Skip to main content
Log in

Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper considers the constrained global optimization problems, in which the functions are of the “black-box” type and satisfy the Lipschitz condition. The algorithms for solving the problems of this class require the use of adequate estimates of the a priori unknown Lipschitz constants for the problem functions. A novel approach presented in this paper is based on a simultaneous use of two estimates of the Lipschitz constant: an overestimated and an underestimated one. The upper estimate provides the global convergence, whereas the lower one reduces the number of trials necessary to find the global optimizer with the required accuracy. The considered algorithm for solving the constrained problems does not use the ideas of the penalty function method; each constraint of the problem is accounted for separately. The convergence conditions of the proposed algorithm are formulated in the corresponding theorem. The results of the numerical experiments on a series of multiextremal problems with non-convex constraints demonstrating the efficiency of the proposed scheme of dual Lipschitz constant estimates are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barkalov KA, Lebedev IG (2017a) Comparing two approaches for solving constrained global optimization problems. Lecture Notes Comput Sci 10556:301–306

    Google Scholar 

  • Barkalov KA, Lebedev IG (2017b) Parallel algorithm for solving constrained global optimization problems. Lecture Notes Comput Sci 10421:396–404

    Google Scholar 

  • Barkalov KA, Strongin RG (2002) A global optimization technique with an adaptive order of checking for constraints. Comput Math Math Phys 42(9):1289–1300

    MathSciNet  MATH  Google Scholar 

  • Barkalov KA, Strongin RG (2018) Solving a set of global optimization problems by the parallel technique with uniform convergence. J Glob Optim 71(1):21–36

    MathSciNet  MATH  Google Scholar 

  • Di Pillo G, Lucidi S, Rinaldi F (2012) An approach to constrained global optimization based on exact penalty functions. J Glob Optim 54:251–260

    MathSciNet  MATH  Google Scholar 

  • Di Pillo G, Liuzzi G, Lucidi S (2016) A DIRECT-type approach for derivative-free constrained global optimization. Comput Optim Appl 65:361–397

    MathSciNet  MATH  Google Scholar 

  • Evtushenko YG (1971) Numerical methods for finding global extreme (case of a non-uniform mesh). Comput Maths Math Phys 11(6):38–54

    Google Scholar 

  • Evtushenko YG, Posypkin MA (2013) A deterministic approach to global box-constrained optimization. Optim Lett 7:819–829

    MathSciNet  MATH  Google Scholar 

  • Evtushenko YG, Malkova VU, Stanevichyus AA (2009) Parallel global optimization of functions of several variables. Comput Math Math Phys 49(2):246–260

    MathSciNet  MATH  Google Scholar 

  • Gablonsky JM, Kelley CT (2001) A locally-biased form of the DIRECT algorithm. J Glob Optim 21(1):27–37

    MathSciNet  MATH  Google Scholar 

  • Gaviano M, Kvasov DE, Lera D, Sergeyev YD (2003) Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans Math Softw 29(4):469–480

    MathSciNet  MATH  Google Scholar 

  • Gergel VP (2017) An approach for generating test problems of constrained global optimization. Lecture Notes Comput Sci 10556:314–319

    Google Scholar 

  • Gergel VP, Barkalov KA, Lebedev IG, Rachinskaya MA, Sysoyev AV (2019) A flexible generator of constrained global optimization test problems. AIP Conf Proc 2070:20009

    Google Scholar 

  • Horst R, Tuy H (1996) Global optimization: deterministic approaches. Springer, Berlin

    MATH  Google Scholar 

  • Jones DR (2009) The DIRECT global optimization algorithm. The encyclopedia of optimization. Springer, Heidelberg, pp 725–735

    Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181

    MathSciNet  MATH  Google Scholar 

  • Kvasov DE, Pizzuti C, Sergeyev YD (2003) Local tuning and partition strategies for diagonal GO methods. Numer Math 94(1):93–106

    MathSciNet  MATH  Google Scholar 

  • Lera D, Sergeyev YD (2010) An information global minimization algorithm using the local improvement technique. J Glob Optim 48(1):99–112

    MathSciNet  MATH  Google Scholar 

  • Meewella CC, Mayne DQ (1988) An algorithm for global optimization of Lipschitz continuous functions. J Optim Theory Appl 57(2):307–322

    MathSciNet  MATH  Google Scholar 

  • Mladineo RH (1986) An algorithm for finding the global maximum of a multimodal multivariate function. Math Program 34(2):188–200

    MathSciNet  MATH  Google Scholar 

  • Paulavičius R, Žilinskas J (2016) Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim Lett 10(2):237–246

    MathSciNet  MATH  Google Scholar 

  • Paulavičius R, Sergeyev YD, Kvasov DE, Žilinskas J (2014) Globally-biased DISIMPL algorithm for expensive global optimization. J Glob Optim 59(2–3):545–567

    MathSciNet  MATH  Google Scholar 

  • Pinter JD (1996) Global optimization in action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Pinter JD (2006) Global optimization: scientific and engineering case studies. Springer, New York

    MATH  Google Scholar 

  • Piyavskii SA (1972) An algorithm for finding the absolute extremum of a function. Comput Maths Math Phys 12(4):57–67

    MathSciNet  Google Scholar 

  • Sergeyev YD (1998) Global one-dimensional optimization using smooth auxiliary functions. Math Program 81:127–146

    MathSciNet  MATH  Google Scholar 

  • Sergeyev YD, Kvasov DE (2006) Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J Optim 16(3):910–937

    MathSciNet  MATH  Google Scholar 

  • Sergeyev YD, Kvasov DE (2015) A deterministic global optimization using smooth diagonal auxiliary functions. Commun Nonlinear Sci Numer Simulat 21(1–3):99–111

    MathSciNet  MATH  Google Scholar 

  • Sergeyev YD, Famularo D, Pugliese P (2001) Index branch-and-bound algorithm for lipschitz univariate global optimization with multiextremal constraints. J Glob Optim 21(3):317–341

    MathSciNet  MATH  Google Scholar 

  • Sergeyev YD, Strongin RG, Lera D (2013) Introduction to global optimization exploiting space-filling curves. Springer Briefs in Optimization. Springer, New York

    MATH  Google Scholar 

  • Sergeyev YD, Mukhametzhanov MS, Kvasov DE, Lera D (2016) Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J Optim Theory Appl 171(1):186–208

    MathSciNet  MATH  Google Scholar 

  • Shubert BO (1972) A sequential method seeking the global maximum of a function. SIAM J Numer Anal 9(3):379–388

    MathSciNet  MATH  Google Scholar 

  • Sovrasov VV (2019) Comparison of several stochastic and deterministic derivative-free global optimization algorithms. Lecture Notes Comput Sci 11548:70–81

    MATH  Google Scholar 

  • Stripinis R, Paulavičius R, Žilinskas J (2019) Penalty functions and two-step selection procedure based DIRECT-type algorithm for constrained global optimization. J Struct Multidisc Optim 59(6):2155–2175

    MathSciNet  Google Scholar 

  • Strongin RG (1970) On a certain global-minimization algorithm. Radiophys Quant Electron 13(4):419–424

    Google Scholar 

  • Strongin RG, Sergeyev YD (2000) Global optimization with non-convex constraints, Sequential and parallel algorithms. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Strongin RG, Sergeyev YD (2003) Global optimization: fractal approach and non-redundant parallelism. J Glob Optim 27(1):25–50

    MathSciNet  MATH  Google Scholar 

  • Strongin RG, Gergel VP, Barkalov KA, Sysoyev AV (2018) Generalized parallel computational schemes for time-consuming global optimization. Lobachevskii J Math 39(4):576–586

    MathSciNet  MATH  Google Scholar 

  • Strongin RG, Barkalov KA, Bevzuk SA (2020) Acceleration of global search by implementing dual estimates for Lipschitz constant. Lecture Notes Comput Sci 11974:478–486

    Google Scholar 

  • Vaz AIF, Vicente LN (2009) PSwarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim Methods Softw 24(4–5):669–685

    MathSciNet  MATH  Google Scholar 

  • Wood GR (1991) Multidimensional bisection applied to global optimisation. Comput Math Appl 21(6–7):161–172

    MathSciNet  MATH  Google Scholar 

  • Žilinskas J (2008) Branch and bound with simplicial partitions for global optimization. Math Model Anal 13(1):145–159

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation, Project No. 16-11-10150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Barkalov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strongin, R., Barkalov, K. & Bevzuk, S. Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints. Soft Comput 24, 11853–11865 (2020). https://doi.org/10.1007/s00500-020-05078-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-05078-1

Keywords

Navigation