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Abstract
The distance vector-hop (DV-hop) is a typical localization algorithm. It estimates sensor nodes location through detecting

the hop count between nodes. To enhance the positional precision, the weight is used to estimate position, and the

conventional wisdom is that the more hop counts are, the smaller value of weight will be. However, there has been no clear

mathematical model among positioning error, hop count, and weight. This paper constructs a mathematical model between

the weights and hops and analyzes the convergence of this model. Finally, the genetic algorithm is used to solve this

mathematical weighted DV-hop (MW-GADV-hop) positioning model, the simulation results illustrate that the model

construction is logical, and the positioning error of the model converges to 1/4R.

Keywords DV-hop � Convergence analyses � Genetic algorithm (GA) � Positional precision � Mathematical weight model

1 Introduction

In this unprecedented age of technology-driven modern-

ization, technologies contribute greatly to the development

of human society. For instance, fifth-generation wireless

systems (5G) (Andrews et al. 2014; Boccardi et al. 2014)

and the internet of things (IoT) (Gubbi et al. 2013; Al-

Fuqaha et al. 2015) have greatly improved the speed of

people’s communication and access to information and

improved the user experience. In 2020, during the process

of fighting the epidemic (COVID-19) (Zhou et al. 2020;

Shi et al. 2020) worldwide, big data technology has played

an irreplaceable role in the analysis of epidemic prevention

and control. In these applications, location information

plays an irreplaceable role.

Generally, satellite positioning is the main way to obtain

location information. However, in areas where satellite

signals are weak, such as tunnels and factory control sys-

tems, the positioning method based on wireless commu-

nication has become the main means of acquiring location.

DV-hop (Niculescu and Nath 2003), as a prevailing and

typical wireless communication-based localization algo-

rithm, estimates sensor nodes location through detecting

the hop count and acquiring estimated distance between

nodes. However, this simple principle and operation cause

the instability of the positional precision of the standard

DV-hop algorithm. It makes the algorithm is unreliable in

applications where accuracy is critical, such as medical

health (Al Ameen et al. 2012). To reduce the error, scholars

have proposed different improvement measures, including

the introduction of weight models and optimization algo-

rithms, and achieving a certain degree of accuracy

improvement.

However, the conventional wisdom thinks that the

weights will decrease with the hop counts increase. But

there has been no clear mathematical model among posi-

tioning error, hop count, and weight. To address this issue,

this paper improves the weight model and performs a

convergence analysis. And the motivation and contribution

are shown as follows: the goal of this study is to explore the

convergence of the traditional weight model. Therefore, we

construct a mathematical model between the weights and
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hops, reveal the relationship between the traditional weight

model and the positioning error, and analyze and prove that

the weight model is convergent. Through the proof of

convergence, it provides a theoretical basis for scholars to

improve the DV-hop positioning model. And this study

uses the genetic algorithm (GA) (Goldberg 1989) to con-

duct a preliminary test of the model.

The remainder of this study is organized as follows.

Section 2 provides a brief description of related work and

introduces the traditional weight (TW) model with opti-

mization algorithm; in Sect. 3, we construct a mathemati-

cal weight model (MW) based on the node communication

features and analyze the convergence of this model. Sec-

tion 4 uses the GA to solve this MW model and carries out

the simulation test. Finally, the conclusions are drawn in

Sect. 5.

2 Related work

Initially, the third phase of the DV-hop algorithm is to

implement position calculation by a deterministic algo-

rithm, such as the trilateration and the least square method.

These methods require the algorithm provide an estimated

distances with small error to achieve precise precision. But

according to Eqs. (1) and (2), we can know this assumption

that the acquisition of the highly accurate estimated dis-

tance is unrealistic for the DV-hop algorithm. Therefore,

scholars use weight model and intelligent optimization

algorithms to optimize the DV-hop algorithm to achieve a

high accurate precision.

DV-hop with the optimization algorithms contains three

stages. 1st phase: anchor nodes (ANs) transmit the packs

to the network, other sensor nodes (contains the anchor and

unknown nodes, UNs) receive the packs and retransmission

them to network. During this process, each node counts the

minimum number of hops required to communicate with

other nodes. 2nd phase: according to the number of hops

recorded, the distance per hop (dis_per) is calculated as

follows:

dis peri ¼
P

i 6¼j ANi � ANj

�
�

�
�

P
i 6¼j hop counti;j

ð1Þ

where ANi andANj denote the positions of the ANi and

ANj, hop_counti,j denotes the minimum hop count between

ANi and ANj.

Then, the distance (disi,k) between ANi and UNk is

estimated as follows:

disi;k ¼ dis peri � hop counti;k ð2Þ

3rd phase: the optimization algorithm is used to solve

the location of the UNs, and the model is as follows:

fi;k ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xkð Þ2þ yi � ykð Þ2
q

� disi;k

�
�
�
�

�
�
�
� ð3Þ

where (xi, yi) denotes the location of the ANi, (xk, yk)

denotes the location of the UNi.

In 2007, Chuan (2008) proposed the concept of the

weight and she thinks that the value of the weight is

decrease with the hop count increase. In 2009, according to

this viewpoint, Li et al. (2009) proposed a method for

calculating the weight, which follows:

Whj ¼
1

hop countj
ð4Þ

where the Whj denotes the hop-size weight of ANj.

And the objective function model is calculated as

follows:

f �i;k ¼
Xn

i¼1

Wh2i disi;k � UNi � ANij j
� �2 ð5Þ

For the collinearity phenomenon of sensor nodes, Zhang

et al. (2014) proposed to use the Voronoi diagram to divide

the sensors network into difference multiple regions, each

region containing an anchor node. Then, a weighted

method is used to calculate the location of the UN. Gui

et al. (2015) argued that when the hop count between the

AN and UN is large, this AN will interfere rather than

promote the positioning process of the UN. Therefore, he

proposed to select three ANs closest to the UN for posi-

tioning, that is, select the three ANs with the smallest hop

number for positioning. Song and Tam (2015) improved

DV-hop with the weighted centroid, and the weight (Wi) is

calculated as follows (where hopi denotes the minimum

hop count between the ANi and UN). This model makes the

closest AN has the greatest impact on the positioning

results. Li et al. (2015) adapted a similar weight setting

method to optimize the DV-hop algorithm.

wi

Pn
i¼1 hopi
n � hopi

ð6Þ

In recent years, with the recognition of this weight

model, scholars have begun to seek to optimize it using

various evolutionary algorithms; Mehrabi et al. (2017)

proposed to optimize DV-hop with GA-PSO algorithm. Cui

et al. (2017) developed a novel oriented cuckoo search

(OCS) (Gandomi et al. 2013) algorithm to enhance the DV-

hop performance. Sharma and Kumar (2018) also applied

GA to the positioning process of wireless sensor nodes in

three-dimensional (3D) space. Shi et al. (2019) proposed an

improved DV-hop approach based on path matching and

PSO. Cai et al. (2019a) introduced the rank transformation

strategy to the bat algorithm (BA), proposed a fast triangle

flip BA, and applied the algorithm to wireless sensor node
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localization. Further, scholars have also proposed new

model improvements, such as the establishment of a multi-

objective positioning model (Cai et al. 2019b; Wang et al.

2020; Kanwar and Kumar 2020) based on the theoretical

hop distance.

However, it must be mentioned that although these

algorithms improve the positional precision of the sensor

nodes, they do not provide a convincing proof of the

relationship among the errors, hop counts and weights.

Therefore, based on the weighted conjectures put forward

by scholars, this study constructs the corresponding model

and analyzes the convergence of the model to reveal the

potential relationship among the weights, hop counts, and

errors.

3 Model establishment and analysis

3.1 The error models construction

In the WSNs, according to the characteristics of the sensor

node, we can get Fig. 1. In Fig. 1, the blue point denotes the

anchor node, and the black points denote the UNs. As-

sumption all of the nodes is following the uniform distri-

bution within the detecting area, and the maximum

communication radius is R. The theoretical average distance

per hop (Per_dis) when the hop count is one is calculated as

follows in Eq. (7). Obviously, the calculation method of the

Per_dis is different from the dis_peri. The dis_peri is

obtained by the multi-hop transmission process; generally,

the value of the dis_peri is different from the dis_perk. The

Per_dis is obtained by probability statistics, and for different

anchor nodes, the average distance is the same.

Per dis ¼
R R

0
2pr2dr

R R

0
2prdr

¼ 2

3
R ð7Þ

According to Eq. (7) and Fig. 1, we can obtain Fig. 2

when the hop count is two. Let the an indicate the

maximum detectable range (also named the up bound)

when the hop count is n, and the a1 is the R. Let the bn
represent the average detection distance (also named the

estimated distance) at the nth hop. In Fig. 2, the relation-

ship between the an and an�1 is shown in Eq. (8), because

the communication radius is R, and the value of distance

between the dotted line and the anchor node is 14=9R, it is

calculated by Eq. (9).

an ¼ an�1 þ R ¼ nR ð8Þ

bn ¼
R an
an�1

2pr2dr
R an
an�1

2prdr
¼2

3
an þ an�1ð Þ � 2

3

anan�1

an þ an�1

ð9Þ

After obtaining the maximum detectable range and the

average detection distance model, we also investigate the

error model, as shown in Fig. 3, where the blue point

denotes the anchor node, the black nodes denote the other

sensor nodes, and the hop count is two. Let the nn represent
the error when the hop count is n. As shown in Fig. 3, the

error (n2) is that the distance between the sensor nodes (Oi)

and the estimated distance (14/9R) within the

detectable range when the hop count is two. Thus, the error

model is expressed as Eq. (10).

nn ¼
R bn
an�1

2pr bn � rð Þdr þ
R an
bn

2pr r � bnð Þdr
R an
an�1

2prdr
ð10Þ

3.2 Convergence analysis of the error model

In this subsection, we analyze the convergence of the error

model. Firstly, when the hop count tends to infinity, Eq. (8)

is follows:

lim
n!1

an ¼ lim
n!1

nR ¼ 1 ð11Þ

Similarly, Eq. (9) is calculated as follows:

Fig. 1 Node distribution graph

within the detection area when

the hop count is 1

Weight convergence analysis of DV-hop localization algorithm with GA 18251
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lim
n!1

bn ¼ lim
n!1

2

3
nRþ n� 1ð ÞRð Þ � 2

3

nR n� 1ð ÞR
nRþ n� 1ð ÞR

¼ lim
n!1

4nR� 2Rð Þ 2nR�Rð Þ � 2n2R2 þ 2nR2

6nR� 3R

¼ lim
n!1

8n2R2 � 4nR2 � 4nR2 þ 2R2 � 2n2R2 þ 2nR2

6nR� 3R

¼ lim
n!1

6n2R2 � 6nR2 þ 2R2

6nR� 3R

¼1
ð12Þ

Then, when the hop count tends to infinity, the error

model can be indicated as follows:

Thus, we can obtain that when the hop count tends to

infinity (where, the sensor nodes are following the uniform

distribution and the number of sensor nodes tends to

infinity), the error of estimated distance converges to

1/4R. To reveal the convergence trend of the error, we

calculated the error of this model with different hop counts,

and the results are shown in Fig. 4. Obviously, the error

increases as the number of hops increases and eventually

converges to 1/4R.

Fig. 2 Node distribution graph

within the detection area when

the hop count is 2 (n)

lim
n!1

nn ¼ lim
n!1

R bn
an�1

2pr bn � rð Þdr þ
R an
bn

2pr r � bnð Þdr
R an
an�1

2prdr

¼ lim
n!1

2
3
b3n � bn a2n�1 þ a2n

� �
þ 2

3
a3n�1 þ a3n
� �

a2n � a2n�1

¼ lim
n!1

2
3
an � 1

2
R3ð Þ � an � 1

2
Rð Þ a2n�1 þ a2n

� �
þ 2

3
a3n�1 þ a3n
� �

a2n � an � Rð Þ2

¼ lim
n!1

2
3
a3n � 3a2n

1
2
Rþ 3an14R

2 � 1
8
R

� �
� an � 1

2
Rð Þ an � Rð Þ2þa2n

� �
þ 2

3
an � Rð Þ3þa3n

� �

2anR� R2

¼ lim
n!1

2
3
a3n � a2nRþ 1

2
anR2 � 1

12
R3 � an � 1

2
Rð Þ a2n � 2anRþ R2 þ a2n

� �
þ 2

3
2a3n � 3a2nRþ 3anR2 � R3
� �

2anR� R2

¼ lim
n!1

2a3n � 3a2nRþ 1
2
anR2 þ 2anR2 � 3

4
R3 � 2a3n � 2a2nRþ anR2 � anR2 � 1

2
R3

� �

2anR� R2

¼ lim
n!1

1
2
anR2 � 1

4
R3

2anR� R2

¼1

4
R

ð13Þ

18252 X. Cai et al.

123



4 Construction and solution of weight
model

The traditional weight model considers that the smaller the

hop count, the stronger the influence on unknown nodes.

However, this viewpoint ignores the relationship between

the weight and the errors, because the convergence is not

analyzed. Based on this deficiency, this study constructs

the mathematical model based on the weight and errors,

and the convergence of the error is analyzed in the sub-

section 3.2. And the weight model is expressed as follows:

di¼
1

ni
; i ¼ 1; 2; . . .; n ð14Þ

where n denotes the total number of ANs,di denotes the

weight model, and it means the larger the theoretical error,

the smaller the value of the weight.

Then, the weight model is normalized, as shown in

Eq. (15).

xi¼
diPn
i¼1 di

ð15Þ

Thus, the objective of localization is expressed as:

fitnessi; k ¼
Xn

i¼1

xiðdisi; k � jUNi � ANijÞ2 ð16Þ

Inspired by the traditional weight model, a weight model

based on error variation was established and proved to be

convergent. And this study solves this mathematical

weighted DV-hop with genetic algorithm, named the MW-

GADV-hop. The implementation of MW-GADV-hop is

shown in Algorithm 1.

(a) (b)

Fig. 4 Error analysis with the detection area when the hop count is 2 (n). a The total hop count is 20, and b the total hop count is 100

Fig. 3 Error analysis with the detection area when the hop count is 2 (n)

Weight convergence analysis of DV-hop localization algorithm with GA 18253
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5 Simulation results

5.1 Simulation environment and evaluation
criteria

To test the performance of the proposed weight model,

experimental simulations were conducted in MATLAB

2016a. Then, we analyzed the performance of the algo-

rithm and compared it with the DV-hop, TW-GADV-hop

(Sharma and Kumar 2018), TW-PSODV-hop (Shi et al.

2019), and FTF-BADV-hop (Cai et al. 2019a). And the

parameters are listed in Table 1.

To evaluate the performance proposed algorithms, this

study uses the average localization error (ALE) as the

evaluation criteria, as follows:

ALE ¼ 100

ðN � nÞ � R
XN�n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�i � xiÞ2 þ ðy�i � yiÞ2
q

ð17Þ

Table 1 Parameter settings

Parameters Value

DV-hop

Network type C-, O- and X-shaped network

Detection area 100 m 9 100 m

Nodes (n) 100 (50–100)

Beacon nodes (n) 20 (5–30)

R (m) 25 (15–40)

GA

Population 20

Variable dimension (v) 2*(N - n)

Cross probability 0.9

Mutation probability 1/v

Maximum generation 500

Independently runtime 30

6
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where ðx�i ; y�i Þ denotes the estimated location of the UNi,

ðxi; yiÞ denotes the actual location of the UNi.

The main purpose of this study is to construct a math-

ematical model of weight based on the traditional weight

concept and to prove the convergence of the model, instead

of creating a new weight model. Therefore, our weight

model should theoretically have similar positioning per-

formance to the traditional weight model. In order to test

the positioning performance, we execute the algorithm

within the different network topologies, as shown in Fig. 5,

where the ‘.’ denotes the UNs and the ‘*’ denotes the ANs.

Obviously, the network topology contains the C- shaped,

O-shaped and X-shaped networks.

5.2 Different radii test

Table 2 and Fig. 6 show the simulation results with the

different radii. From the distribution of the smallest error in

Table 2, the MW-GADV-hop proposed in this paper does

not show outstanding positioning advantages. And it has

similar performance to other DV-hop algorithms solved by

optimization algorithms (FTF-BADV-hop, TW-PSODV-

hop, and TW-GADV-hop) in different network topologies.

Obviously, in Fig. 6, DV-hop always maintains the maxi-

mum positioning error with different radii. And in

C-shaped and X-shaped networks, MW-GADV-hop is

significantly better than TW-GADV-hop solved by the

same genetic algorithm.

5.3 Different nodes test

Table 3 and Fig. 7 show the simulation results with the

different numbers of nodes. From Table 3, MW-GADV-

hop always maintains the minimum positioning error in

O-shaped and X-shaped networks. And compared with

DV-hop algorithm, the errors of MW-GADV-hop dropped

by 33.64%, 20.81%, and 11.41%, respectively. From

Fig. 7, in C-shaped network, the positioning performance

of MW-GADV-hop is inferior to TW-GADV-hop, but

similar to the FTF-BADV-hop and TW-PSODV-hop.

5.4 Different anchor nodes test

Table 4 and Fig. 8 show the simulation results with the

different numbers of ANs. From Table 4, the performance

of MW-GADV-hop is slightly inferior to TW-GADV-hop

in C-shaped network and superior to FTF-BADV-hop, TW-

PSODV-hop, and TW-GADV-hop in other networks. From

Fig. 8, compared with other algorithms, MW-GADV-hop

has less volatility, which indicates it is not sensitive to the

(a) (b) (c)

Fig. 5 Three complex shape test networks. a The C-shaped, b the O-shaped, and c the X-shaped

Table 2 The results with different radii test

Radii 15 20 25 30 35 40

C-shaped network

DV-hop 172.33 112.53 63.73 49.78 44.81 41.62

FTF-BADV-hop 94.01 63.49 36.58 31.15 29.89 27.32

TW-PSODV-

hop

93.76 63.01 36.30 31.20 29.51 27.56

TW-GADV-hop 50.99 39.28 31.32 31.17 30.96 31.64

MW-GADV-hop 69.10 51.71 34.33 30.12 30.49 30.39

O-shaped network

DV-hop 117.88 56.50 44.77 39.39 29.24 31.28

FTF-BADV-hop 49.49 27.03 24.06 25.27 18.11 20.37

TW-PSODV-

hop

50.58 27.28 24.33 24.74 18.06 20.58

TW-GADV-hop 44.14 31.77 28.15 30.39 25.70 28.37

MW-GADV-hop 49.20 27.55 23.96 25.15 19.86 22.11

X-shaped network

DV-hop 80.18 54.22 43.49 39.39 37.15 36.29

FTF-BADV-hop 43.96 32.29 34.45 35.32 28.44 27.68

TW-PSODV-

hop

45.06 32.52 34.23 34.42 28.43 27.41

TW-GADV-hop 41.57 36.93 38.60 37.58 35.50 34.59

MW-GADV-hop 44.36 33.34 32.08 31.25 29.90 29.95

Bold values indicate the minimum error (the best solution)

Weight convergence analysis of DV-hop localization algorithm with GA 18255
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(a) (b) (c)

Fig. 6 The results with different radii test. a The results of C-shaped network, b the results of O-shaped network, and c the results of X-shaped
network

Table 3 The results with different nodes test

Number of nodes 50 60 70 80 90 100

C-shaped network

DV-hop 76.27 75.39 70.34 66.42 65.12 63.73

FTF-BADV-hop 42.82 46.29 39.38 38.75 37.42 36.57

TW-PSODV-hop 41.70 45.09 39.05 38.47 37.40 36.30

TW-GADV-hop 32.35 35.11 33.38 33.15 30.68 31.32

MW-GADV-hop 42.63 44.29 38.83 37.24 35.01 34.33

O-shaped network

DV-hop 33.92 40.59 40.82 41.80 42.46 44.77

FTF-BADV-hop 19.64 23.87 22.97 23.09 23.49 24.06

TW-PSODV-hop 20.15 24.81 22.96 23.59 23.89 24.33

TW-GADV-hop 22.38 27.36 25.40 26.20 26.50 28.15

MW-GADV-hop 19.34 22.69 21.94 22.17 23.40 23.96

X-shaped network

DV-hop 34.16 36.47 38.00 40.31 40.30 43.49

FTF-BADV-hop 35.89 32.35 32.35 32.92 32.33 34.45

TW-PSODV-hop 35.24 32.78 31.65 31.76 31.76 34.23

TW-GADV-hop 34.85 32.58 34.44 35.89 36.56 38.60

MW-GADV-hop 32.10 29.08 29.68 29.99 29.70 32.08

Bold values indicate the minimum error (the best solution)

(a) (b) (c)

Fig. 7 The results with different nodes test. a The C-shaped network, b the O-shaped network, and c the X-shaped network

Table 4 The results with different ANs test

Number of ANs 5 10 15 20 25 30

C-shaped network

DV-hop 88.45 67.42 69.45 63.73 64.88 69.80

FTF-BADV-hop 49.83 42.62 48.62 36.57 53.21 54.83

TW-PSODV-hop 46.99 41.45 46.81 36.30 52.46 52.71

TW-GADV-hop 116.76 43.28 37.54 31.32 33.21 31.30

MW-GADV-hop 116.80 41.40 42.59 34.33 38.62 36.87

O-shaped network

DV-hop 98.08 79.95 38.47 44.77 38.28 40.49

FTF-BADV-hop 31.75 34.34 28.02 24.06 32.24 30.97

TW-PSODV-hop 30.75 33.09 28.90 24.33 32.71 31.72

TW-GADV-hop 76.28 51.68 30.23 28.15 26.26 25.00

MW-GADV-hop 63.65 47.06 25.42 23.96 23.09 21.76

X-shaped network

DV-hop 58.46 59.14 47.89 43.49 46.66 48.57

FTF-BADV-hop 42.81 39.93 42.34 34.45 46.13 45.54

TW-PSODV-hop 41.99 39.80 41.92 34.23 47.04 46.36

TW-GADV-hop 60.86 42.36 38.83 38.60 36.91 33.12

MW-GADV-hop 51.73 36.52 32.82 32.08 32.06 27.80

Bold values indicate the minimum error (the best solution)
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number of anchor nodes, reflecting the strong robustness of

the MW-GADV-hop.

5.5 Time complexity

Table 5 shows the time complexity of these algorithms,

where the MaxG denotes the maximum generation and NP

indicates the number of population in the algorithms. From

Table 5, it can observe that the time complexity of the TW-

GADV-hop and MW-GADV-hop is similar, and they are

superior to the time complexity of the FTF-BADV-hop and

TW-PSODV-hop. Therefore, our algorithm has higher

timeliness than other algorithms during the location

process.

Figure 9 shows boxplot analysis of the results, and this

figure exhibits the distribution of the simulation results.

And the ‘mean error’ denotes the mean of the results of

thirty runs, and the ‘Whisker lower bound’ and ‘Whisker

up bound,’ respectively, denote the minimum and maxi-

mum error. From Fig. 9, FTF-BADV-hop has the smallest

error interval; however, although the error interval of MW-

GADV-hop is larger than FTF-BADV-hop, the error dis-

tribution interval is lower, which means MW-GADV-hop

has higher reliability. In C-shaped network, MW-GADV-

hop is inferior to TW-GADV-hop.

6 Conclusions

In this study, to explore the convergence of traditional

weight models, we analyze the communication principle of

sensor nodes. According to the traditional weight models,

this study constructs a mathematical weight model based

on the node communication features. Then, we analyze the

convergence of the model and prove that when the number

of hop count tends to infinity, the error of the model con-

verges to 1/4R (where the sensor nodes are following the

uniform distribution in the detection region and needs to

(a) (b) (c)

Fig. 8 The results with different ANs test. a The results of C-shaped network, b the results of O-shaped network, and c the results of X-shaped
network

Table 5 Time complexity

Algorithms Time complexity

FTF-BADV-hop OðMaxG � ðN � nÞ � NP � logNPÞ
TW-PSODV-hop OðMaxG � ðN � nÞ � NP � logNPÞ
TW-GADV-hop OðMaxG � NP � logNPÞ
MW-GADV-hop OðMaxG � NP � logNPÞ

(a) (b) (c)

Fig. 9 The boxplot analysis of the results. a The results of C-shaped network, b the results of O-shaped network, and c the results of X-shaped
network
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have enough nodes). Finally, to test the model performance

of this model, this algorithm is widely tested on different

complex networks. The simulation results illustrate that the

performance of this model is similar to other algorithms on

the C-shaped network, and it is superior to other algorithms

on the O-shaped and X-shaped networks.

Although the model achieved better positioning perfor-

mance and proved to be convergent, we notice that some

results do not converge to 1/4R. Therefore, we will explore

a more reasonable and generalized weight model based on

the communication principle of nodes to achieve better

positioning performance.
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