0.0e+ 00) 5.21e − 01 (8.4e − 01) 0.00e+ 00 (0.0e + 00)
1JLD 5.99e − 01 (3.4e− 02) 0.00e+ 00 (6.8e− 01) 5.52e − 01 (6.3e − 01) 0.00e+ 00 (0.0e + 00)
1K6C 5.72e − 01 (3.9e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (4.1e − 01) 0.00e+ 00 (0.0e + 00)
1K6P 3.73e − 01 (1.2e− 01) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1K6T 4.45e − 01 (2.2e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1K6V 5.90e − 01 (6.4e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1MTR 5.53e − 01 (7.9e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (6.6e − 01) 0.00e+ 00 (0.0e + 00)
1MUI 7.57e − 01 (4.6e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (7.1e − 01) 0.00e+ 00 (0.0e + 00)
2BPX 8.53e − 01 (8.2e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
4HVP 6.27e − 01 (1.8e− 01) 0.00e+ 00 (0.0e+ 00) 4.13e − 01 (7.5e − 01) 0.00e+ 00 (0.0e + 00)
4PHV 6.64e − 01 (9.3e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (7.3e − 01) 0.00e+ 00 (0.0e + 00)
5HVP 6.53e − 01 (4.1e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1A94 6.42e − 01 (4.8e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (5.4e − 01) 0.00e+ 00 (0.0e + 00)
1HIV 6.13e − 01 (9.2e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (3.8e − 01) 0.00e+ 00 (0.0e + 00)
1HOS 4.40e − 01 (5.5e− 01) 0.00e+ 00 (4.4e− 03) 9.52e − 01 (9.2e − 02) 0.00e+ 00 (1.5e − 01)
1HTG 5.16e − 01 (4.4e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1HVI 6.30e − 01 (5.0e− 02) 0.00e+ 00 (0.0e+ 00) 2.93e − 01 (7.5e − 01) 0.00e+ 00 (0.0e + 00)
1HVJ 5.17e − 01 (3.1e− 02) 0.00e+ 00 (0.0e+ 00) 2.59e − 01 (5.2e − 01) 0.00e+ 00 (0.0e + 00)
1HVK 5.46e − 01 (1.5e− 02) 0.00e+ 00 (0.0e+ 00) 2.57e − 01 (2.4e − 01) 0.00e+ 00 (0.0e + 00)
1HVL 4.99e − 01 (1.9e− 02) 0.00e+ 00 (0.0e+ 00) 2.13e − 01 (4.8e − 01) 0.00e+ 00 (0.0e + 00)
1HVS 3.92e − 01 (5.3e− 02) 0.00e+ 00 (0.0e+ 00) 1.43e − 01 (2.6e − 01) 0.00e+ 00 (0.0e + 00)
1HWR 8.51e − 01 (1.3e− 02) 8.69e− 01 (9.0e− 01) 7.23e − 01 (3.9e − 01) 0.00e+ 00 (7.5e − 01)
1ODY 5.84e − 01 (1.4e− 01) 0.00e+ 00 (0.0e+ 00) 8.45e − 02 (5.2e − 01) 0.00e+ 00 (0.0e + 00)
1VIJ 6.58e − 01 (3.9e− 02) 0.00e+ 00 (0.0e+ 00) 4.78e − 01 (6.5e − 01) 0.00e+ 00 (0.0e + 00)
1VIK 5.60e − 01 (3.3e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (5.1e − 01) 0.00e+ 00 (0.0e + 00)
3TLH 4.88e − 01 (3.8e− 02) 6.57e− 01 (4.1e− 02) 5.37e − 01 (1.7e − 01) 1.89e− 01 (5.3e− 01)
7HVP 6.45e − 01 (1.8e− 02) 6.79e− 01 (2.0e− 01) 6.73e − 01 (1.9e − 01) 4.80e− 03 (6.2e− 01)
9HVP 9.16e − 01 (1.4e− 02) 0.00e+ 00 (0.0e+ 00) 5.66e − 01 (7.3e − 01) 0.00e+ 00 (0.0e + 00)
1BV7 5.00e − 01 (3.4e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (6.4e − 01) 0.00e+ 00 (0.0e + 00)
1BV9 4.62e − 01 (6.5e− 02) 0.00e+ 00 (0.0e+ 00) 1.91e − 01 (5.5e − 01) 0.00e+ 00 (0.0e + 00)
1BWA 5.42e − 01 (7.4e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (6.9e − 01) 0.00e+ 00 (0.0e + 00)
1BWB 7.50e − 01 (4.4e− 02) 0.00e+ 00 (0.0e+ 00) 3.69e − 01 (7.3e − 01) 0.00e+ 00 (0.0e + 00)
1DMP 8.30e − 01 (3.2e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (5.5e − 01) 0.00e+ 00 (0.0e + 00)
1G35 5.16e − 01 (4.6e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (0.0e + 00) 0.00e+ 00 (0.0e + 00)
1HPO 6.31e − 01 (4.5e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (4.9e − 01) 0.00e+ 00 (0.0e + 00)
1MES 3.66e − 01 (9.7e− 02) 0.00e+ 00 (0.0e+ 00) 1.04e − 01 (4.7e − 01) 0.00e+ 00 (0.0e + 00)
1MEU 6.19e − 01 (7.7e− 02) 5.13e− 01 (3.3e− 01) 4.73e − 01 (4.5e − 01) 0.00e+ 00 (0.0e + 00)
1PRO 4.39e − 01 (4.4e− 02) 0.00e+ 00 (0.0e+ 00) 1.21e − 02 (4.6e − 01) 0.00e+ 00 (0.0e + 00)
1QBR 7.20e − 01 (7.8e− 02) 0.00e+ 00 (0.0e+ 00) 5.48e − 01 (7.5e − 01) 0.00e+ 00 (0.0e + 00)
1QBT 3.63e − 01 (8.3e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (4.2e − 01) 0.00e+ 00 (0.0e + 00)
1QBU 9.18e − 01 (1.1e− 02) 9.18e− 01 (9.4e− 01) 8.52e − 01 (9.1e − 01) 0.00e+ 00 (0.0e + 00)
7UPJ 7.23e − 01 (8.1e− 02) 0.00e+ 00 (0.0e+ 00) 0.00e + 00 (4.2e − 01) 0.00e+ 00 (0.0e + 00)

Best and second best median results have dark and light gray backgrounds, respectively



Table 3 Median and interquartile range of I (ε+) for each algorithm and instance

SMPSO GDE3 MOEA/D NSGA-II
1A9M 3.90e − 01 (4.6e− 02) 2.79e+ 00 (2.7e− 01) 1.22e + 00 (9.7e − 01) 2.42e+ 00 (1.5e+ 00)
1AAQ 2.11e − 01 (5.2e− 02) 1.61e+ 00 (1.5e+ 00) 2.82e − 01 (2.0e + 00) 6.03e+ 00 (5.9e+ 00)
1B6L 2.26e − 01 (1.8e− 01) 1.89e+ 00 (1.7e+ 00) 1.77e + 00 (2.1e + 00) 3.35e+ 00 (2.2e+ 00)
1B6M 4.19e − 01 (6.9e− 02) 3.23e+ 00 (8.7e− 02) 1.47e + 00 (1.8e + 00) 3.46e+ 00 (1.0e+ 00)
1BDL 2.94e − 01 (8.3e− 02) 7.48e− 02 (8.8e− 02) 2.74e − 01 (3.4e − 01) 3.47e− 01 (2.1e+ 00)
1BDQ 2.59e − 01 (5.0e− 02) 7.83e+ 00 (5.8e+ 00) 6.26e − 01 (3.8e + 00) 8.70e+ 00 (6.3e+ 00)
1BDR 4.75e − 01 (7.2e− 02) 1.61e+ 00 (1.1e+ 00) 5.08e − 01 (4.7e − 01) 2.02e+ 00 (8.8e− 01)
1GNM 1.06e − 01 (3.3e− 02) 6.21e+ 00 (1.2e+ 00) 4.16e + 00 (5.7e + 00) 6.70e+ 00 (2.1e+ 00)
1GNN 2.17e − 01 (7.2e− 02) 5.43e+ 00 (1.9e− 01) 4.52e + 00 (4.3e + 00) 5.51e+ 00 (8.8e− 01)
1GNO 1.09e − 01 (4.4e− 02) 6.12e+ 00 (3.5e− 02) 3.85e + 00 (2.5e + 00) 6.71e+ 00 (1.1e+ 00)
1HBV 3.36e − 01 (7.8e− 02) 1.92e+ 00 (4.2e− 02) 4.02e − 01 (1.8e + 00) 3.53e+ 00 (2.0e + 00)
1HEG 3.99e − 01 (6.1e− 02) 1.63e− 01 (1.1e− 01) 2.67e − 01 (2.6e − 01) 7.42e− 01 (5.7e− 01)
1HIH 5.85e − 01 (7.4e− 02) 7.23e− 01 (1.5e+ 00) 6.65e − 01 (1.5e + 00) 2.32e+ 00 (2.3e+ 00)
1HPV 2.87e − 01 (7.6e− 02) 1.72e+ 00 (9.4e− 01) 3.51e − 01 (1.6e + 00) 2.67e+ 00 (1.8e+ 00)
1HSG 4.07e − 01 (1.3e− 01) 4.88e+ 00 (5.1e− 01) 3.31e + 00 (2.2e + 00) 4.45e+ 00 (1.7e+ 00)
1HTE 3.40e − 01 (6.8e− 02) 7.85e− 01 (5.7e− 01) 3.85e − 01 (9.0e − 01) 1.60e+ 00 (7.3e− 01)
1KZK 1.14e + 00 (1.4e− 01) 8.87e− 01 (7.0e− 02) 5.74e − 01 (2.4e − 01) 1.04e+ 00 (2.6e− 01)
1SBG 3.14e − 01 (1.6e− 01) 8.31e+ 00 (6.7e− 01) 6.13e − 01 (3.1e + 00) 7.62e+ 00 (4.6e+ 00)
1TCX 3.11e − 01 (1.8e− 01) 5.01e+ 00 (3.3e+ 00) 2.28e − 01 (7.5e − 01) 5.45e+ 00 (3.8e+ 00)
1ZIH 1.07e − 01 (7.2e− 02) 5.36e+ 00 (8.1e− 01) 2.24e + 00 (4.2e + 00) 8.54e+ 00 (4.2e+ 00)
1ZIR 4.41e − 01 (1.6e− 01) 5.33e+ 00 (1.1e+ 00) 1.02e + 00 (2.8e + 00) 6.58e+ 00 (2.2e+ 00)
3AID 3.00e − 01 (3.1e− 02) 3.77e+ 00 (1.5e+ 00) 3.50e − 01 (1.2e + 00) 4.12e+ 00 (2.6e+ 00)
1B6J 1.13e − 01 (3.6e− 02) 5.86e+ 00 (1.9e+ 00) 2.77e + 00 (4.9e + 00) 6.26e+ 00 (1.7e+ 00)
1B6K 2.63e − 02 (9.4e− 03) 5.55e+ 00 (4.4e+ 00) 1.14e + 00 (3.1e + 00) 7.21e+ 00 (1.9e+ 00)
1B6P 2.85e − 01 (1.8e− 01) 5.83e+ 00 (5.0e− 01) 3.19e + 00 (4.9e + 00) 6.19e+ 00 (1.2e+ 00)
1D4K 2.81e − 01 (9.2e− 02) 8.22e+ 00 (1.1e− 01) 5.24e + 00 (5.5e + 00) 8.49e+ 00 (2.7e+ 00)
1D4L 1.98e − 01 (1.1e− 01) 3.69e+ 00 (2.2e+ 00) 3.62e + 00 (1.2e + 00) 5.58e+ 00 (3.0e+ 00)
1HEF 7.93e − 02 (5.8e− 03) 5.85e− 02 (1.2e− 02) 5.68e − 02 (1.3e − 02) 6.66e− 02 (6.5e− 01)
1HPS 1.41e − 01 (4.9e− 02) 7.27e+ 00 (1.2e− 01) 2.57e + 00 (2.6e + 00) 7.32e+ 00 (7.7e− 01)
1HXW 3.71e − 01 (9.6e− 02) 2.39e− 01 (4.7e− 01) 2.96e − 01 (4.5e − 01) 1.78e+ 00 (2.2e+ 00)
1IZH 1.05e − 01 (3.2e− 02) 6.32e+ 00 (1.1e− 02) 4.92e − 01 (3.5e + 00) 6.22e+ 00 (3.1e+ 00)
1IZI 2.64e − 01 (5.0e− 02) 2.12e+ 00 (6.5e− 02) 2.82e − 01 (2.0e + 00) 3.75e+ 00 (1.9e+ 00)
1JLD 3.02e − 01 (7.5e− 02) 2.03e+ 00 (5.4e+ 00) 2.43e − 01 (9.9e − 01) 5.58e+ 00 (5.1e+ 00)
1K6C 2.33e − 01 (8.7e− 02) 4.28e+ 00 (8.8e− 01) 2.06e + 00 (2.8e + 00) 3.67e+ 00 (1.6e+ 00)
1K6P 4.92e − 01 (1.5e− 01) 1.85e+ 00 (1.7e+ 00) 2.73e + 00 (2.1e + 00) 3.57e+ 00 (1.7e+ 00)
1K6T 4.24e − 01 (5.6e− 02) 1.94e+ 00 (1.7e+ 00) 2.02e + 00 (1.7e + 00) 2.54e+ 00 (1.3e+ 00)
1K6V 2.30e − 01 (7.9e− 02) 4.19e+ 00 (8.9e− 01) 2.86e + 00 (1.5e + 00) 4.37e+ 00 (8.9e− 01)
1MTR 3.08e − 01 (1.5e− 01) 4.73e+ 00 (3.7e− 01) 1.73e + 00 (2.6e + 00) 4.65e+ 00 (1.4e+ 00)
1MUI 1.90e − 01 (8.8e− 02) 7.41e + 00 (2.5e+ 00) 3.02e + 00 (3.5e + 00) 7.62e+ 00 (3.3e+ 00)
2BPX 1.13e − 01 (1.2e− 01) 3.98e+ 00 (3.4e+ 00) 3.29e + 00 (2.3e + 00) 4.98e+ 00 (2.3e+ 00)
4HVP 3.02e − 01 (2.0e− 01) 4.15e+ 00 (8.1e− 02) 3.02e − 01 (2.1e + 00) 4.31e+ 00 (6.4e− 01)
4PHV 3.13e − 01 (1.4e− 01) 1.00e+ 01 (2.2e+ 00) 4.06e + 00 (6.3e + 00) 1.03e+ 01 (3.3e+ 00)
5HVP 1.92e − 01 (7.7e− 02) 5.58e+ 00 (6.5e− 01) 2.06e + 00 (2.2e − 01) 6.67e+ 00 (9.4e− 01)
1A94 2.68e − 01 (7.1e− 02) 7.53e+ 00 (6.8e− 03) 3.88e + 00 (7.0e + 00) 9.19e+ 00 (2.4e + 00)
1HIV 2.72e − 01 (1.4e− 01) 2.21e+ 00 (5.1e− 01) 1.33e + 00 (3.1e + 00) 3.72e+ 00 (1.3e+ 00)
1HOS 5.59e − 01 (5.7e− 01) 1.01e+ 00 (1.9e− 01) 4.70e − 02 (9.3e − 02) 1.16e+ 00 (6.0e− 01)
1HTG 4.42e − 01 (5.6e− 02) 1.05e+ 01 (2.0e− 02) 8.43e + 00 (7.0e + 00) 9.98e+ 00 (2.6e+ 00)
1HVI 2.18e − 01 (8.4e− 02) 7.41e+ 00 (1.5e− 01) 5.08e − 01 (1.0e + 00) 8.25e+ 00 (1.2e+ 00)
1HVJ 2.74e − 01 (9.6e− 02) 5.71e+ 00 (3.4e− 01) 5.58e − 01 (1.4e + 00) 5.90e+ 00 (9.2e− 01)
1HVK 1.90e − 01 (3.0e− 02) 7.59e+ 00 (3.7e+ 00) 5.21e − 01 (3.8e − 01) 8.02e+ 00 (7.6e− 01)
1HVL 2.69e − 01 (3.6e− 02) 8.55e+ 00 (7.5e− 02) 6.06e − 01 (1.2e + 00) 9.14e+ 00 (9.9e− 01)
1HVS 3.84e − 01 (1.1e− 01) 1.05e+ 01 (1.0e− 01) 7.10e − 01 (7.3e − 01) 1.17e+ 01 (1.5e+ 00)
1HWR 1.03e − 01 (3.3e− 02) 6.23e− 02 (1.5e+ 00) 1.59e − 01 (3.5e − 01) 1.68e+ 00 (5.5e+ 00)
1ODY 3.08e − 01 (1.5e− 01) 1.04e+ 01 (1.4e+ 00) 8.27e − 01 (8.1e + 00) 1.06e+ 01 (2.2e+ 00)
1VIJ 3.17e − 01 (3.7e− 02) 4.61e+ 00 (2.7e− 02) 3.08e − 01 (4.3e + 00) 5.02e+ 00 (8.5e− 01)
1VIK 3.40e − 01 (5.1e− 02) 6.74e+ 00 (1.4e− 01) 4.79e + 00 (6.2e + 00) 6.90e+ 00 (1.0e+ 00)
3TLH 4.52e − 01 (4.0e− 02) 2.18e− 01 (3.2e− 02) 3.39e − 01 (1.7e − 01) 6.49e− 01 (7.0e− 01)
7HVP 3.13e − 01 (2.5e− 02) 1.89e− 01 (1.7e− 01) 1.97e − 01 (1.8e − 01) 9.33e− 01 (4.2e+ 00)
9HVP 6.74e − 02 (2.9e− 02) 8.42e+ 00 (1.1e+ 00) 3.55e − 01 (4.1e + 00) 9.53e+ 00 (2.3e+ 00)
1BV7 4.80e − 01 (3.6e− 02) 4.56e+ 00 (8.1e− 01) 4.17e + 00 (4.7e + 00) 5.89e+ 00 (1.6e+ 00)
1BV9 5.10e − 01 (7.0e− 02) 5.21e+ 00 (2.4e+ 00) 6.89e − 01 (6.8e + 00) 7.75e+ 00 (2.4e+ 00)
1BWA 4.32e − 01 (8.9e− 02) 3.49e+ 00 (1.3e+ 00) 3.22e + 00 (4.4e + 00) 5.24e+ 00 (1.1e+ 00)
1BWB 1.76e − 01 (7.0e− 02) 2.92e+ 00 (2.5e+ 00) 4.49e − 01 (5.1e + 00) 6.32e+ 00 (2.5e+ 00)
1DMP 1.03e − 01 (2.8e− 02) 4.41e+ 00 (4.9e+ 00) 2.57e + 00 (4.0e + 00) 7.94e+ 00 (4.4e+ 00)
1G35 2.13e − 01 (1.1e− 01) 5.05e+ 00 (8.2e− 01) 4.63e + 00 (3.7e + 00) 5.25e+ 00 (1.2e+ 00)
1HPO 1.67e − 01 (1.1e− 01) 1.10e+ 00 (1.3e+ 00) 1.82e + 00 (2.3e + 00) 2.77e+ 00 (1.4e+ 00)
1MES 5.71e − 01 (1.3e− 01) 5.05e+ 00 (4.0e+ 00) 7.24e − 01 (5.1e + 00) 8.30e+ 00 (4.1e+ 00)
1MEU 3.38e − 01 (8.5e− 02) 3.83e− 01 (3.1e− 01) 3.81e − 01 (4.2e − 01) 6.33e+ 00 (3.0e+ 00)
1PRO 4.86e − 01 (7.0e− 02) 7.86e+ 00 (3.6e+ 00) 9.60e − 01 (6.4e + 00) 8.57e+ 00 (3.5e+ 00)
1QBR 2.69e − 01 (9.7e− 02) 3.57e+ 00 (8.4e− 01) 3.50e − 01 (3.3e + 00) 4.87e+ 00 (1.3e+ 00)
1QBT 5.87e − 01 (1.1e− 01) 5.14e+ 00 (6.2e− 01) 5.84e + 00 (6.9e + 00) 6.85e+ 00 (1.4e+ 00)
1QBU 7.07e − 02 (1.5e− 02) 5.15e− 02 (1.9e+ 00) 1.11e − 01 (1.9e + 00) 4.08e+ 00 (2.2e+ 00)
7UPJ 1.66e − 01 (9.5e− 02) 2.43e+ 00 (6.6e− 01) 1.49e + 00 (1.9e + 00) 2.37e+ 00 (5.6e− 01)

Best and second best median results have dark and light gray backgrounds, respectively



Table 4 Friedman’s rankings
with Holm’s Adjusted p-values
(with confidence level
α = 0.05) of the techniques
compared for the test set of 73
docking instances

Hypervolume (IHV) Epsilon (Iε+)
Algorithm FriRank HolmAp Algorithm FriRank HolmAp

*SMPSO 1.20 – *SMPSO 1.30 –

MOEA/D 2.52 7.54E−10 MOEA/D 1.99 1.34E−03

GDE3 2.93 1.01E−15 GDE3 2.83 1.76E−12

NSGA-II 3.33 6.28E−23 NSGA-II 3.86 1.81E−32

Symbol * indicates the control algorithm, and column at right contains the overall ranking of positions with
regard to indicators IHV and Iε+
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Fig. 2 Reference fronts from all executions (in continuous line) with
regard to the Pareto fronts of the studied algorithms with best hypervol-
ume (in dotted lines) for small-size molecular instances: 1A9M, 1AAQ,

1B6L, 1B6M, 1BDL, 1BDQ, 1BDR, 1GNM, 1GNN, 1GNO, 1HBV,
1HEG, 1HIH, 1HPV, 1HSG, 1HTE, 1KZK, 1SBG, 1TCX, 1ZIH, 1ZIR,
3AID

respond to instances from the benchmark used in this study.
The 3EKX and 3WSJ consist in interesting instances that
have HIV-proteases as targets, and their inhibitors are being
tested in resistant HIV-proteases.

The 1BDR corresponds to the complex HIV-1 protease
with inhibitor SB203386, a tripeptide analogue inhibitor. The

chimeric HIV-protease crystal is formed by replacing amino
acids in residues in the HIV type 1 with the correspond-
ing residues from the HIV type 2 (31-37) and in the active
site. It contains the mutations T31s, L33V, E34A, E35G,
M36I and S37E. Some studies (Swairjo et al. 1998) have
reported that these mutations can affect the dimensions of
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Fig. 3 Reference fronts from all executions (in continuous line) with regard to the Pareto fronts of the studied algorithms with best hypervolume
(in dotted lines) for large-size molecular instances: 1A94, 1HIV, 1HOS, 1HTG, 1HVI, 1HVJ, 1HVK, 1HVL, 1HVS, 1HWR, 1ODY, 1VIJ, 1VIK,
3TLH, 7HVP, 9HVP

(monomer A of HIV-protease) interacts with –NH (atom 8)
through a H-bond. The results agree with those reported in
Swairjo et al. (1998) and also in the ligand pose’s view of
the PDB entry 1BDR. This means that the predicted ligand’s
pose is very accurate, and therefore, the proposed strategy
can be useful in those cases where HIV-proteases contain
mutations that make them drug-resistant.

Another 1BDR solution was chosen from the other
extreme of MOEA/D non-dominated solutions front where
the RMSD scores are higher and the Einter values are lower
(see 1BDR in Fig. 2). The RMSD and the Einter values
of the solution are equal to 3.8 Å and − 21.76 kcal/mol,
respectively. This means that, in comparison with the other
molecular docking solution presented above, the ligand–
receptor is more stable in terms of energy and also a higher
RMSD score shows that another interesting binding site
can be found. Image A in Fig. 7 shows the reference and
computed ligands represented in green and pink sticks,
respectively. In this case, both structures are not overlapped.
This is explained because the obtained RMSD score is
higher than the previous result. Image B in Fig. 7 shows
the molecular interactions between the inhibitor SB203386
and theHIV-protease.ASP29amide (HIV-proteasemonomer
A) forms a H-bond with -NH of atom O1 of the ligand.

the HIV-protease site active and hence the interaction HIV-
protease-inhibitors. Due to the accumulation of mutations in 
this therapeutic target and the difference of response of HIV 
patients to the treatment with new HIV-protease inhibitors, 
the application of studies in silico with accurate molecular 
docking techniques to observe how these mutations affect the 
inhibitor affinity is necessary.

An 1BDR solution was chosen from the extreme of 
SMPSO non-dominated solutions front where the RMSD 
scores are lower and the Einter values are higher (see 1BDR 
in Fig. 2). The RMSD and the Einter values of the solution 
are equal to 0.00044 Å and − 19.7 kcal/mol, respectively. 
In Fig. 6, Image A shows the tridimensional structure of 
HIV-protease and the inhibitor SB203386. The reference and 
the predicted ligands are represented with green and pink 
sticks. The two flexible ARG8 are also represented in both 
sides of the HIV-protease (sticks in pink). Both structures 
are overlapped and located in the HIV-protease active site, 
which is a shaped tunnel. Image B shows the molecular inter-
actions between the ligand and receptor. The H-bonds are 
represented with green spheres. GLY27 (monomer B of HIV-
protease) amide (–CO, carbonyl group) interacts with -NH of 
atoms N36 and N30. ASP25 side chain (monomer A of HIV-
protease) forms a H-bond with –OH (atom O18). GLY27
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Fig. 4 Reference fronts from all executions (in continuous line) with
regard to the Pareto fronts of the studied algorithms with best hyper-
volume (in dotted lines) for medium-size molecular instances: 1B6J,

1B6K, 1B6P, 1D4K, 1D4L, 1HEF, 1HPS, 1HXW, 1IZH, 1IZI, 1JLD,
1K6C, 1K6P, 1K6T, 1K6V, 1MTR, 1MUI, 2BPX, 4HVP, 4PHV, 5HVP

Although the HIV-protease receptor’s catalytic site is the
characteristic ASP25-THR26-GLY27 sequence (Brick and
Wong 2003) and any of these amino acids are involved in the
ligand–receptor interactions of the solution, the H-bond pre-
dicted is stable in terms of energy. Furthermore, the inhibitor
SB203386 binds to the “flaps,” which is a pair of glycine,
β-hairpins loops, one from each monomeric HIV-protease,
that controls the access and the positioning of the substrate
in the active site such as Ung et al. (2014) reports.

According to the obtained results, it is worth noting that
the 1BDR corresponds to an instance that contains a small
HIV-protease inhibitor. The results obtained by Morris et al.
(2009) show that the LGA algorithm fails in finding a solu-
tion energetically stable in those docking problems where
the inhibitors’ sizes are small (like 1BDR) and flexibility is
applied to ARG8 side chain. The authors argued that these

results returned by LGA are due to the increase in docking
space by the application of flexibility to theARG8 side chains
and also the small size of the ligand. Using the proposed
multi-objective strategy, the solution returned by MOEA/D
shows that the predicted docked ligand–receptor complex is
energetically stable. In this case, MOEA/D was able to find
a stable ligand’s conformation in terms of energy.

The 1QBU solution was chosen from the other extreme
of SMPSO non-dominated solutions front where the RMSD
scores are lower and the Einter values are higher (see 1QBU
in Fig. 5). This solution has an RMSD score of 0.000036
Å and an Einter value of − 19.11 kcal/mol. This instance
corresponds to the HIV-protease with mutation C95A and a
cyclic urea amide. Image A in Fig. 8 shows the tridimen-
sional structure of HIV-protease represented in sticks. The
reference andpredicted ligand structures are representedwith
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Fig. 5 Reference fronts from all executions (in continuous line) with regard to the Pareto fronts of the studied algorithms with best hypervolume
(in dotted lines) for cyclic-urea molecular instances: 1BV7, 1BV9, 1BWA, 1BWB, 1DMP, 1G35, 1HPO, 1MES, 1MEU, 1PRO, 1QBR, 1QBT,
1QBU, 7UPJ

are overlapped given the low RMSD score of the solution. Image B
shows the molecular interactions. The H-bonds are represented with
green spheres. The involved and closer amino acids to the receptor–
ligand interaction are also labeled

bad contacts to the 3EKX and 3WSJ ligands. Therefore, in
these two cases, flexibility to the two ARG8 side chains was
not applied. The instance 3EKX includes a HIV-protease
with mutations Q7K and V64I, which are involved in the
emergence of drug-resistant HIV virus. The instance 3WSJ
includes themulti-drug-resistantHIV-proteasewithmutation
L40I.

One 3EKX solution was chosen from the extreme of
SMPSO non-dominated solutions where the RMSD scores
are lower and the Einter values are higher. The solution
presents an RMSD score of 0.44 Å and an Einter value of
− 19.32 kcal/mol. Image A in Fig. 9 shows the molecular
surface of HIV-protease. Monomers A and B are in green

Fig. 6 Image A shows the tridimensional structure (its secondary struc-
ture is also shown) of the chimeric HIV-protease (1BDR). The reference 
and predicted ligands are represented with red and green sticks, respec-
tively. Flexible ARG8 of two monomers (A and B) of HIV-protease is 
also represented with pink sticks. The reference and computed ligands

green and pink sticks, respectively. Both structures are over-
lapped. Figure B shows the molecular interactions between 
the cyclic urea amide and HIV-protease. The H-bonds are 
represented with green spheres. The GLY48 amide (–NH) 
of HIV-protease monomer A forms a H-bond with the N27 
atom of the ligand. The results agree with those obtained in 
Jadhav et al. (1997) and the ligand’s pose view of 1QBU in 
the database PDB.

The instances 3EKX and 3WSJ correspond to HIV-
proteases bound to novel inhibitors such as Nelfinavir and 
Indinavir. For these two instances, we performed several 
docking analyses to determine whether ARG8 side chains 
showed bad contacts to the inhibitors. ARG8 did not show



Fig. 7 Image A shows the tridimensional structure (its secondary struc-
ture is also shown) of the chimeric HIV-protease (1BDR). The reference
and predicted ligands are representedwith green and pink sticks, respec-
tively. The two flexible ARG8 of two HIV-protease monomers (A and
B) is also represented with pink sticks. As Image A shows, the ligand

interaction is close to the “flaps” that play a role in the HIV-protease–
substrate binding. In this case, the reference and computed ligands are
not overlapped given the higher RMSD score of the solution. Image B
shows the H-bonds are represented with green spheres. The involved
and closer amino acids to the receptor interaction are also labeled

Fig. 8 Image A shows
HIV-protease represented with
pink sticks (1QBU). The
reference and computed ligands
are represented with green and
pink sticks, respectively. Both
structures are overlapped given
the accuracy of the results
obtained for the RMSD score.
Image B shows the molecular
ligand–receptor interactions.
The H-bonds are represented
with green spheres. The
involved and closer amino acids
to the HIV-protease receptor are
also labeled

Fig. 9 Images A and C show
the molecular surface of 3EKX
and 3WSJ HIV-proteases. The
reference and predicted ligands
are represented with green and
pink sticks, respectively.
Monomers A and B are
presented in green and white,
respectively. In both cases, the
reference and computed ligands
are overlapped. Image B and D
show the molecular interactions
between ligand and receptor.
The H-bonds are represented
with green spheres. The
involved and closer amino acids
to the HIV-protease receptors
are also labeled

and white, respectively. As shown, the inhibitor is bound
to the multi-drug-resistant HIV-protease’s active site. The
reference and the predicted ligands’ conformations are over-

lapped. Image B shows the ligand–receptor interactions. The
predicted two H-bonds are represented with green spheres.
ASP29 and ASP25 side chains of HIV-protease monomer A



form two H-bonds with –OH of atoms O38 and O21. In the
3EKX crystal structure, two H-bonds are formed between
ASP25 of monomers A and B with atom 021. A third H-
bond between ASP30 of monomer A and O38 is also formed
(King et al. 2012). Although the prediction ligand’s confor-
mation shows an optimal conformation (below 2 Å), some of
the predicted H-bonds interactions from the docking simu-
lation are different than the observed in the crystallographic
structure. However, a low value of Einter indicates a stable
ligand–receptor interaction.

For 3WSJ, a solution was chosen from the extreme of
SMPSO non-dominated solutions where the RMSD scores
are lower and the Einter values are higher. The solution shows
anRMSD score of 0.038Å and an Einter of− 15.94 kcal/mol.
As the example above, ImageC in Fig. 9 shows that the ligand
is bound to the binding active site of HIV-protease. Image D
shows the H-bonds formed between HIV-protease and Indi-
navir. TheH-bonds are formed betweenASP32 ofmonomers
A and B and the atom O2 of Indinavir. The predicted molec-
ular interactions are in accordance with Kuhnert et al. (2014)
and the ligand’s pose view of 3WSJ in the database PDB.

6 Conclusion

In this work, we perform a thorough experimentation to
evaluate our multi-objective formulation for the molecular
docking problem. This formulation involves a bi-objective
optimization process, by minimizing the binding energy and
the RMSD obtained in ligand–protein conformations. We
extend here our previous research in López-Camacho et al.
(2016), by assessing the performance of NSGA-II, SMPSO,
GDE3 and MOEA/D, when tackling a large benchmark of
73 PDB structures (instances).

The following main conclusions are extracted from the
analysis, as follows:

1. Our study confirms that using a multi-objective approach
to optimized ligand–protein docking is able to approxi-
mate a set of solutions. Nowwe can provide practitioners
with trade-off solutions in terms of RMSD and binding
energy.

2. As experimented in our previous work (López-Camacho
et al. 2016), SMPSO shows the best overall results in
terms of hypervolume and epsilon indicators, in the
scope of an extensive benchmark of molecular instances.
Statistical procedure in Table 4 ranks MOEA/D as the
second best performance technique, followed by GDE3
and NSGA-II.

3. A special behavior is observed for SMPSO, which
approximates Pareto fronts of non-dominated solutions
with lowRMSDvalues, whileMOEA/D converges to the

region focused on low energies. A combination of these
two algorithms could lead to a new hybrid technique with
prominent performance for ligand–protein docking.

4. In terms of biological validation, the results from the
instances 1BDRand1QBUshow that thismulti-objective
strategy allows practitioners to select a specific ligand’s
conformation from a range of solutions. This can be very
interesting from a pharmacological point of view in those
cases where the RMSD scores are higher and the Einter is
lower, specially, in those cases where the ligands bind to
a regulation binding site of the macromolecule altering
the enzyme–substrate interaction.

As future work, we are designing new algorithmic propos-
als by hybridizing search mechanisms included in SMPSO
and MOEA/D algorithms with the aim of approximation
solutions covering the full Pareto front. In this regard, the
use of unbounded archives and restarting methods could be
beneficial for such experiments in which other alternative
active sites in compounds are required to be explored and
discovered.
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