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Abstract
In this paper, we analyze the population diversity of grammatical evolution (GE) on multiple levels of genetic information:
chromosome diversity, expression diversity, and output diversity. Thereby, we use a tree-similarity metric from tree-based
GP literature to determine similarity of expression trees generated in GE. The similarity of outputs is determined via their
correlation.We track the pairwise similarities for all individuals within a generation on all three levels and track the distribution
of similarity values over generations. We demonstrate the analysis method using four symbolic regression problem instances
and find that the visualization highlights some issues that can occur when using GE such as: large groups of individuals with
highly similar outputs, a high fraction of trees with constant outputs, or short and highly similar trees in the early stages of the
GE run. Especially in the early phases of GE, we see that a large subset of the population represents equivalent expressions.
In early stages, rather short expressions are produced leaving large parts of the chromosome unexpressed. More complex
expressions can be derived only after GE has successfully evolved well-working beginnings of chromosomes.
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1 Introduction

Genetic programming (GP) (Koza 1992; Poli et al. 2008) is
an optimization techniquewhich evolves a population of tree-
encoded solution candidates. Similar to biological evolution,
GP depends on two steps of Darwinian evolution: variation
due to crossover and mutation, and selection.

Grammatical evolution (GE) is a form of genetic program-
ming where individuals are represented using chromosomes,
and decoded into phenotypes by means of a context-free
grammar (O’Neill and Ryan 2001). The grammar can be
adjusted to the problem instance to be solved and allows
integration of prior knowledge. Besides, it is possible to
use a classical integer-vector encoding for solution candi-
dates which makes implementation of genetic operators for
crossover and mutation trivial.

Recently, some criticisms have been directed to GE. In
Whigham (2015), the authors stated that, unlike context-free
grammar genetic programming (CFG-GP), the performance
of “pure” GE on the examined problems closely resembles
that of random search. Besides, the publication of Whigham
et al. (2017) introduced a debate that had a significant impact
in the community. A peer commentary special section in that
paper was published after its publication. The commentary
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shows that there are different opinions on the affirmations
about GE made in the paper. Foster, for instance, defends the
importance of the evolutionary process itself in the explo-
ration of the search space, even if the practitioner does not
implement fully smart non-disruptive operators and repre-
sentations (Foster 2017).

However, GE behavior has been extensively analyzed in
the research community. In particular, several recent works
have analyzed the diversity and redundancy regarding the
individuals of the population, extracting interesting con-
clusions about the relationships between the size of the
individuals and the redundancy of the population.

In this paper, we propose a different look at diver-
sity dynamics in GE, specifically for symbolic regression
problems. The idea consists of quantifying the population
diversity by determining the distributions of pairwise simi-
larities of individuals at three levels of diversity: chromosome
diversity, expression diversity, and output diversity.We chose
to use these terms instead of the commonly used genotypic
diversity and phenotypic diversity because of the intermedi-
ate step of genetic expression based on the grammar in GE.
This might cause confusion whether the phenotypic diversity
refers to diversity of expressions or outputs.

To this aim, we perform an empirical study of the popula-
tion diversity dynamics of GE on a set of selected symbolic
regression benchmark problems. Thereby, we use a tree-
similarity measure from GP literature for expression trees
produced by GE, and we additionally quantify pairwise sim-
ilarities on the chromosome level. The main objective is to
gain better insights into the population diversity dynamics of
GE using visualization of similarities. The GE implementa-
tion that is considered in this work is publicly available in a
GitHub repository (Adaptive Group BS 2018).

The rest of the paper is structured as follows. Section 2
reviews recent related works on diversity analysis. Section 3
describes the metrics and the analysis that we perform in
this work. Section 4 firstly summarizes the benchmark data
sets we used and then presents the parameterization of the
algorithms. Section 5 shows the experimental results. Finally,
Sect. 6 draws the conclusions of the paper.

2 Related work

Population diversity and its progress have long been studied
in the GP community. In Burke et al. (2004), the authors pro-
vide a good overview of various distance measures in GP,
analyzing the correlation between fitness and diversity; and
structural versus evaluation-based solutions. Similarity anal-
ysis for symbolic regression was for example discussed by
Winkler (2010) and Winkler et al. (2018), analyzing similar-
ity dynamics in GP-based symbolic regression.

Regarding GE, a study on the locality of the genotype-
phenotype mapping was presented by Rothlauf and Oetzel
(2006), where the authors show that in GE neighboring geno-
types do not correspond to neighboring phenotypes. They
suggested to consider locality issues in GE. However, they
also show in Rothlauf and Goldberg (2003) that uniformly
redundant representations do not change the behavior of
genetic algorithms (GAs) which, as GE, encode the indi-
viduals using chromosomes. In particular, they distinguish
between redundant representations with similar genotypes,
called synonymously redundant (SynR) representations, and
redundant representations with dissimilar genotypes, called
non-synonymously redundant (non-SynR) representations.
They theoretically show that SynR representations do not
affect the behavior of evolutionary algorithms. In GE, both
types of redundant representations are possible so, according
to that previous work, the SynR representations do not affect
the evolution. However, the effect of non-SynR representa-
tions is not analyzed in GE.

Evolvability, defined as the capacity of an evolutionary
algorithm of improving the fitness of an individual (or popu-
lation) after the application of an operator, is another concept
that has been analyzed in the literature in relation with diver-
sity and redundancy. Even in the beginnings of GE, we
can find studies that show how genotypic redundancy and,
in consequence, degeneracy or fitness neutrality, enhance
evolvability. For instance, O’Neill and Ryan (1999), the
genetic code degeneracy of GE and its implications for geno-
typic diversity is analyzed, concluding that genetic diversity
is improved as a result of degeneracy for some problems
domains. More recently, Medvet et al. (2017) experimentally
study GE evolvability mixing problems, mapping functions,
genotype sizes, and genetic operators, and they conclude that
there are several factors affecting GE evolvability. Among
them, authors highlight redundancy.

Other works fromMedvet (2017) andMedvet et al. (2018)
studied dynamic locality and redundancy in GE. In Medvet
(2017), locality and redundancy were studied during the evo-
lution of GE. In Medvet et al. (2018), the authors designed
diversity and usage (DU) maps for the analysis of the rep-
resentation in evolutionary algorithms. Both these works
consider those properties at the individual level. Moreover,
Bartoli et al. (2019) investigated the effects of two strate-
gies for promoting diversity in Grammar-guided Genetic
Programming. The design of those strategies is justified by
a previous study of four different approaches: context-free
grammar genetic programming (CFGGP) (Whigham 1995),
standard grammatical evolution (GE), structured grammat-
ical evolution (SGE) (Lourenço et al. 2016), and weighted
hierarchical grammatical evolution (WHGE) (Bartoli et al.
2020). It describes the individuals at three levels in terms
of their genotype, phenotype, and fitness, but the focus of
the work is not the analysis of diversity but of the pro-
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motion strategies. In fact, it should be straight-forward to
use the measures for tree similarity and output similarity
described below for more fine-grained analysis of the effects
of diversity promotion strategies. Compared to the string edit
distance used for finding the closest parent by Bartoli et al.
(2019) the tree similarity is less sensitive to re-ordering of
sub-expressions, e.g., the two expressions (x1 + x2)x3 and
x3(x2 + x1) have a high tree similarity but low string similar-
ity. A simple and efficient algorithm which is equivalent to
bottom-up tree-distance and can be used for online diversity
control has been described by Burlacu et al. (2019).

In particular, the previously mentioned SGE has intro-
duced even stronger differences among GP, CFG-GP, and
GE. In fact, it has been also demonstrated that the high local-
ity of SGE generates low output diversity which produces
high redundancy after a number of generations (Bartoli et al.
2019).

Therefore, after the literature review, in our opinion no
final conclusion against or in favor of GE can be taken,
since its performance is well known, as proven by many suc-
cessful works applied to different kind of problems (Adamu
and Phelps 2009; Hidalgo et al. 2014; Risco-Martín et al.
2014; Mingo and Aler 2018; Cas tejón and Carmona 2018).
However, it is also clear that diversity is a key factor in the
evolvability of GE, as in other evolutionary algorithms.

Through the genetic expression of chromosomes, GE
introduced a separation between the chromosomes and the
expressions which allows to have high chromosome diver-
sity even with low expression similarity. This is why we here
specifically analyze diversities on all three levels, also includ-
ing graphical visualization of the process.

3 Population diversity analysis

As we here aim to study the diversity dynamics, we first
have to clarify how we define diversity in GE and how we
can measure it.

In order to quantify diversity, we calculate all pairwise
similarities of GE individuals within the population in each
generation.

We calculate similarities on three levels, namely on chro-
mosome level—calculating the similarity of integer vectors,
on tree level—comparing trees using the bottom-up tree dis-
tance (Valiente 2001), and on phenotype level—calculating
the correlation between two individuals’ outputs.

Since our similarity measures are symmetrical, the num-
ber of similarity calculations necessary for a population of N
individuals is N (N−1)

2 . We can quantify the diversity of the
population P as the average similarity

Div(P) = 1 −
∑N−1

i=1
∑N

j=i+1 Sim(pi , p j )

N (N − 1)/2
(1)

Fig. 1 Bottom-up mapping between two trees t1 and t2 (taken from
Valiente (2001)). For each node n the node n′ in the other tree is deter-
mined, which has the same structure (subtree structure) as n

where Sim(p1, p2) can be any similarity measure with out-
puts that range from zero (two completely different objects)
to one (identical objects). In our analysis, we not only con-
sider average similarity but track the full distribution of
similarities.

3.1 Chromosome similarity

The similarity of two chromosomes c1 and c2 is calculated
via the Hamming distance. Given two integer vectors, the
Hamming distance is calculated as the number of indices at
which the vectors have different values. The chromosome
similarity is one minus the Hamming distance of the two
chromosomes divided by their length to map the similarity
to the interval [0, 1]:

n = length(c1) = length(c2) (2)

ChromosomeSimilarity(c1, c2) = 1

n

n∑

i=1

eq(c1[i], c2[i])

(3)

eq(c1[i], c2[i]) =
{
0 if c1[i] �= c2[i]
1 if c1[i] = c2[i]

(4)

3.2 Expression similarity

For calculating the similarities of trees defined by GE chro-
mosomes, we use the bottom-up tree distance (Valiente 2001;
Winkler et al. 2018; Burlacu et al. 2019). It is based on the
largest common forest between trees. It has the advantage
of maintaining the same time complexity, namely linear in
the size of the two trees regardless of whether the trees are
ordered or unordered. An efficient algorithm for the calcu-
lation has been described by Burlacu et al. (2019). The tree
distance is calculated over the abstract syntax trees after the
expression of the chromosomes, and it not dependent on the
derivation tree. The algorithm works as follows (Fig. 1):
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+

x3 +

/

x1 x2
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(d) fb(x) (e) Outputs scatter plot of fa(x) and fb(x)

Fig. 2 Two different individuals of GE ( fa = 9+x1+x3
2.3+x2

and fb = x3 + x1
x2

+ x3) represented as chromosomes (a, b), corresponding trees (c , d),

and the scatter plot of the output values (e). The chromosome similarity of fa and fb is 0.875, the corresponding tree similarity is 0.4 ( 3
(7+8)/2 ),

and their output similarity is 0.65

*

6 /

*

-

x1 1

x2

x3

(a) fc(x)

/

x3 *

*

-

x1 8

x2

x3

(b) fd(x) (c) Outputs scatter plot of fc(x) and fd(x)

Fig. 3 Two different individuals ( fc = 6·(x1−1)·x2
x3

and fd = x3
(x1−8)·x2·x3 ) represented as trees (a, b), and the scatter plot of the output values (c).

The tree similarity of fc and fd is 6
9 , and their output similarity is 0.064

1. In the first step, it computes the compact directed acyclic
graph representationG of the largest common forest F =
t1 ·∪ t2 (consisting of the disjoint union between the two
trees). The graph G is built during a bottom-up traversal
of F (in the order of non-decreasing node height). Two
nodes in F are mapped to the same vertex inG if they are
at the same height and their children are mapped to the
same sequence of vertices in G. The bottom-up traversal
ensures that children are mapped before their parents,
leading to O(|t1| + |t2|) time for adding vertices in G

corresponding to all nodes in F . This step returns a map
K : F → G which is used to compute the bottom-up
mapping.

2. The second step iterates over the nodes of t1 in level-
order and builds a mapping M : t1 → t2 using K to
determine which nodes correspond to the same vertices
in G. Thus, for each node n, the node n′ in the other
tree is determined, which has the same structure (subtree
structure) as n. The level-order iteration guarantees that
every largest unmapped subtree of t1 will be mapped to
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Table 1 Parameter values for the GE experiments

Parameter Value

Population size 300

Generations 1700

Elites 1 Individual

Chromosome length 256

Maximum number of wraps 5

Crossover 80 % probability

Mutation 2% probability

Selection Tournament selection, group size 2

an isomorphic subtree of t2; |M(t1, t2)| is the number of
branches for which a branch with the same structure was
found in the other tree. Finally, the bottom-up distance
between trees t1 and t2 is calculated as

BottomUpDistance(t1, t2) = |M(t1, t2)|
|t1|+|t2|

2

(5)

Thus, the similarity of t1 and t2 is defined as

GenotypicSimilarity(t1,t2)=1−BottomUpDistance(t1,t2)

(6)

Due to the division of M by the average tree size of t1
and t2, the distance will always be in the interval [0, 1];
thus, also the so calculated genotypic similarity will be
in the interval [0, 1].

3.3 Output similarity

Output similarity is calculated with regard to the individu-
als’ response on the training data. Individuals with the same
response are considered similar regardless of their actual
structure.

We use the squared Pearson product-moment correlation
coefficient to quantify the output similarity of two output
vectors Y1 and Y2 for the same inputs X :

OutputSimilarity(Y1,Y2) =
(
Cov(Y1,Y2)

σY1σY2

)2

(7)

This function always returns a value in the interval [0, 1].
The similarity for a zero-variance vector and a nonzero vari-
ance vector is set to zero; the similarity of two zero-variance
functions is set to one.

3.4 Similarity calculation examples

Figure 2 shows two exemplary GE individuals represented
as integer vectors. Underneath the figure shows the corre-

Fig. 4 GE grammar for the experiments

sponding trees and functions’ outputs on randomly generated
inputs X . The chromosomes are almost identical, but differ-
ent trees are expressed. However, the function outputs for
the two trees are correlated. Accordingly, the chromosome
similarity is high (0.875), the tree similarity is 0.4 (3 match-
ing nodes for an average tree size of 7.5), and the function
similarity is 0.65.

Figure 3 shows two expression trees. As we see in the fig-
ure, the shapes of the trees are similar, but they correspond
to different expressions. The nodes which are matched when
calculating the bottom-up tree similarity are highlighted. In
this example the bottom-up tree similarity is 0.67 (6 match-
ing nodes over 9 total nodes). In Fig. 3c, we see that the
functions’ outputs on randomly sampled X are very differ-
ent and the correlation of outputs is low. Accordingly, the
output similarity is almost zero (0.064).

4 Test series

4.1 Problem instances

In the literature, we can find a lot of different symbolic
regression problems although some benchmark sets include
several functions with similar characteristics (Nicolau 2017).
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Table 2 Final qualities of solutions (NMSE on training data in percent)

Spatial VF-5 VF-8 Tower

GE (25th perct) 8.2 2.3 2.7 17.5

GE (median) 9.4 2.7 4.2 19.9

GE (75th perct) 10.4 20.1 5.3 22.1

Recently Nicolau et al. (2015) made a study on the difficulty
of selecting the appropriate benchmark set. Although differ-
ent experiments were performed, the main conclusion of this
work is that highly non-smooth functions should be avoided.
The benchmark function set defined by Vladislavleva explic-
itly considers extrapolation and interpolation (Vladislavleva
et al. 2009). It is also well know that real-world problems
are quite different from synthetic benchmarks. Based on the
previous considerations and seeking for a small but repre-
sentative number of benchmarks, we selected four typical
symbolic regression problems to perform our study which
are also included in the problem instances recommended
by White et al. (2013): two instances from the Vladislavl-
eva set, a hard problem in spatial co-evolution (Pagie and
Hogeweg 1998) where the shape of the graph is smooth, and
the tower problem which contains real-world data for which
the true input-output relationship is unknown.Thus, the prob-
lem instance set contains three problems with low as well as
one problem with medium dimensionality.

– The Tower data set (Vladislavleva et al. 2009) comes
from an industrial problem related to the modeling
of chromatography measurements corresponding to the
composition of a distillation tower gas. It contains 5000
records and 25 potential input variables; the response
variable is the propylene concentration at the top of the
distillation tower. The samples were measured by a gas
chromatograph and recorded as floating averages every
15 min. The 25 potential inputs are temperatures, flows,
and pressures related to the distillation tower.

– In the spatial co-evolution data set (Pagie and Hogeweg
1998), the target variable is defined as

F(x, y) = 1

1 + x−4 + 1

1 + y−4 (8)

In the training data (676 samples), the values for x and y
are sampled from−5 to+5 in steps of 0.4; in the test data
(1000 samples) x and y are sampled from [− 5, . . . ,+ 5]
randomly.

– For the Vladislavleva data sets F-5 and F-8, the target
variables are defined as functions of the variables x as:

F5(x1, x2, x3) = 30 ∗ ((x1 − 1) ∗ (x3 − 1))

x2 ∗ (x1 − 10)
(9)

F8(x1, x2) = (x1 − 3)4 + (x2 − 3)3 − (x2 − 3)

(x2 − 2)4 + 10
(10)

In this study, we have ignored the training/test split and
used the whole data set for fitness calculation because we
are mainly interested in the diversity dynamics and not in
producing an optimal model.

The syntactical structure of symbolic expressions is rela-
tively simple. As a consequence, GE grammars for symbolic
regression problems are rather flat. We leave a more detailed
study for other problem domains with deeper grammars for
future work.

4.2 Algorithm parameters

After some preliminary experimentation, we determined the
values of the parameters of the GE algorithm shown in
Table 1. In particular, the genetic operators are single-point
crossover and integer flip mutation (Michalewicz 1996). The
mutation operator selects a gene of a chromosome with a
probability of 2%, and then, it assigns the gene a uniformly
generated random value.

Figure 4 shows the GE grammar. The same grammar has
been used for all problem instances. Only the last line, defin-
ing the alternatives for input variables is adapted specifically
to each problem instance.

5 Experimental results

Wehave executed 10GE runs for each problem instance. The
experiments were run on a 2.9 GHz Intel Core i7 machine
with 16 GB of RAM.

In this section, we first summarize the qualities achieved
for the four test instances (Sect. 5.1) and then give a summary
of the population diversity progresses on all four problem
instances (Sect. 5.2).

5.1 Result qualities

First, to check whether the performance of GE on the
benchmark problem instances is acceptable, we analyze the
qualities of the final solutions on the training set. We com-
pare the results using the normalized mean of squared errors
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Fig. 5 Similarity distributions,
qualities (NMSE in percent),
and average tree size for the
Tower problem. The red lines
show the average similarities

(NMSE) of the predictions of the best solution.

NMSE(y, f(x)) = 1

var(y)
1

n

N∑

i=1

(yi − f (xi))2 (11)

As we see in Table 2, GE on average obtains NMSE values
between 2% (for VF-5) and 20% (for the Tower).

5.2 Population diversity results and discussion

Figures 5, 6, 7, and 8 show the distributions of pairwise
similarity values for one selected GE run on each of the
benchmark problems. In each generation, we calculate pair-
wise chromosome, expression, and output similarities of all
individuals in the population and build a histogram using
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Fig. 6 Similarity distributions,
qualities (NMSE in percent),
and average tree size for the
VF5 problem. The red lines
show the average similarities

20 bins from 0% similarity to 100% similarity. The red line
shows the average similarity.

To facilitate interpretation of the similarity distributions,
we also show the average and best quality (in percent) as well
as the average size of trees in each generation.

Figure 9 shows the corresponding similarity matrix
heatmaps at generations 40, 220, 420, 1100, and 1600 for
one of the GE runs on the spatial problem.

The chromosome similarity is almost zero for the first
200 generations and then converges to values between 10
and 25%, which means that this percentage of genes in the
chromosomes are exactly equivalent for any pair of individ-
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Fig. 7 Similarity distributions,
qualities (NMSE in percent),
and average tree size for VF8
problem. The red lines show the
average similarities

uals. Without selection pressure, the number of equal genes
follows a binomial distribution with 256 trials (length of the
chromosome) and 1/256 (number of possible alleles) success
probability for a trial. The expected value for equal genes for
two random chromosomes is therefore only one. The much
higher chromosome similarity indicates that certain alleles
are fixed.

The chromosome similarity matrices in the top row of
Fig. 9 indicate that there is almost no correlation of chro-
mosome similarity with quality. Since the individuals are
ordered by quality with the best individuals in the bottom left
and the worst in the top right, we would expect larger blocks
of highly similar individuals along the diagonal. However,
in the chromosome similarity heatmaps this is not apparent.
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Fig. 8 Similarity distributions,
qualities (NMSE in percent),
and average tree size for spatial
co-evolution problem. The red
lines show the average
similarities.

Individuals with similar quality do not have similar chromo-
somes and vice versa.

For the tree similarities however, the picture is completely
different shown in the second rows of Figs. 5, 6, 7 and 8 and
the middle row of Fig. 9. For the generated expressions, an
interesting phenomenon can be observed: GE producesmany
equivalent or highly similar expressions from highly dissim-

ilar chromosomes in the first 200 generations. This is caused
by the derivation process of expressions from the grammar
which stops as soon as a complete sentence is found.Depend-
ing on the elements at the beginning of the chromosome, the
derivation processmight stop early, producing a short expres-
sion and ignoring a large part of the chromosome completely.
Figures 8 and 9 show that between generations 420 and 1100
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Fig. 9 Visualization of all pairwise similarities of the GE run shown in Fig. 8 (spatial co-evolution problem). Similarities of all pairs of individuals
in the population have been calculated for generations 40, 220, 420, 1100, and 1600. Individuals have been sorted by quality; similarities of the
best individuals are shown in the bottom left; similarities of the worst individuals in the top right

Table 3 Average chromosome, expression, and output similarities for 10 independent GE runs for all four benchmark problems

Gen Spatial VF 5 VF 8 Tower

Chromosome similarity

1 0.004 ± 0.000 0.004 ± 0.000 0.004 ± 0.000 0.004 ± 0.000

100 0.107 ± 0.073 0.108 ± 0.049 0.088 ± 0.062 0.101 ± 0.054

500 0.133 ± 0.054 0.098 ± 0.042 0.116 ± 0.044 0.084 ± 0.036

End 0.131 ± 0.049 0.127 ± 0.033 0.138 ± 0.017 0.110 ± 0.038

Expression similarity

1 0.246 ± 0.029 0.163 ± 0.016 0.171 ± 0.014 0.160 ± 0.013

100 0.358 ± 0.047 0.370 ± 0.042 0.358 ± 0.052 0.305 ± 0.034

500 0.343 ± 0.067 0.409 ± 0.034 0.417 ± 0.065 0.356 ± 0.056

End 0.371 ± 0.052 0.380 ± 0.057 0.437 ± 0.043 0.354 ± 0.090

Output similarity

1 0.253 ± 0.028 0.205 ± 0.013 0.205 ± 0.014 0.179 ± 0.013

100 0.473 ± 0.095 0.378 ± 0.076 0.441 ± 0.130 0.540 ± 0.082

500 0.438 ± 0.082 0.359 ± 0.059 0.429 ± 0.073 0.489 ± 0.064

End 0.438 ± 0.064 0.341 ± 0.076 0.414 ± 0.065 0.488 ± 0.061

GE produced less similar trees from more similar chromo-
somes than in generations 40–420. This effect is explained
by the sudden increase in tree size around generation 300 as
larger sections of the genotype became effecting, leading to

the observed increase of chromosome similarity and decrease
of tree similarity.

Finally, the output similarities shown in the third rows of
Figs. 5, 6, 7, and 8 and the bottom row of Fig. 9 have an
extremely bi-modal distribution for all problem instances.
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More than half of individuals in the population produce
almost equivalent outputs over all generations. The average
output similarity lies in the middle of the two extremes and
is mainly determined by the number of similarity values in
both classes. This result highlights that the average similarity
value alone can be misleading. The GE population contains
around 10% highly similar trees producing a constant output
(top right square in Fig. 9). The explanation for this is that
the grammar has a high probability of producing constants
because 3 of 14 rules for expr directly produce a constant.
Thus, without selection pressure we expect at least 20% con-
stant expressions. Additionally, constant expressions could
be operators with constant arguments. However, with selec-
tion pressure the number of constant expressions should
reduce quickly as they have the worst possible fitness value.
Inspecting the last generation population, we find that only
2% of the expressions are constants. A ratio of 6% are invalid
individuals caused either by incomplete derivation, division
by zero, or taking the exponential of a large value. For the
determination of output similarity, these expressions are han-
dled in the same way as constants. Closer inspection of these
invalid individuals shows that only approx. 1% are invalid
because of a problem in the derivation process.

For the high-quality individuals, we find that in the early
generations (up to 300) they produce effectively the same
output from only a few different expressions (bottom left
squares in Fig. 9). At around generation 300, the average
length of expressions increases, and the algorithm is able to
identify a more diverse set of trees, all of which produce very
similar outputs. The explanation for this is the redundancy
of representation of mathematical expressions, which allow
many different representation even for very similar functions.

In Table 3, we show a summary of the all similarity val-
ues for the four benchmark problems averaged over the ten
independent runs. For each instance, we report the figures
calculated for the initial population (generation 1), then simi-
larities during the executions, and at the endof the executions.

It is important to note that the values shown in Table 3
do not show the bi-modal or multi-modal distributions that
we observed for output similarities. This highlights the need
to look at the distributions of pairwise similarities in depth
as we have shown above. From an analysis of the similarity
distributions on all heredity levels, we can gain more infor-
mation about the evolutionary dynamics of these algorithms
than when we solely look at average similarities of encoded
solutions.

6 Conclusions

Grammatical evolution is a form of genetic programming
that represents individuals using chromosomes instead of
trees. In this work, we have analyzed and compared the

similarity of individuals in GE when applied to symbolic
regression problems. We have calculated pairwise similar-
ities of chromosomes, of expressions represented as trees,
as well as of the function outputs. We have used a set of
four benchmark problem instances to study general dynam-
ics of population diversity. The populations evolved by GE
have high chromosome diversity but much lower expression
diversity. Especially in the early phases of GE, we observed
that a large subset (around 50%) of the population represent
exactly the same expressions. This is caused by the rather
short expressions that can be derived from the grammar in
the beginning—leaving large parts of the chromosome unex-
pressed.
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