Skip to main content
Log in

Performance analysis intelligent-based advanced PSO algorithm and testing of real-time matrix converter electrical system

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The advanced improvements in power electronic switches make the development of power electronic converters. This drastic development results the matrix converter (MC) evaluation. MC is a bidirectional power flow device with single-stage conversion process with variable voltage and variable frequency. The major drawback of MC is harmonic content present due to switching of power electronic devices. To reduce the harmonics present in the MC, lots of research works were carried out, but it is limited to some extent; beyond the limit, the harmonics can be reduced in MC by introducing soft computational algorithm-based controller. The PSO-based controller was implemented in the literature with resistive and inductive loads. In this paper, PSO-, modified PSO-, modified hybrid PSO-based controllers were implemented with induction motor as load. This soft computing-based controller for MC effectively reduces the harmonic content by choosing the optimal switching pulses for each sampling. The simulation results were carried out on the MATLAB/Simulink interface. Both Simulink and hardware results of the MC strongly recommend the soft computing-based controller for MC to improve the behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

w o :

Input angular frequency

q :

Modulation index

f s :

Source frequency

f o :

Load frequency

V om :

Peak value of output voltage magnitude

V im :

Peak value of input voltage magnitude

Vs(t):

Source voltage

R f :

Filter resistance

L f :

Filter inductance

C f :

Filter capacitance

Vi(t):

Input voltage

Is (t):

Input current

W :

Inertia weight factor

Vo(t):

Output voltage

io(t):

Output current

RL :

Load resistance

L L :

Load resistance

V t+1 i :

Updated velocity of the ith particle

V t i :

Velocity of the ith particle

C1, C2 :

Position constant

R1, R2 :

Random constant

Pbestti :

Best previous position of the ith particle

Gbestti :

Best particle among all the particles in the swarm

S t i :

Switching state of ith particle

S t+1 i :

Updated switching state of ith particle

References

  • Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Cham

    Book  Google Scholar 

  • Abualigah LMQ, Hanandeh ES (2015) Applying genetic algorithms to information retrieval using vector space model. Int J Comput Sci Eng Appl 5:19

    Google Scholar 

  • Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73:4773–4795

    Article  Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH (2017) A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl Soft Comput 60:423–435

    Article  Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Article  Google Scholar 

  • Ansari S, Chandel A (2017) Simulation based comprehensive analysis of direct and indirect matrix converter fed asynchronous motor drive. In: 4th IEEE Uttar Pradesh section international conference on electrical, computer and electronics, Mathura, India, pp 9–15

  • Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28:1591–1610

    Article  Google Scholar 

  • Arqub OA, Hammour ZA (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415

    Article  MathSciNet  Google Scholar 

  • Arqub OA, AL-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283–3302

    Article  Google Scholar 

  • Arqub OA, Momani S, AL-Smadi M, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21:7191–7206

    Article  Google Scholar 

  • Dan H, Zhu Q, Peng T, Yao S, Wheeler P (2017) Preselection algorithm based on predictive control for direct matrix converter. IET Electr Power Appl 11(5):768–775

    Article  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Sixth international symposium on micro machine and human science, Nagoya, Japan, pp 39–43

  • Gozde H (2015) Comparative analysis of swarm optimization-based control method for direct matrix converter. Electr Eng 97(3):181–193

    Article  Google Scholar 

  • Gözde H, Cengiz Taplamacıoglu M (2013) A simulation study of crazy-PSO controller for Direct Matrix Converter. In: International conference on electrical and electronics engineering, Bursa, Turkey, pp 107–111

  • Jahangiri A, Radan A (2011) Eliminating current sensors of inderect matrix converter using neuro fuzzy controller. In: European conference on power electronics and applications, Birmingham, UK, pp 1–10

  • Laskody T, Prazenica M, Kascak S (2014) Space vector pulse width modulation for two-phase two-stage matrix converter with four legs. In: International conference on applied electronics, Pilsen, Czech republic, pp 181–184

  • Mahendran N, Gurusamy G (2009) THD analysis of matrix converter fed load. In: International conference on power electronics and drive systems, Taipai, Taiwan, pp 828–832

  • Moghaddami M, Sarwat AI (2018) Single phase soft switched AC-AC matrix converter with power controller for bidirectional Inductive power transfer systems. IEEE Trans Ind Appl 54(4):3760–3770

    Article  Google Scholar 

  • Mohammad Noor SZ, Abdul Rahman NF, Mohamad Aris A (2011) Modeling and simulation of a single phase boost AC-AC converter using single-phase matrix converter topology. In: IEEE international conference on computer applications and industrial electronics, Penang, Malaysia, pp 208–213

  • Ngatman MF, Sharif JM, Ngadi MA (2017) A study on modified PSO algorithm in cloud computing. In: 6th ICT International student project conference, Malaysia, pp 1–4

  • Niassati N, Bagher M, Sadati AM, Hajihosseinlu A, Afjei E (2012) Improvement of output voltage and input current for a matrix converter using genetic algorithm. In: International conference on cyber technology in automation, control, and intelligent systems, Bangkok, Thailand, pp 238–242

  • Nikkhajoei H, Iravani R (2007) Application of matrix converter for large induction machines. In: IEEE power electronics specialists conference, Orlando, USA, pp 2535–2540

  • Ning Z, Ma L, Li Z, Xing W (2009) A hybrid particle swarm optimization for numerical optimization. In: International conference on business intelligence and financial engineering, Beijing, China, pp 92–96

  • Rodriguez J, Espinoza J, Rivera M, Villarroel F, Rojas C (2010) Predictive control of source and load currents in a direct matrix converter. In: IEEE international conference on industrial technology, Chile, pp 1826–1831

  • Rodriguez J, Rivera M, Kolar JW, Wheeler PW (2012) A review of control and modulation for matrix converters. IEEE Trans Ind Electron 59(1):58–70

    Article  Google Scholar 

  • Roy RB, Cros J, Basher E, Taslim SMB (2017) Fuzzy logic based matrix converter controlled indution motor drive. In: IEEE region 10 humanitarian technology conference, Dhaka, Bangladesh, pp 489–493

  • Schwanz D, Bagheri A, Bollen M, Larsson A (2016) Active harmonic filters: control techniques review. In: 17th International conference on harmonics and quality of power, Belo hori zonte, Brazil, pp 36–41

  • She H, Lin H, Wang X, Yue L (2009) Damped input filter design of matrix converter. In: International conference on power electronics and drive systems, Taipei, Taiwan, pp 672–677

  • Shinde PB, Date TN (2017) Pulse width modulation control of 3 phase AC–AC matrix converter. In: International conference on computing methodologies and communication, Erode, India, pp 992–997

  • Shindo T, Jin’no K (2016) Particle swarm optimization for matrix converter of switching pattern design. In: IEEE Asia Pacific conference on circuits and systems, Jeju, South korea, pp 309–312

  • Sivarani TS, Joseph Jawhar S, Agees Kumar C (2012) Novel intelligent hybrid techniques for speed control of electric drives fed by matrix converter. In: International conference on computing, electronics and electrical technologies, Kumaracoil, India, pp 466–471

  • Sun XY, Chen XZ, Xu RD, Gong DW (2014) Hybrid many objective particle swarm optimization set evolution. In: Eleventh world congress on intelligent control and automation, Shenyang, China, pp 1324–1329

  • Sweety Jose P, Chandra Deepika N, Nisha SN (2011) Applications of single phase matrix converter. In: International conference on emerging trends in electrical and computer technology, Nagercoil, India, pp 386–391

  • Venturi M (1980) New wave sine wave, sine wave out technical conversion eliminates reactive elements. In: 7th National solid state power conversion conference, Calif, USA, pp 1–15

  • Wheeler PW, Rodriguez J, Clare JC, Empringham L, Weinstein A (2002) Matrix converters: a technology review. IEEE Trans. Ind Electron 49(02):276–288

    Article  Google Scholar 

  • You K, Xiao D, Rahman MF, Nasir Uddin M (2014) Applying reduced general direct space vector modulation approach of AC–AC matrix converter theory to achieve direct power factor controlled three phase AC–DC matrix rectifier. IEEE Trans Ind Appl 14(3):2243–2257

    Article  Google Scholar 

  • Zhang J, Li L, He T, Aghdam MM, Dorrell DG (2017) Investigation of direct matrix converter working as a versatile converter (AC/AC, AC/DC, DC/AC, DC/DC conversion) with predictive control. In: 43rd Annual conference of the IEEE industrial electronics society, Beiging, China, pp 4644–4649

  • Zhang J, Li L, Dorrell DG (2018) Control and applications of direct matrix converters: a review. Chin J Electr Eng 04(2):18–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Amarendra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarendra, C., Reddy, K.H. Performance analysis intelligent-based advanced PSO algorithm and testing of real-time matrix converter electrical system. Soft Comput 24, 14209–14220 (2020). https://doi.org/10.1007/s00500-020-04789-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04789-9

Keywords

Navigation