Skip to main content
Log in

Whale optimization and sine–cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This research study aims to enhance the optimization accuracy of the two recently emerged metaheuristics of whale and sine–cosine optimizers by means of the balanced improvements in intensification and diversification phases of the algorithms provided by cellular automata (CA). Stagnation at the early phases of the iterations, which leads to entrapment in local optimum points in the search space, is one of the inherent drawbacks of the metaheuristic algorithms. As a favorable solution alternative to this problem, different types of cellular topologies are implemented into these two algorithms with a view to ameliorating their search mechanisms. Exploitation of the fertile areas in the search domain is maintained by the interaction between the topological neighbors, whereas the improved exploration is resulted from the smooth diffusion of the available population information among the structured neighbors. Numerical experiments have been carried out to assess the optimization performance of the proposed cellular-based algorithms. Optimization benchmark problems comprised of unimodal and multimodal test functions have been applied and numerical results have been compared with those found by some of the state-of-the-art literature optimizers including particle swarm optimization, differential evolution, artificial cooperative search and differential search. Cellular variants have been outperformed by the base algorithms for multimodal benchmark problems of Levy and Penalized1 functions. Then, the proposed cellular algorithms have been applied to two different parameter identification cases in order to test their efficiencies on real-world optimization problems. Extensive performance evaluations on different parameter optimization cases reveal that incorporating the CA concepts on these algorithms not only improves the optimization accuracy but also provides considerable robustness to acquired solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abd-Elaziz ME, Ewees AA, Oliva D, Duan P, Xiong S (2017a) A hybrid method of sine cosine algorithm and differential evolution for feature selection. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ES (eds) Neural information processing, ICONIP 2017. Lecture notes in computer science, vol 10638. Springer

  • Abd-Elaziz M, Oliva D, Xiong S (2017b) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500

    Article  Google Scholar 

  • Ahmadi M, Mojallali H (2012) Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems. Chaos Soliton Fract 45:1108–1120

    Article  MathSciNet  Google Scholar 

  • Al-Assaf Y, El-Khazali R, Ahmad W (2004) Identification of fractional chaotic system parameters. Chaos Soliton Fract 22:897–905

    Article  MATH  Google Scholar 

  • Al-Betar MA, Awadallah MA (2018) Island bat algorithm for optimization. Expert Syst Appl 107:126–145

    Article  Google Scholar 

  • Al-Betar MA, Kader AT, Awadallah MA, Alawan MH, Zaqaibeh B (2013) Cellular harmony search for optimization problems. J Appl Math 20:139464

    MathSciNet  Google Scholar 

  • Al-Betar MA, Awadallah MA, Khader AT, Abdalkareem ZA (2015) Island-based harmony search for optimization problems. Expert Syst Appl 42:2026–2035

    Article  Google Scholar 

  • Alkan H, Balkaya C (2018) Parameter estimation by differential search algorithm from horizontal loop electromagnetic (HLEM) data. J Appl Geophys 149:77–94

    Article  Google Scholar 

  • Al-Shaikh A, Mahafzah BA, Alshraideh M (2019) Metaheuristic approach using grey wolf optimizer for finding strongly connected components in digraphs. J Theor Appl Inf Technol 97:4439–4452

    Google Scholar 

  • Askerzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  • Biswas PP, Suganthan PN, Wu G, Amaratunga GAJ (2019) Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew Energy 132:425–438

    Article  Google Scholar 

  • Chang JF, Yang YS, Liao TH, Yan JJ (2008) Parameter identification of chaotic systems using evolutionary programming approach. Expert Syst Appl 35:2074–2079

    Article  Google Scholar 

  • Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Article  Google Scholar 

  • Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9:1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Heidari AA, Zhao X, Zhang L, Chen H (2020a) Advanced orthogonal learning-driven multi-swarm sine cosine optimization: framework and case studies. Expert Syst Appl 144:113113

    Article  Google Scholar 

  • Chen H, Wang M, Zhao X (2020b) A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput 369:124872

    Article  MathSciNet  MATH  Google Scholar 

  • Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247

    Article  Google Scholar 

  • Civicioglu P (2013) Artificial cooperative search algorithm for numerical optimization problems. Inf Sci 229:58–76

    Article  MATH  Google Scholar 

  • Das B, Mukherjee V, Das D (2020) Student psychology based optimization algorithm: a new population based optimization algorithm for solving optimization problems. Adv Eng Softw 146:102804

    Article  Google Scholar 

  • Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  • Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Article  Google Scholar 

  • Du KL, Swamy MNS (2016) Search and optimization by metaheuristics. Springer, Cham

    Book  MATH  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39–43

  • Elaziz M, Oliva D (2018) Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers Manag 171:1843–1859

    Article  Google Scholar 

  • Elhosseini MA, Haikal AY, Badawy M, Khashan N (2019) Biped robot stability based on an A–C parametric whale optimization algorithm. J Comput Sci Neth 31:17–32

    Article  MathSciNet  Google Scholar 

  • Fan Y, Wang P, Heidari AA, Wang M, Zhao X, Chen H, Li C (2020) Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis. Expert Syst Appl 157:113486

    Article  Google Scholar 

  • Ferhat-Hamida A, Ouennoughi Z, Hoffmann A, Weiss R (2002) Extraction of Schottky diode parameters including parallel conductance using a vertical optimization method. Solid-State Electron 46:615–619

    Article  Google Scholar 

  • Gao L, Huang JD, Li XY (2012) An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process. Appl Soft Comput 12:3490–3499

    Article  Google Scholar 

  • Ghasemi M, Davoudkhani IF, Akbari E, Rahimnejad A, Ghavidel S, Li L (2020) A novel and effective optimization algorithm for global optimization and its engineering applications: turbulent flow of water-based optimization (TFWO). Eng Appl Artif Intell 92:103666

    Article  Google Scholar 

  • Goldbogen JA, Friedlaender AS, Calambokidis J, Mckenna MF, Simon M, Nowacek DP (2013) Integrative approaches to the study of baleen whale diving behaviour, feeding performance, and foraging ecology. Bioscience 63:90–100

    Article  Google Scholar 

  • Gong YJ, Chen WN, Zhan ZH, Zhang J, Li Y, Zhang Q, Li JJ (2015) Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput 34:286–300

    Article  Google Scholar 

  • Gupta S, Deep K (2019) A hybrid self-adaptive opposition based learning. Expert Syst Appl 119:210–230

    Article  Google Scholar 

  • Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87:103249

    Article  Google Scholar 

  • He Q, Wang L, Liu B (2007) Parameter estimation for chaotic systems by particle swarm optimization. Chaos Soliton Fract 34:654–661

    Article  MATH  Google Scholar 

  • Heidar AA, Mirjalili S, Farrris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • Issa M, Hassanien AE, Oliva D, Helmi A, Ziedan I, Alzohairy A (2018) ASCA-PSO: adaptive sine–cosine optimization integrated with particle swarm for pairwise local sequence alignment. Expert Syst Appl 99:56–70

    Article  Google Scholar 

  • Jaddi NS, Abdullah S (2017) A cooperative-competitive master-slave global-best harmony search for ANN optimization and water-quality prediction. Appl Soft Comput 51:209–224

    Article  Google Scholar 

  • Jadhav AN, Gomathi N (2018) WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex Eng J 57:1569–1584

    Article  Google Scholar 

  • Jiang Q, Wang L, Hei X (2015) Parameter identification of chaotic systems using artifical raindrop algorithm. J Comput Sci 8:20–31

    Article  MathSciNet  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  • Karaboga N, Kockanat S, Dogan H (2011) Parameter determination of the Schottky barrier diode using by artificial bee colony algorithm. In: International symposium on innovations in intelligent systems and applications (INISTA), pp 6–10

  • Karaboga N, Kockanat S, Dogan H (2013) The parameter extraction of the thermally annealed Schottky barrier diode using the modified artifical bee colony. Appl Intell 38:279–288

    Article  Google Scholar 

  • Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  • Khattab H, Sharieh A, Mahafzah BA (2019) Most valuable player algorithm for solving minimum vertex cover problem. Int J Adv Comput Sci Appl 10:159–167

    Google Scholar 

  • Li H, Wu H (2016) An oppositional wolf pack algorithm for parameter identification of the chaotic systems. Optik 127:9853–9864

    Article  Google Scholar 

  • Li C, Zhou J, Xiao J, Xiao H (2012) Parameters identification of chaotic system by choatic gravitational search algorithm. Chaos Soliton Fract 45:539–547

    Article  Google Scholar 

  • Liu M, Yao X, Li Y (2020) Hybrid whale optimization algorithm enhanced with Levy flight and differential evolution for job shop scheduling problems. Appl Soft Comput 87:105954

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  MathSciNet  MATH  Google Scholar 

  • Lu C, Gao L, Yi J (2018) Grey wolf optimizer with cellular topological structure. Expert Syst Appl 107:89–114

    Article  Google Scholar 

  • Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312

    Article  Google Scholar 

  • Masadeh R, Mahafzah BA, Sharieh A (2019a) Sea lion optimization algorithm. Int J Adv Sci Technol 10:388–395

    Google Scholar 

  • Masadeh R, Sharieh A, Mahafzah BA (2019b) Humpback whale optimization algorithm based on vocal behaviour for task scheduling in cloud computing. Int J Adv Sci Technol 13:121–140

    Google Scholar 

  • Mirjalili S (2016) A sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Soft 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature -inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Article  Google Scholar 

  • Mohanty DK (2016) Gravitational search algorithm for economic optimization design of a shell and tube heat exchanger. Appl Therm Eng 107:184–193

    Article  Google Scholar 

  • Mousavi Y, Alfi A (2018) Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos Soliton Fract 114:202–215

    Article  MATH  Google Scholar 

  • Murad O, Jabri R, Mahafzah BA (2019) A metaheuristic approach for static scheduling based on chemical reaction optimizer. J Theor Appl Inf Technol 97:3144–3165

    Google Scholar 

  • Nenavath H, Jatoth RK (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput 62:1019–1043

    Article  Google Scholar 

  • Neumann JV (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  • Norde H (1979) A modified forward I–V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5053

    Article  Google Scholar 

  • Nunes HGG, Pombo JAN, Bento PMR, Mariano SJPS, Calado MRA (2019) Collaborative swarm intelligence to estimate PV parameters. Energy Convers Manag 185:866–890

    Article  Google Scholar 

  • Peng B, Liu B, Zhang FY, Wang L (2009) Differential evolution algorithm-based parameters estimation for chaotic systems. Chaos Soliton Fract 5:2110–2118

    Article  Google Scholar 

  • Reinhardt KA, Kern W (2008) Handbook of silicon wafer cleaning technology, 2nd edn. William Andrew Publishing, New York

    Google Scholar 

  • Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts. Clarendon Press, Oxford

    Google Scholar 

  • Rizk-Allah RM (2018) Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J Comput Des Eng 5:249–273

    Google Scholar 

  • Rodriguez-Fernandez M, Egea JA, Banga JR (2006) Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform 7:483

    Article  Google Scholar 

  • Rossler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398

    Article  MATH  Google Scholar 

  • Roy G, Lee H, Welch JL, Zhao Y, Pandey D, Thurston D (2009) A distributed pool architecture for genetic algorithms. In: IEEE congress on evolutionary computation (CEC), pp 1177–1184

  • Sellai A, Ouennoughi Z (2005) Extraction of Illuminated solar cell and Schottky diode parameters using a genetic algorithm. Int J Mod Phys C 7:1043–1050

    Article  Google Scholar 

  • Shi Y, Liu HC, Gao L, Zhang GH (2011) Cellular particle swarm optimization. Inf Sci 181:4460–4493

    Article  MathSciNet  MATH  Google Scholar 

  • Singh N, Hachimi H (2018) A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Math Comput Appl 23:14

    MathSciNet  MATH  Google Scholar 

  • Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Suarez-Castanon MS, Aguilar-Ibanez C, Flores-Ando F (2003) Reconstructing the states and parameters of Chua’s system based on successive integrations of the output. Phys Lett A 317:265–274

    Article  MathSciNet  MATH  Google Scholar 

  • Subbu R, Sanderson AC (2004) Modeling and convergence analysis of distributed coevolutionary algorithms. IEEE Trans Syst Man Cybern B Cybern 34:806–822

    Article  MATH  Google Scholar 

  • Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87:103330

    Article  Google Scholar 

  • Sun J, Zhao J, Wu X, Fang W, Cai Y, Xu W (2010) Parameter estimation of chaotic systems with a drift particle swarm optimization method. Phys Lett A 374:2816–2822

    Article  MATH  Google Scholar 

  • Turgut OE (2019) Multi-agent metaheuristic framework for thermal design optimization of a shell and tube evaporator operated with R134a-Al2O3. Arab J Sci Eng 44:777–801

    Article  Google Scholar 

  • Wang L, Xu Y (2011) An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst Appl 38:15103–15109

    Article  MathSciNet  Google Scholar 

  • Wang K, Ye M (2009) Parameter determination of the Schottky barried diode model using differential evolution. Solid State Electron 53:234–240

    Article  Google Scholar 

  • Wang L, Xu Y, Li L (2011) Parameter identificaition of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm. Expert Syst Appl 38:3238–3245

    Article  Google Scholar 

  • Xiong G, Zhang J, Shi D, He Y (2018) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag 174:388–405

    Article  Google Scholar 

  • Yang K, Maginu K, Nomura H (2009) Parameters identification of chaotic systems by quantum-behaved particle swarm optimization. Int J Comput Math 86:2225–2235

    Article  MathSciNet  MATH  Google Scholar 

  • Yi J, Gao L, Li XY, Gao J (2016) An efficient modified harmony search algorithm with intersect mutation operator and cellular local search for continuous function optimization problems. Appl Intell 44:725–753

    Article  Google Scholar 

  • Yong LIU, Liang MA (2017) Sine cosine algorithm with nonlinear decreasing conversion parameter. Comput Eng Appl 53:1–5

    Google Scholar 

  • Yousri D, Allam D, Eteiba MB (2019) Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor. Appl Soft Comput 74:479–503

    Article  Google Scholar 

  • Zhao W, Wang L, Zhang Z (2019) Atom search optimziation and its application to solve a hyrdogeologic parameter estimation problem. Knowl Based Syst 163:283–304

    Article  Google Scholar 

  • Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Sinan Turgut.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, M.S., Sağban, H.M., Turgut, O.E. et al. Whale optimization and sine–cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models. Soft Comput 25, 1365–1409 (2021). https://doi.org/10.1007/s00500-020-05227-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-05227-6

Keywords

Navigation