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Abstract
Optimization problems can be found in many aspects of our lives. An optimization problem can be approached as searching

problem where an algorithm is proposed to search for the value of one or more variables that minimizes or maximizes an

optimization function depending on an optimization goal. Multi-objective optimization problems are also abundant in

many aspects of our lives with various applications in different fields in applied science. To solve such problems,

evolutionary algorithms have been utilized including genetic algorithms that can achieve decent search space exploration.

Things became even harder for multi-objective optimization problems when the algorithm attempts to optimize more than

one objective function. In this paper, we propose a hybrid genetic algorithm (HGA) that utilizes a genetic algorithm (GA)

to perform a global search supported by the particle swarm optimization algorithm (PSO) to perform a local search. The

proposed HGA achieved the concept of rehabilitation of rejected individuals. The proposed HGA was supported by a

modified selection mechanism based on the K-means clustering algorithm that succeeded to restrict the selection process to

promising solutions only and assured a balanced distribution of both the selected to survive and selected for rehabilitation

individuals. The proposed algorithm was tested against 4 benchmark multi-objective optimization functions where it

succeeded to achieve maximum balance between search space exploration and search space exploitation. The algorithm

also succeeded in improving the HGA’s overall performance by limiting the average number of iterations until

convergence.

Keywords Genetic algorithms � Particle swarm optimization � Hybrid genetic algorithm � Multi-objective optimization

1 Introduction

1.1 Evolutionary-based algorithms

In computer science, an evolutionary-based algorithm (EA)

is an artificial intelligence technique that targets global

optimization by mimicking the biological process of evo-

lution. EAs operate by utilizing operators driven from

biological evolution such as breeding, crossover, mutation,

and selection (Li et al. 2020; Nopiah et al. 2010). EAs are

population based where each individual in an EA’s popu-

lation represents a possible solution to the optimization

problem. The quality of a possible solution is determined

by a fitness function that measures how good a candidate as

a solution to the optimization problem. The evolution

process in an EA commences by repeating the evolution

operators mentioned above (Luo et al. 2020).
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1.2 Single- versus multi-objective optimization
problems

In computer science, an optimization problem is a problem

where the target is to find the best possible solution among

all available solutions. In these problems, an algorithm

traverses a search space to find the best possible solution. A

single-objective optimization problem is a problem that

contains one and only one optimization function. In such

problems, an algorithm needs to focus only on this function

and attempts to find the global minimum/maximum

according to the target of optimization and the nature of the

problem. On the other hand, a multi-objective optimization

problem is a problem that contains more than one opti-

mization function. In such problems, the algorithm needs to

focus on more than one optimization function and traverses

through the search space to find a solution or a set of

solutions that achieve the optimization goal considering all

the given optimization functions (Li et al. 2019; Luo et al.

2020).

There exist various single- and multi-objective mathe-

matics-based optimization functions for testing; however, a

real-life example of a single-objective optimization prob-

lem would be ‘‘an attempt to find the best car design that

can achieve a very high speed; in this problem, the algo-

rithm will focus only on finding the car design that when

manufactured will produce a fast car regardless of any

other feature.’’ On the other hand, a real-life example of a

multi-objective optimization problem would be ‘‘an

attempt to find the best car design that when manufactured

will produce a car that is fast, cheap, robust, light weight,

and with high-quality materials.’’ Obviously from this

example, it is notoriously hard to design a car that is fast,

robust with high-quality materials and at the same time

cheap, which introduces the challenge of optimizing a

multi-objective optimization problem especially when

there are conflicting objectives.

The rest of the paper includes a background in the

coming section, followed by challenges section that dis-

cusses the challenges facing this research and then a sec-

tion for the proposed model architecture followed by the

results then a section discussing the results and finally the

conclusion.

2 Background

2.1 Genetic algorithms

A genetic algorithm (GA) is a search heuristic that mimics

the process of natural evolution. In GAs, the fittest

individuals are selected to produce the offspring of the new

generation (Durairaj and Dhanavel 2018).

A genetic algorithm represents a mimetic technique that

tackles optimization problems. A possible solution is

referred to as a chromosome (individual) that consists of

genes (features). Each gene describes one feature of the

possible solution. The chromosome structure definition is a

result of the problem encoding process where the algorithm

implementer encodes the targeted problem in such a way

that will enable the GA to attempt to solve this problem. A

fitness function is a specific function that measures the

fitness of a chromosome, in other words, how good a

chromosome is as a possible solution to the optimization

problem in hand. Once the problem encoding is done and

the chromosome is structured, an initial population of

randomly generated individuals is created (Kaur and

Aggarwal 2013). After then, an iterative process takes

place to evaluate the fitness of each chromosome and

searches for the best solution (chromosome/individual) that

will achieve the fitness function’s goal; this is usually to

find either a global minimum or a global maximum. Based

on the fitness results, one or more individuals will be

selected to survive and move to the next generation and the

unselected individuals will be dismissed. After then, the

survived group of individuals will start the mating process

via crossover and mutation. Crossover takes place between

two individuals where both individuals will share genes to

form new individuals according to a previously defined

probability (Pc). Then mutation follows for one or more

genes with predefined probability of mutation (Pm). Once

fitness evaluation, crossover and mutation steps are com-

pleted, a new generation (offspring) is now ready to replace

the old population and become the main population where

the iterative process will start all over again to create a new

generation and so on until a termination criterion is reached

Fig. 1 Basic genetic algorithm flow
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(Chen et al. 2018). The basic flow of a genetic algorithm is

shown in Fig. 1.

2.2 Particle swarm optimization

In nature, members of bird flocks synchronously and pre-

cisely perform intelligent behavior without colliding with

each other. Such interesting behavior has been studied in

several researches (Heppener and Grenander 1990; Rey-

nolds 1987). In computer science, the particle swarm

optimization algorithm (PSO) has been developed as a

result of the general belief that information sharing among

members of a bird flock creates intelligent behavior. The

particle swarm optimization algorithm belongs to the wide

category of swarm intelligence techniques (Prado et al.

2010). PSO was proposed in 1995 (Rakitianskaia and

Engelbrecht 2014) as an optimization method to simulate

social behavior of swarms, since then PSO was success-

fully applied in a variety of optimization problems such as

function optimization and training of neural networks

(Rakitianskaia and Engelbrecht 2014). One of the PSO’s

greatest advantages is being computationally inexpensive

as its system requirements are low (Prado et al. 2010). The

PSO utilizes a population-based search technique to opti-

mize a targeted objective function. The main component of

PSO is the population in which the algorithm searches for

the optimal solution. The population consists of particles

where each particle is considered a possible solution.

Particles in the population are a metaphor of birds in bird

flocks or fish in fish pools. In PSO, particles are initialized

with random values and can traverse the search space.

During operation, each member of the swarm updates its

own velocity and position depending on the best result

reached so far by this member in addition to the best result

reached by the entire swarm. The continuous updating

methodology will drive all particles in the swarm toward

the area in the search space that have the optimal result that

is the global maximum/minimum according to the objec-

tive function. Initially, a population of swarm members is

generated and randomly and initialized from a permissible

range of values. Secondly, the velocity updating process

takes place where all velocities of all swarm members are

updated according to Eq. 1:

v~i ¼ wv~i þ c1R1 p~i;best � p~i

� �
þ c2R2 g~i;best � p~i

� �
ð1Þ

where p~i and v~i represent the position and velocity of a

particle i; p~i;best represent the personal best of particle I and

g~i;best represent the best objective function value found so

far by entire population; w represents a parameter that

dominates the movement dynamics of a particle; R1 and R2

both represent random variables with permissible domain

of [0, 1]; c1 and c2 both represent factors that dominate the

weighting of the corresponding term. The existence of

random variables grants PSO the ability to perform random

searching, while c1 and c2 both represent weighting factors

that compromise the trade-off between search space

exploration and search space exploitation. As the updating

process commences, v~i is checked and maintained within a

predefined domain to prevent stray random walking.

Then PSO updates the position of its member particles

according to Eq. 2:

p~i ¼ p~i þ vi ð2Þ

Once the particles position is updated, p~i should be

checked and constrained to the permissible domain of

values. Then the algorithm updates the saved personal best

and global best p~i;best and g~i;best according to Eqs. 3 and 4:

p~i;best ¼ p~i if f p~ið Þ[ f p~i;best

� �
ð3Þ

g~i;best ¼ g~i if f g~ið Þ[ f g~i;best

� �
ð4Þ

where f x~ð Þ represents the objective function targeted for

optimization. Finally, the algorithm loops through from the

second to the fourth step until a predefined termination

condition is reached. For example, a predefined iterations

limit or when there are no new results reached by the

algorithm for a predefined number of generations. If a

termination condition is met, the algorithm presents the

values of g~i;best and f g~i;best

� �
as its final solution. Figure 2

presents the basic flow of the particle swarm optimization

algorithm.

2.3 Genetic algorithms versus hybrid genetic
algorithms

A genetic algorithm (GA) is a population-based meta-

heuristic search and optimization algorithm. It mimics the

process of natural evolution in such a way that it utilizes

the concepts of natural selection and genetic dynamics to

solve search and optimization problems. The concept of

Fig. 2 Particle swarm optimiza-

tion flow
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genetic algorithms was first laid down by Holland (1975)

and is discussed further with examples in De Jong (1975)

and Goldberg (1989). In theory, GA’s performance

depends on the ability to optimally balance search space

exploration and search space exploitation (Li et al. 2019).

Realistically, problems arise because Holland assumed that

the population size is infinite, and the fitness function

accurately reflects the suitability of a solution and the

interactions between the genes are very small (Beasley

et al. 1993). In practice, the population size is finite which

affects the sampling ability of the GA and its performance.

Utilizing a local search method with GA (Hybridization)

can help neutralize most of the obstacles that arise as a

result of the finite population size, it also accounts for the

genetic drift problem (Asoh and Mühlenbein 1994) by

introducing new genes. It can also accelerate the search

process to reach the global optimum (Hart 1994). The

approaches in Goldberg (1999) have shown that

hybridization has been one effective way to build compe-

tent genetic algorithms.

2.4 K-means clustering

The K-means clustering algorithm belongs to the parti-

tioning-based and non-hierarchical clustering techniques

(Abhishekkumar and Sadhana 2017), and it is one of the

most used clustering techniques that has been applied in

many scientific and technological fields (Xu and Wunschii

2005; Everitt et al. 2011). The k-means clustering algo-

rithm is used commonly because of its applicability on

different data types. The algorithm starts with a set of

targeted numeric objects X and an integer number k. The

algorithm then pursues an effort to partition all members of

X into k clusters while minimizing the sum of squared

errors (Hamerly and Drake 2014). Initially, the algorithm

randomly initializes the k cluster centers; then the algo-

rithm starts to assign each member of X to its closest center

according to the square of the Euclidean distance from the

cluster (Shrivastava et al. 2016). Consequently, the value of

each center is updated by computing the mean value of

each cluster; this updating process is a result of the change

of membership of the cluster members (Lei 2008). The

algorithm then iterates through updating cluster centers to

membership reassigning until no more changes in the

cluster’s membership is achieved. To calculate how near a

data vector is to a cluster’s center, the following formula is

used:

d zp; aj
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

k¼1

zpk � ajk
� �2

vuut ð5Þ

2.5 Multi-objective optimization test functions

Benchmark problems are usually utilized in order to eval-

uate the performance of optimization algorithms (Beasley

et al. 1993). Using benchmark functions for this purpose

facilitates performance comparison between different

multi-objective optimization algorithms. In this research,

several multi-objective optimization benchmark functions

are used to evaluate the proposed algorithm.

(1) Binh and Korn function (1997).

Functions:

f1 x; yð Þ ¼ 4x2 þ 4y2 ð6Þ

f2 x; yð Þ ¼ x� 5ð Þ2þ y� 5ð Þ2 ð7Þ

Constrains:

g1 x; yð Þ ¼ x� 5ð Þ2þy2 � 25 ð8Þ

g2 x; yð Þ ¼ x� 8ð Þ2þ yþ 3ð Þ2 � 7:7 ð9Þ

Search domain:

0� x� 5:0� y� 3 ð10Þ

(2) Chakong and Haimes function (1983).

Functions:

f1 x; yð Þ ¼ 2þ x� 2ð Þ2þ y� 1ð Þ2 ð11Þ

f2 x; yð Þ ¼ 9xþ y� 1ð Þ2 ð12Þ

Constrains:

g1 x; yð Þ ¼ x2 þ y2 � 225 ð13Þ
g2 x; yð Þ ¼ x� 3yþ 10� 0 ð14Þ

Search domain:

�20� x; y� 20 ð15Þ

(3) Constr-Ex Problem (Han et al. 2019).

Functions:

f1 x; yð Þ ¼ x ð16Þ

f2 xð Þ ¼ 1þ y

x
ð17Þ

Constrains:

g1 x; yð Þ ¼ yþ 9x� 6 ð18Þ
g2 x; yð Þ ¼ �yþ 9x� 1 ð19Þ

Search domain:

0:1� x� 1 ð20Þ
0� y� 5 ð21Þ

(4) Poloni’s two objective (1997).

Functions:
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f1 x; yð Þ ¼ 1þ A1 � B1 x; yð Þð Þ2þ A2 � B2 x; yð Þð Þ2
h i

ð22Þ

f2 xð Þ ¼ xþ 3ð Þ2þ yþ 1ð Þ2 ð23Þ
A1 ¼ 0:5 sin 1ð Þ � 2 cos 1ð Þ þ sin 2ð Þ � 1:5 cos 2ð Þ ð24Þ
A2 ¼ 1:5 sin 1ð Þ � cos 1ð Þ þ 2 sin 1ð Þ � 0:5 cos 2ð Þ ð25Þ
B1 x; yð Þ ¼ 0:5 sin xð Þ � 2 cos xð Þ þ sin yð Þ � 1:5 cos yð Þ

ð26Þ
B2 x; yð Þ ¼ 1:5 sin xð Þ � cos xð Þ þ 2 sin yð Þ � 0:5 cos yð Þ

ð27Þ

Search domain:

�p� x; y� p ð28Þ

3 Challenges

3.1 Genetic algorithms challenges

In theory, a genetic algorithm is supposed to achieve the

perfect balance between search space exploration and

search space exploitation. Search space exploration is a

concept where the GA traverses through the search space

looking for new solutions, while search space exploitation

is another concept where the GA attempts to exploit pos-

sible opportunities to get the most out of the searching

process. GA is supposed to achieve the perfect balance

between search space exploration and search space

exploitation as assumed in Beasley et al. (1993), such that

‘‘the population size is infinite and the fitness function

accurately reflects the suitability of a solution and the gene

interactions are minimum.’’ In practice, the population size

is finite which affects both the performance and the sam-

pling ability of the genetic algorithm. On the other hand,

the GA behavior is highly influenced by the fitness function

that selects fit chromosomes to survive to the next gener-

ation, while rejecting chromosomes that do not pass the

fitness function even if they have good genes. This is

simply because the GA searches for good chromosomes not

good genes. This behavior may punish individuals that may

not pass the fitness function but may possess good genes

that can take the search cursor to promising places in the

search space.

3.2 The challenge of multi-objective
optimization problems

Optimization algorithms have been used in a variety of

fields including image processing (Chen et al. 2019; Zitzler

and Kunzli 2004), industry (Li and Mcmahon 2007; Lin

et al. 2016; Zhu and Zhou 2006), and manufacturing (Gui

and Zhang 2016; Zhang et al. 2016). Optimization algo-

rithms also pose a significant challenge in applied science

(Kim et al. 2017; Ni et al. 2016; Tao and Zhang 2013),

especially when the optimization algorithms are dealing

with a multi-objective optimization problem (MOP)

(Bandaru et al. 2014; Coello 2006) that contains two or

more optimization objectives. The significant challenge

posed to an optimization algorithm in such a case is that the

algorithm has to synchronously consider all the objectives

in the optimization process. MOP can formally be descri-

bed as follows:

Minimize F xð Þ ¼ f1 xð Þ; f2 xð Þ; . . .; fm xð Þ½ �T ð29Þ

s:t: x ¼ X1;X2; . . .;Xnð ÞT2 X ð30Þ

where x represents the decision variable vector and X
represents the search space and Rm represents the objective

vector space. F(x) is the objective vector with m real value

objective functions. In a multi-objective optimization

problem, there is a relation between the two optimization

functions which makes it difficult to a single point in the

search space to minimize/maximize both objective func-

tions at the same time. The approach to solve multi-ob-

jective optimization problems is to search for several

promising points in the search space whose objective

functions evaluation achieves a balanced minimum/maxi-

mum optimization value. Multi-objective evolutionary

algorithms (MOEAs) utilize the evolution process to search

for solutions to a multi-objective optimization problem.

During this process, the algorithm performs many calcu-

lations as all individuals are evaluated in all generations. In

some fields, the computation cost of an algorithm is criti-

cal. Therefore, it would be optimal to reduce the number of

fitness evaluations and maximize the quality of solutions.

4 Proposed model architecture

4.1 Proposed algorithm

The proposed hybrid GA utilizes GA search for a set of

optimal solutions that will minimize the objective functions

for a given benchmark multi-objective optimization prob-

lem. The algorithm will also utilize the K-means clustering

algorithm to support the selection process by ensuring a

fair feature distribution in both selected to survive (fit) and

selected for rehabilitation (non-fit) chromosomes. We

assume that the non-fit chromosomes may contain good

genes that may take the cursor of the searching process to

places in the search space where promising results could be

found. Accordingly, the non-fit chromosomes are passed to

the particle swarm optimization algorithm for rehabilita-

tion, where all selected for rehabilitation individuals (non-

An approach for optimizing multi-objective problems using hybrid genetic algorithms 393
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fit chromosomes) will form the population of the PSO

algorithm and communicate with each other to update their

velocity and position to reach the best possible outcome

from these non-fit individuals. The proposed model is as

shown in Fig. 3.

In Fig. 3, condition one evaluates an individual and

checks the predefined stopping criterion that is the maxi-

mum number of generations; if the maximum number of

generations is reached, the algorithm will stop (F); other-

wise, it will continue (T). Condition two can be considered

as a dual selection mechanism, where on the one hand it

selects the fittest individuals to survive to next generation

(A). On the other hand, and with the support of the k-means

algorithm, it splits the rejected individuals into k clusters

where k is the number of optimization functions in a multi-

objective optimization problem and fairly transfers a group

of rejected individuals to the PSO for rehabilitation (R).

Condition 3 checks for the stopping criteria of the PSO

that is a maximum number of iterations, such that, it will

either continue looping through the PSO (F) or return the

rehabilitated individuals into the GA’s population (T).

Condition 4 will either inject the incoming individuals into

the new population of the GA (T) or force the GA to

resume (F) if the GA has already stopped for an additional

5000 iterations.

This is the first and main component of the proposed

hybrid algorithm. GetRandomPopulation() is a function

used to generate initial chromosomes with random values

of X and Y.BenchMarkFunction() is a delegate consuming

the targeted benchmak function. GetRandom() is a function

used to get a random value to be compared against Pm and

Pc. CrossOver(Individual) applies a fixed point crossover

on a targeted individual. Mutate(Gene) applies mutation on

a targeted gene. Separate(GAPopulation, out Selected, out

rejected) scans the current population and outputs the

selected individuals and the rejected individuals.

KMeansSelection(Rejected) applies clustering where K =

the chromosome length to assure fair distribution of the

rejected individuals that are selected for rehabilitation.

PSORehabilitation(Rehabilitate) applies the rehabilitation

process according to the next algorithm either online or

offline. GetParetoSet(OffSpring) gets the solution pareto

set from the evaluated offspring.

Fig. 3 Proposed model
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The algorithm above describes the rehabilitation process

using the PSO where output is represented as the global

best achieved by all particles.

4.1.1 Problem encoding and solution decoding

The proposed algorithm operates on a set of benchmark

multi-objective optimization problems with objective

functions that require two inputs. Thus, the problem will be

encoded in a chromosome structure consisting of two genes

(one gene for each input) as shown in Fig. 4.

4.1.1.1 Encoding All four benchmark functions targeted

in this research share the same characteristic of having two

inputs X and Y and two objective functions F1 and F2.

Both X and Y represent coordinates for a point in the

search space with constrains, where the proposed algorithm

is supposed to find the point with the minimum value of F1

and F2 in the search space of each targeted benchmark

function. The proposed algorithm searches for X and Y and

for each proposed X and Y we calculate the value of both

objective functions F1 and F2. As a result, we encode a

possible optimal solution of each targeted benchmark

function in the form of a chromosome of X and Y as shown

in Fig. 4.

4.1.1.2 Decoding As we target multi-objective optimiza-

tion benchmark functions, it may not be of an obvious

business value to attempt to translate the output of these

benchmark functions to assume decoding the X and Y

value; in the end, the encoded input of our targeted

benchmark functions represents X and Y coordinates where

the proposed algorithm is supposed to find the X and Y that

will lead to the minimum value of F1 and F2, considering

that these multi-objective benchmark functions were

designed so that F1 and F2 are conflicting in such a way

that generally minimizing F1 will maximize F2 and vice

versa. This way, the targeted benchmark functions can test

the multi-objective optimization ability of a proposed

optimization algorithm. Decoding the chromosome of X

and Y will lead to nothing but the X value and Y value that

the proposed algorithm is searching for in each search

space of the targeted benchmark functions.

4.1.2 Population specifications

A population of individuals is randomly generated to ini-

tialize the algorithm with a pre-determined population size

n. In the execution phase, the algorithm is tested on dif-

ferent values of n to examine the effect of the population

size on the algorithm’s performance.

4.1.3 Genetic operators

The genetic operators are an essential part of the proposed

algorithm as the algorithm utilizes them to mimic the

process of natural evolution. Genetic operators include

crossover, mutation, evaluation and selection. As soon as

the problem is encoded properly, the algorithm can apply

these operators on the individuals in the search for the best

possible solution.

4.1.3.1 Crossover The chromosome structure is common

in the entire test functions that are used in this research;

hence, a single point crossover will be applied in all test

cases so that chromosomes may share genes to facilitate the

search for the optimal result.

4.1.3.2 Mutation The proposed algorithm can mutate the

value of a gene in a chromosome according to the value of

the probability of mutation Pm. However, some of the

benchmark functions used in this research have a con-

strained search domain, and so in a test case that is sub-

jected to such a function, the algorithm is permitted to

mutate the genes within a range of the permissible values.

4.1.3.3 Evaluation In each generation, the algorithm

evaluates all individuals to assign a fitness score for each

one. In this research, the focus is on multi-objectiveFig. 4 Chromosome structure
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problems. Each of the used benchmark functions have two

objective functions, so the fitness of each chromosome will

be two values each of them represent one of the fitness

functions.

4.1.3.4 Selection The algorithm performs elitism selec-

tion where a group of best performing chromosomes is

selected to survive to the next generation. Only fitter

chromosomes can replace these elite individuals in order;

otherwise, this group continues through all generations

unchanged. In addition to that, rejected individuals will be

clustered by the K-means algorithm according to their fit-

ness values. This step assures a balanced distribution of

individuals passed to PSO for rehabilitation.

4.1.4 K-means clustering

The K-means clustering algorithm is utilized to support the

individuals filtering process in the selection phase of the

proposed algorithms. It can be viewed as a secondary

selection technique that operates to gather all individuals

that did not pass the fitness function, cluster them

according to the values of their fitness functions that will

lead to K = 2 clusters, and finally pass a balanced group of

rejected individuals to the PSO to assure the existence of

all unique individuals without losing an individual in an

offspring that had no like in this offspring as shown in

Fig. 5.

Figure 5 represents hypothetical individuals with hypo-

thetical values to show the filtration mechanism of the

K-means-based selection method. After individuals in a

generation are rejected, their evaluation value will be tar-

geted for clustering by the K-means algorithm to produce

K clusters where K = the chromosome length. Then, based

on the clustering result, the algorithm will select a group of

individuals for rehabilitation while making sure to select at

least one individual from each cluster, hence asserting the

existence of all unique chromosomes. The PSO will then

operate on them and return a better individual.

4.1.5 Stopping criterion

The proposed algorithm’s stopping criterion is when the

algorithm reaches the maximum number of generations (in

this research this number is fixed to 10,000).

4.1.6 PSO Integration

Individuals that did not pass the fitness function are clus-

tered and passed to the PSO algorithm for rehabilitation.

These individuals act as particles in a swarm where they all

communicate with each other updating their velocity and

position continuously. When all particles agree on the best

solutions, this individual is passed back to the offspring

replacing the least fit offspring in case the algorithm did not

terminate. If the algorithm has already terminated, PSO

will force it to continue and if no better result is reached for

a predefined number of iterations (5000), the algorithm will

finally terminate representing a group of solutions called a

pareto set.

5 Results

The proposed algorithm is evaluated using four benchmark

functions: Binh and Korn (1997), Chakong and Haimes

(1983), Constr-Ex Problem (Han et al. 2019), and Poloni’s

two objective functions (Poloni 1997).

The algorithm was executed under 2 configurable

parameters (Algorithm and PS) with two options each

which produced 16 different test cases. The 16 test cases

were executed on a 2.6 GHz Intel Core i7 vPro machine

with 16 GB of RAM and a magnetic HDD on a 64-bit OS.

The test cases conducted in this research are described

in Table 1 where the used algorithm is either the genetic

algorithm (GA) or the proposed hybrid genetic algorithm

(HGA)—PS specifies the used population size.

Test cases in Table 1 have been executed, and the

detailed results are noted in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27 and 28. Each table(s) shows the pareto set extracted

from each test case. The pareto set is a group of the best

performing solutions to a multi-objective optimization

problem. In our research the pareto set size is fixed to 7

solutions.

Figure 6 shows the average value of function 1 for Binh

and Korn for the different cases.

Figure 7 shows the average value of function 2 for Binh

and Korn for the different cases.Fig. 5 K-means selection
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Figure 8 shows the average value of function 1 for

Chakong and Haimes for the different cases.

Figure 9 shows the average value of function 2 for

Chakong and Haimes for the different cases.

Figure 10 shows the average value of function 1 for

Constr-Ex Problem for the different cases.

Figure 11 shows the average value of function 2 for

Constr-Ex Problem for the different cases.

Figure 12 shows the average value of function 1 for

Poloni’s Two Objective Function for the different cases.

Figure 13 shows the average value of function 2 for

Poloni’s Two Objective Function for the different cases.

Figures 14, 15, 16 and 17 show the average iterations

until convergence for each benchmark function on each test

case.

6 Discussion of results

The proposed HGA has been tested against four benchmark

functions and compared against a normal genetic algorithm

(GA) and a hybrid genetic algorithm (HGA) both in dif-

ferent population sizes (10/100) that produced a total of 16

test cases. All 4 multi-objective optimization functions

used in this research have 2 objective functions F1 and F2,

both have been targeted with a genetic algorithm and a

population size of 10, a hybrid genetic algorithm and a

population size of 10, a genetic algorithm and a population

size of 100 and finally a hybrid genetic algorithm and a

population size of 100.

6.1 Results analysis

Results of test cases 1, 2, 3 and 4 targeted the Binh and

Korn optimization function F1 showed that the GA with

population size 10 achieved good minimization value of

F1, however when switched to HGA with population size

10, a better minimization value was achieved. As the

population size increased to 100, the GA seemed not to

Table 1 Test cases

# Benchmark Function Algorithm PS

1 Binh and Korn GA 10

2 Binh and Korn HGA 10

3 Binh and Korn GA 100

4 Binh and Korn HGA 100

5 Chakong and Haimes GA 10

6 Chakong and Haimes HGA 10

7 Chakong and Haimes GA 100

8 Chakong and Haimes HGA 100

9 Constr-Ex Problem GA 10

10 Constr-Ex Problem HGA 10

11 Constr-Ex Problem GA 100

12 Constr-Ex Problem HGA 100

13 Poloni’s Two Objective GA 10

14 Poloni’s Two Objective HGA 10

15 Poloni’s Two Objective GA 100

16 Poloni’s Two Objective HGA 100

Table 2 Pareto set of test case 1
# X Y F1 F2 ITR

1 0.134164947 0.01495685 0.072895762 48.52700597 9075

2 2.062855885 2.060158351 33.99850735 17.26948447 3917

3 0.920472136 2.77477923 34.18667491 21.59415507 4955

4 1.507794034 2.522610413 34.54802458 18.33296168 6184

5 2.370373636 1.762134252 34.89515318 17.39870942 0316

6 2.98028398 0.912911017 38.8619965 20.78354916 3903

7 4.960768472 2.522610413 123.8911485 6.138998278 7513

Table 3 Pareto set of test case 2
# X Y F1 F2 ITR

1 0.043222038 0.002652104 0.007500713 49.54313376 531

2 1.210843376 2.872314101 38.8653199 18.8847552 616

3 2.405085765 1.983257128 38.87098549 15.83431744 131

4 3.063461782 0.577933328 38.87522008 23.30485393 307

5 3.074052638 0.521459137 38.88687701 23.7666015 843

6 1.231042953 2.865080728 38.89661731 18.76291752 147

7 4.697224519 2.921041917 122.3856162 4.413739701 356
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take advantage of the large population size; on the other

hand the HGA with population size 100 succeeded to

achieve the least possible minimization value.

The same test cases also targeted Binh and Korn’s F2

where the GA with population size 10 achieved a good

minimization value that decreased when switched to HGA.

However, in F2, the GA seemed to benefit from the

Table 4 Pareto set of test case 3
# X Y F1 F2 ITR

1 0.100979526 0.099351048 0.080269981 48.01676176 8186

2 0.641492475 1.968689939 17.14901069 28.18542853 9493

3 0.547274449 2.062328761 18.21083697 28.45667714 4770

4 2.425644352 0.205410998 23.70377681 29.6153907 1596

5 2.461141712 0.35049445 24.72025955 28.06370326 9916

6 2.512867457 1.687422256 36.64758689 17.1589996 4678

7 4.943641939 2.959672433 132.7970261 4.166112812 148

Table 5 Pareto set of test case 4

(input)
# X Y

1 0.025007743 0.000998159

2 2.429877297 0.247642491

3 2.241525288 1.205268405

4 2.52379106 0.43975363

5 2.714824873 1.806695914

6 2.431597976 2.247782434

7 4.989237397 2.991881041

Table 6 Pareto set of test case 4 (output)

# F1 F2 ITR

1 0.002505534 49.74056736 906

2 23.86252193 29.1904326 951

3 25.90843018 22.00917062 876

4 26.25161828 26.92745767 292

5 42.53769687 15.41921635 773

6 43.86077836 14.17139048 588

7 135.3753679 4.032657586 212

Table 7 Pareto set of test case 5(input)

# X Y

1 0.790735223 3.669498192

2 5.555006836 5.304598778

3 5.512129993 5.781028082

4 5.731513102 6.22127259

5 1.832623739 10.10870305

6 5.37444378 11.65531614

7 0.881684907 14.78213384

Table 8 Pareto set of test case 5 (output)

# F1 F2 ITR

1 10.5885419 0.009603592 5422

2 33.16764425 31.46549089 4588

3 37.19328661 26.75094041 5983

4 43.18587749 24.32193047 7278

5 84.99648613 -66.47485767 5457

6 126.9226329 -65.16576801 5693

7 193.1978417 -182.0120489 8964

Table 9 Pareto set of test case 6(input)

# X Y

1 0.790735223 3.669498192

2 5.555006836 5.304598778

3 5.512129993 5.781028082

4 5.731513102 6.22127259

5 1.832623739 10.10870305

6 5.37444378 11.65531614

7 0.881684907 14.78213384

Table 10 Pareto set of test case 6 (output)

# F1 F2 ITR

1 10.5885419 0.009603592 5422

2 33.16764425 31.46549089 4588

3 37.19328661 26.75094041 5983

4 43.18587749 24.32193047 7278

5 84.99648613 -66.47485767 5457

6 126.9226329 -65.16576801 5693

7 193.1978417 -182.0120489 8964
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increase in the population size as it decreased the mini-

mization value and finally achieved the best result when

using HGA with a population size of 100.

Results of test cases 5, 6, 7 and 8 targeted the Chakong

and Haimes optimization function F1 and showed that the

GA with population size 10 achieved fair minimization

value of F1, switching to HGA with population size of 10

individuals achieved a much better minimization value.

Increasing the population size to 100 seemed to disrupt the

GA, however switching to HGA with population size 100

succeeded to achieve the least possible minimization value.

The same test cases also targeted Chakong and Haimes F2

where the GA with population size 10 achieved a good

minimization value that decreased when switched to HGA.

In F2, the GA seemed also to benefit from the increase in

the population size that decreased the minimization value

and finally the best possible minimization result was

achieved using HGA with a population size of 100.

Results of test cases 9, 10, 11 and 12 targeted the

Constr-Ex Problem optimization function F1 where a serial

decrease in the minimization value has been witnessed

when switching from GA to HGA and from population size

of 10 to population size of 100. The same phenomenon has

been also witnessed in F2 with a serial decrease in the

minimization value when switching from GA to HGA and

from population size 10 to 100.

Results of test cases 13, 14, 15 and 16 targeted the

Poloni’s Two Objective optimization function F1 and

showed a smooth decrease in the minimization value when

switching from GA to HGA and from population size 10 to

population size 100. The same test cases also targeted

Poloni’s Two Objective F2 where almost the same phe-

nomenon has been witnessed except for a slight increase in

the minimization value when used a GA with population

size 100.

All test cases on all multi-objective optimization func-

tions have shared the same phenomenon in terms of aver-

age iterations until convergence where GA with population

size 10 has consumed the most average iterations until

convergence, while the average iterations until conver-

gence have slightly decreased on switching to population

size 100. On the other hand, a great decrease in the average

iterations until convergence has been witnessed when HGA

was used and decreased more on switching population size

from 10 to 100.

6.2 Complexity

The proposed hybrid algorithm utilizes two evolutionary

algorithms as well as the K-means clustering algorithm

with overall 5 loop structures as assumed below:

(n): GA maximum number of iterations.

Table 11 Pareto set of test case 7 (input)

# X Y

1 1.132622967 3.728393034

2 0.638726615 5.898149896

3 5.245617938 5.232664531

4 6.356111423 6.522970724

5 8.20155214 7.389476242

6 5.893180657 13.70068807

7 0.476608146 14.98233248

Table 12 Pareto set of test case 7 (output)

# F1 F2 ITR

1 10.19647146 2.749478156 556

2 27.84493764 -18.24333287 218

3 30.44948483 29.29511241 491

4 51.47891235 26.70179719 2

5 81.28465559 32.98856261 887

6 178.4643332 -108.2688516 627

7 199.8263443 -191.2161482 293

Table 13 Pareto set of test case 8 (input)

# X Y

1 1.018223176 3.69941645

2 2.832960716 5.692491758

3 4.586781936 5.059838949

4 5.071999512 5.656455888

5 0.279482226 12.51596106

6 0.391765502 13.55972229

7 0.14079175 14.90785348

Table 14 Pareto set of test case 8 (output)

# F1 F2 ITR

1 10.2507349 1.877159415 9470

2 24.71330245 3.477167549 7929

3 25.17373308 24.79874513 9968

4 33.11976244 23.96541417 6923

5 137.5775405 -130.1020191 5810

6 162.3330421 -154.2207344 9712

7 198.8850439 -192.1612628 2343
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(x): GA Population size.

(y): K-Means maximum number of iterations.

(z): PSO maximum number of iterations.

(m): PSO population size.

The combined complexity will be as follows:

O nð Þ � O xð Þ þ O y2
� �� �

þ O zð Þ � O mð Þ ð31Þ

That can be further calculated as:

Table 15 Pareto set of test case

9
# X Y F1 F2 ITR

1 1.141650528 3.714503396 10.1052925 2.906326066 170

2 2.270679391 4.1116808 11.75582473 10.75355712 682

3 4.777027361 4.931482926 25.16843897 27.53668825 271

4 4.037882334 5.780501252 29.00615663 13.48774878 399

5 6.166195882 5.574110591 40.27967582 34.57327524 478

6 0.400150437 12.96051534 147.6134458 -139.4525733 112

7 0.030603712 14.98981249 201.5933752 -195.4394201 381

Table 16 Pareto set of test case 10

# X Y F1 F2 ITR

1 0.480483617 2.52409605 0.480483617 7.334477026 195

2 0.672769379 4.780821276 0.672769379 8.592574893 868

3 0.714293328 0.209769169 0.714293328 1.693658785 100

4 0.831604894 0.201440994 0.831604894 1.444725738 937

5 0.831604894 0.117248981 0.831604894 1.343485338 871

6 0.831604894 1.410850953 0.831604894 2.89903411 522

7 0.884108642 0.179379825 0.884108642 1.33397613 770

Table 17 Pareto set of test case 11

# X Y F1 F2 ITR

1 0.424663285 2.327685259 0.424663285 7.836055946 215

2 0.811333275 4.643209746 0.811333275 6.955476771 826

3 0.65629574 0.487813009 0.65629574 2.266985625 1

4 0.766314925 0.022275313 0.766314925 1.334014619 572

5 0.811333275 0.022275313 0.811333275 1.259994314 621

6 0.965438728 0.148130385 0.965438728 1.189231747 505

7 0.965438728 0.022275313 0.965438728 1.05887125 130

Table 18 Pareto set of test case 12

# X Y F1 F2 ITR

1 0.409157113 2.368311669 0.409157113 8.232318488 930

2 0.543566211 2.830027301 0.543566211 7.04610997 1

3 0.688640024 0.424545282 0.688640024 2.068635618 620

4 0.659018699 0.068861651 0.659018699 1.621898821 630

5 0.739009283 0.154299075 0.739009283 1.56195477 234

6 0.852115546 0.665951977 0.852115546 1.955077554 955

7 0.931696622 0.100354292 0.931696622 1.18102209 868

Table 19 Pareto set of test case

13 (input)
# X Y

1 0.399905839 2.520565424

2 0.450174571 2.221508763

3 0.835870807 0.400861474

4 0.807107902 0.400861474

5 0.839081845 0.136104268

6 0.890787528 0.036718799

7 0.991339619 0.005479991

Table 20 Pareto set of test case 13 (output)

# F1 F2 ITR

1 0.399905839 8.803485919 115

2 0.450174571 7.15613224 775

3 0.835870807 1.675930612 727

4 0.807107902 1.735655755 521

5 0.839081845 1.353985044 25

6 0.890787528 1.163822759 30

7 0.991339619 1.014263903 658

Table 21 Pareto set of test case

14(input)
# X Y

1 2.026772379 0.725566987

2 2.026772379 0.404946227

3 1.060018475 1.689872468

4 0.687651732 1.354777902

5 0.026858216 1.115714894

6 0.192344673 0.84673096

7 0.026858216 1.009679782
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O nxð Þ þ O ny2
� �

þ O zmð Þ ð32Þ

where generally O nxð Þ is observed as the GA’s maximum

number of iterations by the genetic operators process, while

O ny2ð Þ is observed as the GA’s maximum number of

Table 22 Pareto set of test case 14(output)

# F1 F2 ITR

1 1.0000782200791 28.2460219774499 459

2 1.6804261129277 27.2423144500805 6546

3 1.0731068334506 23.7191639078846 4849

4 3.6149691740080 19.1437542669727 1781

5 12.4096393589383 13.6381201742824 2767

6 15.0963843208604 13.6014797502701 1387

7 14.1033896465813 13.2006834859074 1824

Table 23 Pareto set of test case

15(input)
# X Y

1 1.992796167 0.74599444

2 0.431708764 2.560063858

3 0.414587958 1.580209137

4 0.033285138 1.015161588

5 0.244105733 0.286065834

6 0.129004237 0.175458435

7 0.033285138 0.04120158

Table 24 Pareto set of test case 15 (output)

# F1 F2 ITR

1 1.0008368469679 27.9765101466281 427

2 3.7484427646468 24.4506797097984 431

3 4.3293861683622 18.3168901121083 289

4 13.9461945091865 13.2616949567807 143

5 26.5294904325897 12.1781873364260 6

6 31.3897481027259 11.1723700495869 998

7 36.5414105010677 10.2849194605944 67

Table 25 Pareto set of test case

16 (input)
# X Y

1 2.014379037 0.730414493

2 1.516069487 0.983394203

3 0.786375781 0.739979921

4 0.073302244 1.000250057

5 0.107229003 0.730414493

6 0.048561879 0.440015081

7 0.042114537 0.025438154

Table 26 pareto set of test case 16 (output)

# F1 F2 ITR

1 1.00019889940196 28.13833144168340 8422

2 1.23976085602110 24.32873617242680 3219

3 8.59745451825322 17.36417168097560 6913

4 13.78220356963130 13.44618697211410 9068

5 18.48631603556300 12.64920639464410 298

6 26.00059998200200 11.36737295952180 7408

7 36.79061228187800 10.30598426556100 2662

Table 27 Pareto set of test case 17 (input)

# X Y

1 0.997302462811257 1.99525802954811

2 0.938561079529375 1.83597606692276

3 0.491012027715804 1.34152916322533

4 0.163117828854880 0.941434032722113

5 0.289071682043873 0.407450404207898

6 0.0954794325379093 0.255250814489671

7 2.86696013196696E3 1.13007891975813E2

Table 28 Pareto set of test case 17 (output)

# F1 F2 ITR

1 1.00010284546762 24.9499976427693 871

2 1.0911184293893 23.5550236293423 58

3 5.31434717696346 17.6699237998912 479

4 13.7736062389852 13.7744805026313 437

5 22.8491292496355 12.7989091699279 707

6 29.9417735169670 11.1576475245422 1

7 37.8388695531307 10.0399392664838 105

Fig. 6 Binh and Korn F1 average
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generations by the K-means process and finally O zmð Þ is

observed as the PSO’s population size by the PSO’s

velocity and position process. Hence, we can conclude that

better optimization was achieved with a trade-off in per-

formance and resource consumption.

6.3 Contributions

The proposed technique utilizes a genetic algorithm that

targets search space exploration supported by the K-means

algorithm to enhance the selection mechanism as described

in Sect. 4.1.4. The particle swarm optimization algorithm

was also utilized to target the rejected individuals of each

generation to fulfill the concept of the rehabilitation of

rejected individuals to maximize the utilization of all

individuals in each generation. To test the effect of each

component of the proposed hybrid algorithm, the hybrid

algorithm was tested against 4 benchmark functions under

several configurations that resulted in 16 different test

cases where their results were finely analyzed in Sect. 6.1.

From this analysis, it was observed that the proposed

K-means-based selection mechanism enhanced the opti-

mization ability of the genetic algorithm, however added

Fig. 7 Binh and Korn F2 average

Fig. 8 Chakong and Haimes F1 average

Fig. 9 Chakong and Haimes F2 average

Fig. 10 Constr-Ex F1 average

Fig. 11 Constr-Ex F2 average

Fig. 12 Poloni’s F2 average
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more computational cost to the GA. It was also observed

that the PSO further enhanced the optimization ability of

the hybrid algorithm, however, also added to the compu-

tational complexity of the hybrid algorithm.

From Sect. 6.2 it was also observed that the overall

optimization process is enhanced significantly, however,

and as a trade-off to this enhancement, more computational

cost was added compared to a basic GA.

7 Conclusion

In this research, a hybrid genetic algorithm was proposed to

solve multi-objective optimization problems. The hybrid

genetic algorithm utilized the particle swarm optimization

(PSO) as well as the K-means algorithm in order to solve

multi-objective optimization problems. In this research,

four benchmark multi-objective optimization problems

have been used to test the proposed hybrid genetic algo-

rithm (HGA). The three main components of the proposed

hybrid algorithm (GA, PSO and K-means) have been uti-

lized to achieve better optimization results as well as per-

formance. In concept, the genetic algorithm was used to

achieve search space exploration supported by the

K-means algorithm to enhance the selection operation of

the GA, while the PSO was used to achieve search space

exploration.

In the experiments phase of this research, these concepts

have been put to test on four benchmark multi-objective

optimization functions with different settings in terms of

population size (10 or 100) and the algorithm mode (GA or

HGA) which produced 16 different test cases (four

benchmark functions x four different settings) as shown in

Table 1. All 16 test cases were executed, and the results

were noted in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

Fig. 13 Poloni’s F2 average

Fig. 14 Binh and Korn Iterations AVG

Fig. 15 Chakong and Haimes Iterations AVG

Fig. 16 Constr-Ex Iterations AVG

Fig. 17 Poloni’s Iterations AVG
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15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28. The

results were discussed in detail in the previous section from

which we can conclude that the proposed HGA has

achieved better optimization results in terms of minimizing

the objective functions in all test cases as well as better

performance in terms of average iterations until conver-

gence. For each benchmark function, better results in terms

of minimizing the objective functions were achieved when

the algorithm was switched from GA to HGA.

It was noticed that increasing the population size

enhanced the minimization ability of both the GA com-

pared to itself and HGA compared to itself but gave no

superiority to GA over HGA even with small population

size. Better performance was also achieved as the proposed

HGA has significantly decreased the average iterations

needed until convergence when compared to GA.
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