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Abstract Incompleteness is one of the problematic data quality challenges
in real-world machine learning tasks. A large number of studies have been
conducted for addressing this challenge. However, most of the existing stud-
ies focus on the classification task and only a limited number of studies for
symbolic regression with missing values exist . In this work, a new imputation
method for symbolic regression with incomplete data is proposed. The method
aims to improve both the effectiveness and efficiency of imputing missing val-
ues for symbolic regression. This method is based on genetic programming
(GP) and weighted K-nearest neighbors (KNN). It constructs GP-based mod-
els using other available features to predict the missing values of incomplete
features. The instances used for constructing such models are selected using
weighted KNN. The experimental results on real-world data sets show that
the proposed method outperforms a number of state-of-the-art methods with
respect to the imputation accuracy, the symbolic regression performance, and
the imputation time.

Keywords Symbolic Regression · Genetic programming · Incomplete Data ·
KNN · Imputation.

1 Introduction

Symbolic regression (SR) is the process of constructing mathematical mod-
els that express the output variable in terms of input variables [18]. While
traditional regression techniques work by optimizing the parameters for a pre-
specified model, symbolic regression discovers the model with its parameters
without any assumptions. This makes symbolic regression applicable to many
real-world applications, especially when dealing with multivariate data from
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unknown systems such as materials science [45]. Symbolic regression is also
utilized for many machine learning tasks such as reinforcement learning [20].
However, in reality, the given data can be incomplete. According to [19], a
poor generalization of regression models can often be a result of incomplete
data. Moreover, incomplete data sets are difficult to be handled directly by
most regression methods.

Many real-world regression data sets are annotated as having missing val-
ues according to data repositories such as UCI [8] and OpenML [41]. Missing
values are due to many reasons such as bad-designed questionnaires and fail-
ures in data collection devices. Methods for handling missing values should
be chosen carefully as this may affect the overall performance of the learning
process.

There are many methods that have been proposed to address the data
incompleteness including deletion-based methods, model-based methods, im-
plicit learning-based methods, and imputation-based methods [12]. For the
imputation methods, the main idea is to provide estimate values for the miss-
ing ones [9]. The imputation approach is widely adopted as it enables the use
of various learning methods after producing complete data [37]. However, pow-
erful imputation methods are typically expensive, since they are suitable for
batch imputation where chunks of training instances are required to impute a
single instance [37].

The existing research on dealing with missing values mainly focuses on
classification tasks. Many imputation methods are developed for classification
with missing values [12]. In symbolic regression research, only a few stud-
ies consider imputation for symbolic regression [1,28]. Moreover, they have
some limitations. In [28], missing values are simply replaced with correspond-
ing feature values from other instances. The method presented in [1] reuses
the training data to build imputation models for every missing value in the
test data, which makes it computationally expensive. Therefore, more effort is
needed for symbolic regression with incomplete data.

Genetic Programming (GP) is a popular evolutionary algorithm that gen-
erates computer programs for performing a user-defined task automatically
[17]. It starts from a high-level definition of the problem and creates a popu-
lation of random programs and then refines them progressively using genetic
operators (e.g. crossover and mutation) and selection strategies until obtaining
a satisfactory solution. GP-based imputation (GPI) is adopted successfully for
classification with missing values in [38–40]. The main idea is to consider each
feature having missing values as the target variable while using other features
as predictive variables. Instances with complete corresponding feature values
are used to build the regression functions and these functions are then used
to predict the missing values. This method has the advantage of not requir-
ing any presumptions. However, it performs the regression using all instances
regardless of their similarity. GPI might use some instances that are irrele-
vant to the instance to be imputed. On the other hand, K-nearest neighbour
(KNN) imputation replaces the missing value with the average of the K clos-
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est instances. Although KNN clearly takes the instance-based relevance into
account, it ignores the feature-based relevance.

Recently, we proposed a hybrid imputation method for symbolic regression
with missing values in [1]. This method is called GP-KNN, which combines
GPI and KNN. Such combination utilizes both the GPI feature-based pre-
dictability and the KNN instance-based similarity to impute missing values.
GPI is used to build regression-based imputation models which are learned
from similar instances selected by KNN. GP-KNN has promising imputation
performance, and it outperforms popular imputation methods such as classifi-
cation and regression trees (CART), random forest (RF), and KNN, in many
cases. However, GP-KNN builds new imputation models when imputing new
incomplete instances, which is computationally expensive. Moreover, GP-KNN
requires the use of the training data during the test phase, which means more
space complexity.

In this work, we will develop a new method based on the GP-KNN imputa-
tion method to achieve more efficient and effective imputation when perform-
ing symbolic regression. To improve the effectiveness, instead of the simple
KNN method, the weighted KNN is used. Weighted KNN increases the contri-
butions of the instances which are close to the incomplete instances when build-
ing the imputation models. Meanwhile, the efficiency is enhanced by avoiding
the requirement of building new imputation models when imputing new unseen
instances. Specifically, the objectives of this work include:

1. developing a hybrid imputation method by combining both feature-based
prediction using GP and instance-based similarity using weighted KNN;

2. designing a training process that detects and constructs different missing-
ness knowledge components such as missingness patterns, feature-based
prediction models, and instance-based similarity references;

3. providing an efficient test process that can utilize the outputs of the train-
ing process to impute unseen instances without the expensive requirement
of building new models; and

4. investigating whether the proposed method can outperform state-of-the-art
imputation methods w.r.t the imputation accuracy, the symbolic regression
performance, and the imputation time.

2 Related Work

This section presents the related work. This includes research on symbolic
regression, incomplete data, and evolutionary computation-based imputation
methods.

2.1 Symbolic Regression

Symbolic regression is a machine learning field whose task is to construct a
mathematical model that best fits a given data set. Many statistical techniques
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have been utilized for addressing regression tasks. However, some presumptions
might be required for solving regression tasks, such as linear relationship, no
auto-correlation, and multivariate normality. For symbolic regression, less pre-
assumptions are required and it is able to learn the structure of the model and
the coefficients simultaneously [18].

There are several evolutionary computation (EC) techniques that have
been used for symbolic regression. Genetic Programming (GP) has been typi-
cally applied for solving symbolic regression problems [17]. In [2], a continuous
neural encoding approach is proposed to improve conventional linear represen-
tation in genetic programming for symbolic regression. A model-based GP ap-
proach is proposed for symbolic regression of small expressions in [43]. They use
a gene-pool optimal mixing evolutionary algorithm (GOMEA) model-based
EA framework for symbolic regression and called it GP-GOMEA. GP-based
methods do not need to impose restrictions on how the structure of solutions
should be. Moreover, it is possible to get accurate results without upfront an-
alytical knowledge. However, GP requires a large search space which means a
long time is needed to find a suitable model [7].

Grammatical evolution (GE) is used for symbolic regression in [26]. The ap-
plication of GE requires employing a search strategy (e.g. simulated annealing,
hill climbing, random search, and genetic algorithms) and the performance re-
lies on the search strategy. Another EC-based method called artificial immune
system (AIS) is used for symbolic regression [15]. AIS is similar to GP as the
programs are represented as trees. However, components of the evolutionary
process of GP are translated into the immune metaphor. The experimental re-
sults show that the AIS method typically converges slightly quicker than the
standard GP method. However, the size of trees evolved using AIS is larger
than that of GP.

In [47], analytic programming (AP) is used for symbolic regression. It is
based on GP and Hilbert spaces aiming to address the representation of a
symbolic model. The reported comparisons show that AP is equivalent to
GP on the considered tasks. However, it needs to be expanded with more
comparative analysis focusing on the complexity of the addressed problems.

A non-EC method called Fast Function Extraction (FFX) is proposed for
symbolic regression in [24]. FFX uses a pathwise regularized learning technique
for pruning a large set of candidate basis functions down to a smaller compact
set of models. In [5], another non-EC real-time algorithm for symbolic regres-
sion is proposed. This algorithm is called Elite Bases Regression (EBR) and it
works by generating a set of candidate basis functions coded with parse-matrix
by specific mapping rules. Some of the elite bases are updated iteratively based
on the correlation with the target model. The regression model is then spanned
by the elite bases. A comparison between EBR and FFX is conducted and the
reported results indicate that EBR is able to solve symbolic regression prob-
lems more effectively. However, several control parameters should be tuned
in the EBR method. In [16], a deterministic symbolic regression algorithm
is proposed using a context-free grammar. It utilises non-linear least squares
local optimisation to produce the symbolic regression models. However, struc-
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tural restrictions are imposed to guarantee finite enumeration of the possible
models.

GP has a flexible representation ability and a symbolic nature of its solu-
tions, which make it the most commonly used approach for symbolic regression
[6]. Therefore, GP approach is adopted in this work in order to make the pro-
posed method more usable in the symbolic regression community.

2.2 Incomplete Data

There are different categorise of missing values including missing completely
at random (MCAR), missing not at random (MNAR), and missing at random
(MAR) [9]. In MCAR missingness, the missing values are a random subset of
the given data set with a completely random reason. In this kind of missing-
ness, the missingness probability of a value is not related to any other value.
When missing values are MCAR, most handling missing techniques give un-
biased results [9]. This is because no gain can be guaranteed by analyzing
the available data to estimate associations with missing values. For MNAR
missingness, the probability that a value is missing is related to non-observed
information [31]. Due to the lack of valuable information, there is no universal
method to handle this type of missingness. Usually, missing values are neither
MCAR nor MNAR [9]. Instead, the probability of missingness is commonly
related to information that is present, i.e., missingness depends on other exist-
ing values. This type of missingness is called missing at random (MAR). This
term is confusing, however, it can be justified as missing values may indeed
be considered random conditional on other values [31]. When the missingness
is MAR, most statistical techniques for handling missing values give biased
results [31]. However, more sophisticated methods (e.g. regression-based mul-
tiple imputation) may give good results [9].

Let X be a variable represents the given data, where Xm by a variable rep-
resenting the missing data and Xo be a variable refers to complete;y observed
data. Now let R be a variable represents the missingness, then the different
kinds of missingness mechanisms can be expressed using conditional proba-
bility as follows [34]. MCAR: P (R|X) = P (R), i.e. probability of missingness
does not depend on observed Xo. MAR: P (R|X) = P (R|Xo), i.e. probability
of missingness depends onXo. MNAR: P (R|X) = P (R|Xm), i.e. probability of
missingness depends on unobserved Xm . In this work, we will focus on MAR
as it is more suitable for evaluating the performance of data imputation.

Methods for handling missing values can be categorized into four different
approaches [12]. The first approach is to delete either incomplete instances
or incomplete features and learn from the complete data portion only. This
approach is simple but it might cause a loss of informative data. Another
approach is to impute the missing values and then apply the learning algo-
rithm on a complete data set after imputation. This approach enables the use
of different learning methods but usually, it is time-consuming. Model-based
procedures are used to model incomplete data distribution such as expectation-
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maximization (EM). This approach requires assumptions on the joint distribu-
tion of the variables. Some machine learning algorithms can directly deal with
incomplete instances without explicitly estimating the missing values such as
decision trees, fuzzy approaches, and ensemble methods.

For imputation, there are two main types of methods: single imputation
and multiple imputation. Single imputation directly replaces the missing val-
ues using the estimated ones based on observed characteristics. The common
problem with single imputation is that it underestimates the variance and ig-
nores uncertainty. Multiple imputation addresses this problem by considering
both within-imputation uncertainty and between-imputation uncertainty [36].
In multiple imputation, multiple complete copies of the data are produced.
Each is an independent estimate for the missing values. Then, a statistical
analysis is conducted on the imputed data sets separately and the results are
combined to get an estimated value [36].

2.3 Evolutionary Computation-based Imputation

Several EC-based imputation methods have been developed for imputing miss-
ing values. In [11], a genetic algorithm (GA) is used to impute missing values
in multivariate data. In [21], a multi-objective GA is used for imputation,
which can deal with numerical and nominal features. It optimizes both the
classification accuracy and the imputation predictability. In [30], a GA is used
to impute missing values in discrete features. In [27,22], GA-based imputation
is also used for classification with missing values.

In [13], two imputation methods are proposed by combining particle swarm
optimization (PSO), auto-associative extreme learning machine, and evolv-
ing clustering method. In [33], a hybrid imputation method combining PSO
and Fuzzy C-Means (FCM) is presented. The FCM is used to extract similar
complete instances. Then, PSO is applied to optimize the instances based on
complete information. In [32], a Fuzzy Swarm imputation method is proposed.
A fuzzy-based clustering of the complete instances is firstly applied as a pre-
processing stage to fill in the missing values and then PSO is used to optimize
the imputation.

GP-based imputation methods have been successfully used for classifica-
tion. A GP-based multiple imputation method that utilizes the symbolic re-
gression prediction ability of GP to estimate missing values in classification
data sets is proposed in [38]. To impute incomplete test instances, the whole
data (including the training set) are used to build regression models whose
target is the feature that contains missing values. The model with the small-
est fitness value is then applied to estimate the missing values. This process is
repeated for each incomplete feature. In [39], the GP-based imputation is mod-
ified to have two separate processes; the training process and the test process.
In the training process, imputation regression models are constructed using
the training data set. The test process is then performed to impute single test
instances by applying the constructed imputation regression models. In [40],
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multiple imputation and GP are combined to evolve classifiers on data with
missing values. Common patterns of missing values are firstly extracted and
GP is then used to construct a classifier for each pattern.

2.4 Symbolic Regression with Missing Data

In [44], missing values in certain ranges of the feature space are considered to be
causing an imbalanced data problem. To handle this problem, a framework for
automatic weighting of data points is suggested, which considers the relative
importance of the points using four importance weighting schemes according to
the proximity, remoteness, surrounding, and nonlinear deviation from nearest
neighbors. The methods are used to balance synthetic data sets drawn from
mathematical functions. The applicability of these methods is not validated
on real-world incomplete data.

A hybrid imputation method called GP-KNN is presented in [1]. This
method is employed for symbolic regression with missing values. The main idea
of this method is to combine the regression-based imputation of GP and the
instance-based selection of KNN. This method is evaluated using two measures;
the imputation accuracy and the symbolic regression error. The experimental
results show that GP-KNN outperforms state-of-the-art imputation methods
on real-world data sets. However, the main limitation of the GP-KNN method
is the time complexity of the imputation process. This drawback is due to the
need for building new imputation models for each missing value in the test
data using the training data.

3 Weighted KNN-GP Imputation for Symbolic Regression

In this section, the details of the proposed method are presented in terms of
the overall approach, the training process, and the test process.

3.1 The Overall Approach

In many imputation methods, e.g. multivariate imputation by chained equa-
tions (MICE), batch imputation is performed by using the existing values to
impute the missing values in a given set of instances [37]. However, such a pro-
cess is not applicable for imputing a single test instance. Hence, the training
data are usually needed when imputing new test instances. This requirement
increases the complexity in terms of both space and time, especially for tasks
with large data sets.

In this work, the imputation method is designed to be suitable for imputing
single test instances without the need to reuse the training data. The training
set is used to construct the imputation models that are applied later to impute
the missing values in new unseen data. These models are generated by GP
using instances selected by weighted KNN. Therefore, this method is called
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Fig. 1: The overall approach of using the proposed WKNN-GP method for
imputation.

weighted KNN-GP (WKNN-GP). The WKNN-GP method has two processes:
the WKNN-GP training process and the WKNN-GP test process.

Fig. 1 shows the overall approach of using the proposed method for imputa-
tion. As it shows, the input of the WKNN-GP training process is an incomplete
training data set while the outputs are sets of imputation models and a com-
plete imputed training data set. After the construction of imputation models,
the WKNN-GP test process uses these models to impute the missing values
in the test data set and produces a complete imputed test data set.

3.2 The WKNN-GP Training Process

3.2.1 The main idea

The training process aims to provide imputation models for the missing values
in a given incomplete data set. The process of creating these models has two
main steps. The first one is to utilize weighted KNN to extract K instances
nearest to the incomplete instance. The second step employs GP imputation
to build prediction models using the retrieved K instances. These models are
constructed by fitting the features with missing values (i.e. the prediction
target) and involving the weights of the K instances in the GP fitness function.
The similarity between instances is measured using the normalized Euclidean
distance given in Equation (1).

distance(p,q) =

√
(q1 − p1)2

r21
+

(q2 − p2)2

r22
+ · · ·+ (qn − pn)2

r2n

=

√√√√ n∑
i=1

(qi − pi)2

r2i
,

(1)
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where p, q are real-valued n-dimensional instances, and ri is the range of the
ith feature.

The use of weighted KNN gives more importance to the instances that are
close to the incomplete ones. The closer the instance, the higher contribution.
On the other hand, the GP technique is used to generate imputation models
due to its successful application for classification with incomplete data [38,39].

Example 1 To clarify the high-level steps of the proposed method, a simple
example is given. This example is also helpful to explain the detailed algorithm
later. Considering the incomplete data set shown in Table 1 (the missing val-
ues are represented as ?), two main steps are applied to perform WKNN-GP
imputation for the missing value at (i, j) = (1, 2), i.e. the value of the feature
F2 in the instance I1.

Table 1: An incomplete data set.

Instance F1 F2 F3 F4 T : regression target
I1 300 ? 1300 ? 33.7
I2 310 10 1200 12 35.87
I3 200 40 1700 ? 30.73
I4 ? 30 1100 15 39.17
I5 320 ? 1600 13 39.11
I6 300 60 1400 17 35.01
I7 200 40 1200 11 29.77
I8 290 80 1400 11 31.1
I9 ? ? 1000 14 39.7
I10 230 ? 1800 ? 37.3
I11 290 ? 1400 ? 30.1
I12 280 90 1500 15 31.3

Firstly, the existing values in the first instance are extracted to form a
complete instance and weighted KNN is used to get its K (let K = 2) nearest
instances. The output of this step is shown in Table 2. After that, GP is used to
build imputation models using the data in Table 2 as input instances and the
corresponding values of the 2nd feature as target values. In other words, GP
constructs imputation models for a new problem whose data set is shown in
Table 3. The best constructed GP model is then used to estimate the missing
value at (1, 2). This model is also used to impute similar instances such as I11.

Table 2: Complete sub-instances representing 2-nearest instances to the first
instance.

Instance F1 F3

I2 310 1200
I6 300 1400
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Table 3: The selected 2-nearest instances with the new target variable.

Instance F1 F3 Imputation target (from F2)
I2 310 1200 10
I6 300 1400 60

3.2.2 The training algorithm

The pseudo-code of the training procedure is shown in Algorithm 1. It receives
an incomplete training data set X and outputs different sets that are used to
capture the imputation models for the missing values. The set G is for the
constructed GP-based imputation models. R is a set of complete reference
sub-instances extracted from the incomplete instances under processing. P is
a set of missingness patterns representing different forms of incompleteness.
The set S contains the means of the numerical features and the modes of the
categorical features.

Each missing value is firstly compared with the already constructed models.
If a similar model is found, the corresponding imputer is used to estimate the
missing value. Otherwise, KNN is used to obtain the K nearest complete
instances with their distance weights according to the normalised Euclidean
distance. The obtained instances are used to build GP imputation models
involving the weights of the instances in the GP fitness function. The GP
imputation models are built by considering the feature containing the missing
value as a regression target. Finally, the best model (i.e. the one with the best
fitness value) is selected.

3.2.3 Data preparation

For each missing value at position (i, j), a missingness pattern Pi,j is formed to
reflect which features have missing values in the ith instance. Non-missing val-
ues are extracted to form a complete instance Vi,j . This instance is compared
with the existing reference instances in the set R that have the same miss-
ingness pattern. If there is a similar one Rî,j , the corresponding imputation

model Gî,j is used to impute X [i, j] directly, i.e. XC [i, j] = Gî,j(Vi,j).

Otherwise, new models are constructed and Vi,j is used as a reference
instance Ri,j . The features included in Pi,j are used to get a data subset
X tmp

i,j after removing the instances that have missing values at the jth feature.
A complete data subset Xi,j is then formed by including only the complete
instances from X tmp

i,j .

In Example 1, the missingness pattern for the missing value X [1, 2] is P1,2 =
1010, where the zeros refer to the missing values. From the 1st instance, extract
the complete instance V1,2. As there are no previously learned imputation
models, no need to compare V1,2 with the reference set R and V1,2 is used as
a new reference instance R1,2 (R1,2 = V1,2). A data subset X tmp

1,2 is formed by
excluding the features F2 and F4, and the instances I1, I5, I9, I10, and I11. A



Title Suppressed Due to Excessive Length 11

Algorithm 1: WKNN-GP Imputation: The Training Algorithm
Input : Training data set X with missing values.
Output: Complete data set XC , G: GP imputation models, R: reference set, P :

missingness patterns, and S: the mean and mode statistics of the training
features.

1 Let G = R = P = D = S = ϕ;
2 foreach missing value X [i, j] do
3 Obtain the corresponding missingness pattern Pi,j ;

4 Extract the non-missing values from the ith instance to form a complete
instance Vi,j ;

5 if (∃Pî,j ∈ P s.t. Pi,j = Pî,j) and (∃Rî,j ∈ R and Dî,j ∈ D s.t.

distance(Rî,j , Vi,j) ≤ Dî,j) then

6 XC [i, j]← Gî,j(Vi,j)

7 else
8 Use Vi,j as a new reference instance Ri,j (Ri,j = Vi,j) ;

9 Get a data subset X tmp
i,j for the features included in Pi,j after excluding

the instances that have missing values at the jth feature ;
10 Obtain Xi,j as a complete data subset by taking the complete instances

from X tmp
i,j ;

11 K ← min(max(|Ji,j |, ⌊|Ii,j |/4⌋), |Ii,j |), where Ii,j and Ji,j are the instance
and feature indexes of Xi,j , respectively;

12 XK
i,j ,DK

i,j ,WK
i,j ← KNN(Xi,j , Ri,j ,K), where XK

i,j contains the K nearest

instances, DK
i,j is the corresponding distance set, and WK

i,j is the

corresponding distance-based weights set w.r.t the reference Ri,j ;

13 Set the imputation target as Ti,j ← X [IKi,j , j], where IKi,j is the instance

indexes of XK
i,j ;

14 for g = 1 to N do

15 Gtmp
g ← GP(XK

i,j , Ti,j , WK
i,j);

16 end

17 Let Gtmp
ĝ be the regression function with the least fitness value, i.e.

fitness(Gtmp
ĝ ) ≤ fitness(Gtmp

g ), g = 1, ...N ;

18 Set Gi,j to be Gtmp
ĝ and use it to impute X [i, j] (i.e.

XC [i, j]← Gi,j(Ri,j)) ;

19 Di,j ← maxDK
i,j ;

20 Update G,R,D, and P by appending Gi,j , Ri,j , Di,j , and Pi,j ,
respectively.

21 end

22 Calculate S the statistics of XC (the mean for the numerical features and the
mode for the categorical features) ;

23 end

complete data subset X1,2 is then obtained by removing instances that have
missing values from X tmp

1,2 .

V1,2 =
(
300 1300

)
(2)
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X tmp
1,2 =



310 1200
200 1700
? 1100

300 1400
200 1200
290 1400
280 1500


(3)

X1,2 =


310 1200
200 1700
300 1400
200 1200
290 1400
280 1500

 (4)

3.2.4 KNN settings

Rather than using all instances in Xi,j to build the imputation models, weighted
KNN method is employed to acquire XK

i,j , which contains the K nearest in-

stances to Ri,j from Xi,j . The corresponding distances DK
i,j and distance-based

weights WK
i,j are also calculated.

The value of K is determined by Equation (5). This equation restricts the
lower bound of K as the number of available features |Ji,j | to avoid having
fewer instances than the used features. The upper bound of K is chosen empir-
ically as one-fourth the number of the retrieved instances ⌊|Ii,j |/4⌋. However,
if these constraints can not be satisfied, i.e. in case of a small complete subset,
all instances obtained are used |Ii,j |. DK

i,j is calculated according to Equation

(6), and WK
i,j is computed using Equation (7). The distance used to measure

the similarity in KNN is the normalized Euclidean (Equation (1)).

K = min(max(|Ji,j |, ⌊|Ii,j |/4⌋), |Ii,j |) (5)

DK
i,j [k] = distance(XK

i,j [k], Vi,j), k = 1, ...K. (6)

WK
i,j [k] =

DK
i,j [k]

Di,j
, k = 1, ...K, (7)

where Di,j = max
k=1,...K

DK
i,j [k].

The application of the weighted KNN to get theK instances nearest to R1,2

in Example 1 results in XK
1,2 (Equation (8)) and their weights are WK

1,2=[0.25
1]. The number of the valid features |J1,2| is 2 and the number of available
complete instances |I1,2| is 6, hence K = 2 as K = min(max(2, ⌊6/4⌋), 6).

XK
1,2 =

(
310 1200
300 1400

)
(8)
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3.2.5 GP modeling

The subset XK
i,j is then used to build N GP regression functions {Gg}Ng=1

with the jth feature as the target variable Ti,j . A weighted relative squared
error (Equation (9)) is used as a fitness function to measure the quality of
the individuals in the process of building the GP regression models. The value

1
WK

i,j [k]
is considered when evaluating the fitness function as a distance penalty

for the kth instance. The closer the instance to the targeted incomplete one,
the more contribution in the fitness function.

WRSEK
i,j =

∑K
k=1

1
WK

i,j [k]
(Yi,j [k]− Ti,j [k])

2∑K
k=1(Ti,j [k]− T̄i,j)2

(9)

where K is the number of instances, Yi,j is a vector of the predicted values,
Ti,j is the corresponding vector of the desired values, and T̄i,j is the average
of the desired values Ti,j [k], k = 1, 2, 3...,K.

For Example 1, GP is used to build N regression models Gtmp
g , g = 1, ..., N

where XK
1,2 is the input and the 2nd feature of X is the target variable, i.e.

Gtmp
g (XK

1,2) ≈ T1,2 .

T1,2 =

(
10
60

)
(10)

Finally, the GP model Gtmp
ĝ with the best fitness value is selected as the

imputation model G1,2 for the reference R1,2 and it is used to estimate the
missing value X [1, 2] as follows:

XC [1, 2] = G1,2(R1,2) (11)

The instances that have the same missingness pattern as P1,2 = 1010
(i.e. I10 and I11) are compared to the reference instance R1,2 considering the
associated distance D1,2. Since the instance I11 is similar to I1, the imputation
model G1,2 is used to impute the missing value X [11, 2]. For the instance I10,
it is not close enough to use these models. Therefore, new models P10,2, R10,2,
and G10,2 are constructed for the missing value X [10, 2] by using the same
process that is used to build the models for X [1, 2].

3.3 The WKNN-GP Test Process

To impute test instances, the constructed models during the training process
are used as in Algorithm 2. The inputs of the test process are the learned
imputation models and an incomplete test instance. This process outputs an
imputed complete instance. For each missing value, if there is a similar impu-
tation pattern, the imputation models associated with this pattern are consid-
ered for imputing this missing value. Otherwise, the missing value is replaced
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by the mean value if the feature is numerical or the mode value if the feature
is categorical.

The process of imputing the values is done iteratively for each feature using
other features as predictive inputs. For example, if there are n features, the
first one with missing values is firstly imputed based on the complete ones. The
remaining features are then imputed in order by involving both the complete
and the already imputed features.

Algorithm 2: WKNN-GP Imputation: The Test Algorithm.
Input : Test instance Vtest, R: the instance-based reference set, G: the GP-based

imputation models, P : the missingness pattern set, and S contains the
means and modes of the training features.

Output: Complete instance V C
test

1 Set V C
test ← Vtest ;

2 foreach missing value V C
test[j] do

3 Extract the non-missing values to form a complete instance Vtest,j ;
4 Obtain the corresponding missingness pattern Ptest,j ;
5 if there is a training pattern Pî,j ∈ P which is similar to Ptest,j then

6 From the training reference instances that have the same missingness
pattern Pî,j , get Rî,j as the nearest one to Vtest,j , i.e. get Rî,j ∈ R s.t.

distance(Rî,j , Vtest,j) ≤ distance(Ri,j , Vtest,j), ∀i ̸= î ;

7 Set V C
test[j]← Gî,j(Vtest,j); where Gî,j is the corresponding GP imputer;

8 else
9 Use S to estimate V C

test[j] by the mean if the jth feature is numerical or
the mode if it is categorical.

10 end

11 end

Considering Example 1, let Vtest be an incomplete test instance shown
in Equation (12). The WKNN-GP imputation test process starts with the
first missing value Vtest[2]. To impute this value, all imputation models whose
missingness patterns match Ptest,2 = 1010 are considered. Among the refer-
ence instances of this pattern, the nearest one to the test instance is R1,2,
hence, the GP imputation model G1,2 is applied to impute this missing value,
i.e. V C

test[2] = G1,2(Vtest,2), where Vtest,2 = [310 1400]. A similar process is
performed to impute the last missing value but with the missingness pattern
Ptest,4 = 1110 as the previous missing value is already imputed.

Vtest =
(
310 ? 1400 ?

)
(12)

4 Experiment Setup

In this section, the settings used for the experimental evaluations are pre-
sented. They include the benchmark data sets, the baseline methods, the pa-
rameters of the methods, and the performance evaluation methods.
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4.1 Data Sets

To investigate the imputation performance of the proposed method, ten real-
world data sets are used. The used data sets are shown in Table 4 and more
details can be found in the data repositories UCI [8] and OpenML [41]. For
each data set, the instances are split randomly in a ratio of 70:30 to form
the training and testing data sets. For each pair, 30 incomplete data sets are
generated using MARmissingness with different probabilities to test the ability
of the proposed algorithm when handling different probabilities of missingness.
The missingness imposing is implemented using the R packages SIMSEM[29].
The considered missingness probabilities are 10%, 20%, 30%, 40%, and 50%
for the instances. The missingness is imposed into 20%, 40%, and 60% of the
features. Here only the results on features with 40% missingness are reported
as the other results show similar patterns. This ends up with 150 training/test
incomplete data sets for each complete data set (30 synthetic incomplete pairs
for each of the five missingness probabilities).

Table 4: The data sets.

Data set #Features #Instances #Database
Yacht 7 308 UCI
Forest 13 517 UCI

ENB2012 8 768 UCI
Concrete 9 1030 UCI
Airfoil 6 1503 UCI

Disorders 7 345 OpenML
Kin8nm 9 8191 OpenML

Pol 49 15000 OpenML
Quake 4 2178 OpenML
Libras 91 360 OpenML

4.2 Benchmark Methods

To investigate the imputation performance of the proposed method, it is com-
pared with some state-of-the-art imputation methods including KNN, CART,
RF, GPI, and GP-KNN. KNN is used to impute the missing values by averag-
ing the K most similar instances. CART is used for imputation by employing
decision trees to predict the missing values based on the non-missing ones.
Another method which is based on decision trees approach is RF. It starts
by replacing the missing data with the average of the corresponding complete
values and then iteratively improves the missing imputation using proximity.
For GPI, for each feature having missing values, the data set is divided into
two parts. Part 1 contains instances having missing values in this feature and
part 2 is for the remaining instances. The complete data (part 2) is then used
to build GP-based imputation models for estimating this feature. Finally, the
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built imputation models are used to predict the missing values. GP-KNN is
a combination of both KNN and GPI. It first retrieves the most similar in-
stances to the incomplete one. After that, these instances are used to build
the GP-based regression models.

The imputation methods are implemented using the R package MICE [4]
with default settings. The symbolic regression process is carried out using
the GP approach. The GP framework provided by distributed evolutionary
algorithms in python (DEAP) [10] is used for the implementation of all GP-
based methods.

The parameters of GP for imputation and symbolic regression are shown
in Table 5. Relative square error (RSE) shown in Equation (13) is used as the
fitness function for all GP-based methods except the newly proposed WKNN-
GP method where WRSE is used as mentioned above (Equation (9)).

RSE =

∑n
i=1(yi − ti)

2∑n
i=1(ti − t̄)2

(13)

where n is the number of instances, yi is the ith predicted value, ti is the ith

desired value, and t̄ is the average of the desired values ti, i = 1, 2, 3..., n.

Table 5: The used values for GP parameters

Parameter Value
Generations 100

Population size 512
Crossover probability 0.8
Mutation probability 0.2

Elitism Top 10
Selection Method Tournament Selection
Tournament size 7
Minimum depth 2
Maximum depth 8
Initialization Ramped half-and-half
Function set +, -, *, protected / (%)
Terminal set features and constants ∈ U [−1, 1]

4.3 Performance Measures

To evaluate the imputation methods, there are three different measures. The
imputation accuracy, the symbolic regression performance, and the computa-
tional time [37].

The imputation accuracy is a measure that evaluates the accuracy of the
prediction of the missing values. This measure requires the presence of the
original values as ground truth to be compared with the predicted ones. The
imputation performance evaluation method is shown in Fig. 2. The original test
data are compared with the imputed test data after applying the imputation



Title Suppressed Due to Excessive Length 17

Complete test
data

Imputed test
data

Incomplete test
data

Impose missing
values

Impute missing
values

Compute the RSE as
the imputation error

Fig. 2: The imputation performance evaluation.

model. The differences between the predicted values and the ground truth
values are computed by the RSE measure (Equation (13)).

The second evaluation measure (symbolic regression performance) could
also be done based on testing incomplete data. This scenario simulates the
real-life situation when missing values can occur also in the test data when
predicting future instances. The adopted evaluation is shown in Fig. 3. It is
based on evaluating the symbolic regression performance using the imputed
complete test set after applying the imputation method. For each data set,
the imputation methods are used to produce complete training and test sets.
The training data are then fed into the symbolic regression process resulting
in a symbolic regression model. This model is applied to the test data and the
obtained regression error is used for comparisons. For the GP-based imputation
methods, the imputation models constructed during the training process are
used when imputing the test data, whereas the training data set itself is used
in the other methods.
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Fig. 3: Symbolic regression performance evaluation.

The goal of the adopted evaluation approach is to simulate the real-world
scenario when there are missing values in the test data. This approach has
been used in the related work to evaluate the impact of imputation methods
when being utilised in real-world machine learning applications [38,14]. In [14],
the performance is evaluated on an independent test set generated with the
same missingness mechanism as the training data. They then addressed the
case of testing on the complete data in the Appendix. In this work we follow
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this approach as the evaluation is mainly done based on the unseen incomplete
test data while the results obtained when testing the models on the original
complete data are provided in the supplementary materials.

5 Experimental Results and Analysis

This section shows the experimental results. The results are analyzed and
compared with state-of-the-art methods. The comparisons are carried out in
terms of the imputation error, the symbolic regression performance, and the
computational time.

5.1 Imputation Performance

Following the imputation performance method shown in Fig. 2, the summary
of the imputation errors is shown in Fig. 4. Each figure shows the results for
one data set where the x-axis refers to the missingness probability (10%, 20%,
30%, 40%, and 50%) and the y-axis is the imputation error measured by the
RSE measure (Equation (13)), where the lower RSE error, the better impu-
tation performance. The average of the imputation RSEs of 30 synthetically
incomplete data sets with the same missingness probability for each complete
data set is shown.

Fig. 4 shows that GP-based methods outperform the other methods in
most cases and the proposed WKNN-GP method has the best imputation
performance. On nine of the ten data sets, WKNN-GP has the best imputation
performance except for ENB2012. On ENB2012, the CART method achieves
the smallest imputation error. On eight of the ten data sets, WKNN-GP is
significantly better than all the other methods except on the Forest data set,
where CART has a similar imputation performance.

The WKNN-GP and GP-KNN methods advance GPI and KNN signifi-
cantly, which indicates that combining GPI and KNN has a better imputation
effort than using them separately. On data sets where KNN has the worst
imputation performance (i.e. on the Yacht, Forest, Concrete, Pol, and Libras
data sets), WKNN-GP has the best imputation performance. Another indi-
cator of the advantage of the combination is that GP-KNN is ranked second
after WKNN-GP with respect to the overall performance.

The performance of the underlying methods KNN and GPI has a high
impact on the combined WKNN-GP method. The good performance of GPI
along with an acceptable performance of KNN implies a significant improve-
ment of the WKNN-GP performance on the Airfoil data set. However, on
the ENB2012 data set, the extremely low performance of KNN decreases the
imputation performance of the WKNN-GP method despite the acceptable per-
formance of GPI. Such results may indicate that the similarity between the
instances is low, which causes poor performance of KNN and impacts both
the GP-KNN and WKNN-GP methods negatively.
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Fig. 4: The imputation errors of using different imputation methods on the
synthetic incomplete data sets for different missingness probabilities.
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Fig. 4 includes the standard deviation for each imputation method shown
as vertical lines. The longer the line is, the higher standard deviation is. The
methods with higher standard deviations are less stable than those with lower
standard deviations. As shown in Fig. 4, the proposed method shows more
stable results than the other methods on most considered data sets. This
stability also differs based on the used data set. For example, the Airfoil data
set shows stable imputation results regardless of the used imputation method.
This might be due to the nature of the data as the features are all numeric in
this data set. KNN shows extremely unstable imputation on the ENB2012 and
Pol data sets. This might be due to higher dissimilarities between the instances
in these data sets which affects KNN as it works by imputation based on the
instance-wise similarities.

It can be noticed that the imputation error curves are monotonically in-
creasing. The errors increase with the increase of the missingness ratio. This
pattern is common regardless of the imputation method or the used data set.
This means that with higher missingness probability, it is less likely to recover
the missing values accurately. This is expected as there will be less available
data to build the imputation models. Moreover, the differences between the
performance of the different methods is affected by the missingness ratio. With
less missingness probability, these differences do not seem to be significant.

The significance test results between the proposed method and the bench-
mark imputation methods are shown in Table 6. The comparisons are carried
out using the Wilcoxon non-parametric statistical significance test with a sig-
nificance level of 0.05. The symbol “+” means WKNN-GP is significantly bet-
ter, the “-” symbol means WKNN-GP is significantly worse, and “=” indicates
no significant difference to the compared method.

From the shown results, it can be noticed that the number of the cases
in which the proposed method outperforms each imputation method is higher
than the number of getting outperformed cases. Another note is that the dif-
ferences are less significant for less missingness probabilities. For example the
numbers of cases under “=” are relatively large for the 10% missingness proba-
bility compared to the corresponding numbers under higher missingness prob-
abilities on most data sets. In other words , the impact of the missingness on
the performance of the imputation method is less significant when having less
missingness probability.
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Table 6: The significance test results of the imputation performance, where the
numbers refer to the amount of win(+)/loss(-)/draw(=) cases of WKNN-GP
against KNN, CART, RF, GPI and GP-KNN.

Data missing
KNN CART RF GPI GP-KNN

- = + - = + - = + - = + - = +

Yacht

10 1 22 7 6 13 11 4 5 21 0 14 1 8 17 5
20 1 17 12 5 18 7 6 12 12 4 16 6 7 13 10
30 1 21 8 8 14 8 4 14 12 6 13 3 3 15 12
40 2 17 11 5 9 16 7 11 12 9 12 5 3 19 8
50 3 20 7 5 18 7 5 13 12 9 5 9 1 16 13

Forest

10 5 10 15 11 10 9 2 6 22 6 19 5 2 22 6
20 5 7 18 10 11 9 3 5 22 8 12 10 0 14 16
30 4 2 24 8 16 6 6 9 15 9 8 13 2 21 7
40 1 10 19 7 11 12 5 10 15 7 16 7 2 21 7
50 3 3 24 7 10 13 2 3 25 8 8 14 5 23 2

ENB2012

10 6 15 3 13 16 1 5 16 9 9 5 16 5 20 5
20 6 6 9 8 10 12 5 15 10 8 13 9 5 25 0
30 3 2 13 7 11 12 5 21 4 11 14 5 5 24 1
40 1 1 12 3 13 14 3 22 5 16 12 2 2 22 6
50 1 3 19 8 18 4 5 13 12 14 8 8 4 23 3

Concrete

10 4 12 14 4 15 11 6 13 11 7 14 9 6 17 7
20 2 10 18 4 12 14 0 12 18 5 12 13 6 14 10
30 0 3 27 6 11 13 3 15 12 5 17 8 2 14 14
40 1 5 24 4 9 17 4 10 16 2 10 18 0 16 14
50 2 1 27 3 16 11 3 8 19 0 17 13 3 17 10

Airfoil

10 1 7 22 12 13 5 9 9 12 4 20 6 7 12 11
20 1 5 24 3 17 10 3 15 12 4 14 12 5 19 6
30 1 3 26 6 21 3 2 13 15 1 13 16 2 19 9
40 1 0 29 7 11 12 4 15 11 1 16 13 1 12 17
50 2 1 27 3 15 12 2 15 13 0 20 10 0 10 20

Disorders

10 8 14 8 8 13 9 5 10 15 7 15 8 2 19 9
20 1 11 18 3 14 13 0 3 27 6 11 13 5 20 5
30 4 10 16 7 9 14 2 7 21 8 10 12 4 15 11
40 2 7 21 9 6 15 1 13 16 6 15 9 7 14 9
50 3 5 22 7 12 11 1 7 22 5 13 12 4 13 13

Kin8nm

10 0 9 21 6 17 7 2 21 7 6 15 9 0 26 4
20 2 1 27 7 19 4 1 12 17 2 12 16 0 25 5
30 2 5 23 0 11 19 1 16 13 0 14 16 1 27 2
40 2 1 27 1 17 12 1 20 9 2 16 12 1 24 5
50 1 2 27 7 19 4 0 19 11 1 22 7 1 24 5

Pol

10 6 11 13 6 15 9 12 9 9 7 9 14 5 12 13
20 6 4 20 5 10 15 7 4 19 10 8 12 4 14 12
30 6 9 15 6 16 8 4 11 15 9 4 17 4 12 14
40 5 7 18 11 14 5 5 12 13 5 11 14 6 10 14
50 1 7 22 10 16 4 7 4 19 5 8 17 5 15 10

Libras

10 7 14 9 5 15 10 6 7 17 7 15 8 7 14 9
20 5 5 20 6 12 12 8 9 13 6 11 13 5 16 9
30 8 7 15 12 12 6 8 9 13 11 5 14 3 21 6
40 6 8 16 10 16 4 9 8 13 9 11 10 4 16 10
50 1 11 18 2 15 13 9 6 15 11 4 15 3 23 4

Quake

10 1 14 15 9 16 5 5 8 17 3 22 5 3 16 11
20 2 7 21 10 18 2 0 14 16 4 11 15 2 24 4
30 1 1 28 4 13 13 1 17 12 5 18 7 1 18 11
40 0 1 29 11 12 7 1 17 12 3 12 15 0 14 16
50 2 2 26 10 13 7 1 10 19 3 19 8 3 17 10

All sum 140 376 934 335 688 477 200 573 727 294 639 529 166 894 440
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5.2 Symbolic Regression Performance

For each data set, the 150 pairs of incomplete training and test data sets are
used by each imputation method. The imputed complete pairs are then used
for symbolic regression. For each pair, 30 independent symbolic regression ex-
periments are conducted after using each imputation method. The symbolic
regression results of using the benchmark imputation methods are then com-
pared with those of using the proposed WKNN-GP method.

The medians of the test RSEs of the symbolic regression models are shown
in Table 7. These results show the impact of the imputation methods on
the symbolic regression performance with incomplete data. Except for the
EBN2012 data set, WKNN-GP leads to better symbolic regression perfor-
mance than the other methods on all data sets. In general, the GP-based
methods provide better symbolic regression results compared with the non-
GP ones.

The symbolic regression results from 30 independent runs are used by the
Wilcoxon test to compare the WKNN-GP method with the benchmark meth-
ods as shown in Table 8. The comparisons show that WKNN-GP achieves bet-
ter or at least similar symbolic regression performance compared to the other
methods in most cases except for the ENB2012 data set. On nine of the ten
data sets, the number of having significantly better performance when using
WKNN-GP is more than that of having significantly worse results compared
to all other methods. The best non-GP method is CART as it outperforms
WKNN-GP in more cases than RF and KNN. The worst one is KNN. This is
expected as KNN is implemented in a single imputation manner that makes
it more sensitive to the outliers when imputing missing values.

The detailed comparisons on each data set considering the missingness
probabilities show a marginal significance when having lower missingness prob-
abilities and more significant difference with higher probabilities of missing-
ness. This is because the higher missingness probability, the more likely to get
different predictions for the missing values which in turn produces different
symbolic regression results.
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Table 7: The medians of RSEs of the symbolic regression models learned on
imputed training data and tested on the original complete test data, where
ratio refers to the missingness probability.

Data Ratio KNN CART RF GPI GP-KNN WKNN-GP

Yacht

10 0.0122 0.011 0.0115 0.0109 0.0101 0.0101
20 0.0167 0.0143 0.0155 0.0155 0.0151 0.0143
30 0.0197 0.0178 0.0199 0.0193 0.0189 0.0178
40 0.0239 0.0208 0.0238 0.0243 0.0223 0.0208
50 0.0284 0.0242 0.0288 0.0279 0.0258 0.0242

Forest

10 0.9234 0.9213 0.9219 0.9166 0.9019 0.9007
20 0.927 0.9262 0.9252 0.9205 0.9054 0.9042
30 0.9317 0.9298 0.9288 0.9239 0.9099 0.9087
40 0.9355 0.9341 0.9332 0.9279 0.9129 0.9117
50 0.9396 0.9387 0.9378 0.9309 0.9168 0.9156

ENB2012

10 0.092 0.0911 0.0918 0.0914 0.0915 0.0913
20 0.0968 0.0946 0.0953 0.0959 0.0951 0.095
30 0.1013 0.0989 0.1002 0.1006 0.0999 0.0998
40 0.1053 0.1028 0.1034 0.1045 0.1042 0.1033
50 0.1084 0.1072 0.1077 0.1083 0.1084 0.1076

Concrete

10 0.4342 0.4323 0.4342 0.4307 0.4305 0.4299
20 0.4375 0.4361 0.4387 0.4355 0.4334 0.4328
30 0.4419 0.4396 0.4433 0.4394 0.4383 0.4377
40 0.4454 0.4429 0.4475 0.4445 0.4413 0.4407
50 0.4484 0.4465 0.4506 0.4494 0.4459 0.4453

Airfoil

10 0.4482 0.4482 0.4486 0.4438 0.4402 0.4396
20 0.4526 0.4526 0.4534 0.4474 0.4443 0.4437
30 0.4557 0.4572 0.4564 0.4505 0.4483 0.4477
40 0.4599 0.4603 0.4601 0.4535 0.453 0.4524
50 0.4634 0.4653 0.4635 0.4585 0.4569 0.4563

Disorders

10 0.4674 0.0945 0.0936 0.0931 0.0916 0.0915
20 0.471 0.0986 0.098 0.0968 0.0964 0.0963
30 0.4757 0.1024 0.1018 0.1011 0.1007 0.1006
40 0.4797 0.1061 0.1067 0.1054 0.104 0.1039
50 0.4847 0.1107 0.1098 0.1101 0.1083 0.1082

Kin8nm

10 0.7455 0.7461 0.7353 0.7326 0.7239 0.723
20 0.7501 0.7511 0.7393 0.7358 0.7275 0.7266
30 0.7534 0.7558 0.7442 0.7408 0.7306 0.7297
40 0.7569 0.7599 0.748 0.7453 0.7343 0.7333
50 0.7606 0.7645 0.7513 0.7493 0.7373 0.7363

Pol

10 0.5902 0.5859 0.5868 0.5904 0.5865 0.5873
20 0.5949 0.5907 0.5905 0.5934 0.5868 0.5851
30 0.5982 0.5949 0.5938 0.5973 0.5926 0.5918
40 0.6016 0.5999 0.5981 0.6019 0.5965 0.5957
50 0.6058 0.6039 0.6016 0.6058 0.6003 0.5995

Libras

10 0.8133 0.7943 0.803 0.7912 0.7791 0.7781
20 0.8181 0.7983 0.8076 0.7948 0.7828 0.7818
30 0.8227 0.8016 0.812 0.7998 0.7865 0.7855
40 0.8276 0.8065 0.8156 0.8036 0.7907 0.7897
50 0.8318 0.8103 0.8187 0.8072 0.7947 0.7937

Quake

10 0.9148 0.8896 0.9094 0.8782 0.8602 0.8591
20 0.9181 0.8928 0.9135 0.8832 0.8644 0.8633
30 0.9226 0.8976 0.9185 0.8866 0.8692 0.8681
40 0.926 0.9023 0.9235 0.8899 0.873 0.8719
50 0.9302 0.9064 0.9267 0.8941 0.8767 0.8756
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Table 8: The proposed WKNN-GP against the five benchmark imputation
methods based on the symbolic regression test performance using imputed
data sets.

Data & missing
KNN CART RF GPI GP-KNN

probability (%) - = + - = + - = + - = + - = +

Yacht

10 5 13 12 8 13 9 5 10 15 3 10 17 6 17 7
20 3 13 14 6 15 9 4 14 12 4 13 13 6 18 6
30 4 10 16 7 12 11 3 11 16 3 12 15 4 19 7
40 2 10 18 8 10 12 3 11 16 6 10 14 3 22 5
50 0 8 22 7 11 12 2 13 15 6 11 13 3 20 7

forest

10 6 13 11 6 17 7 6 12 12 4 11 15 2 24 4
20 4 11 15 6 18 6 3 12 15 3 10 17 2 20 8
30 3 8 19 7 14 9 4 15 11 4 8 18 3 22 5
40 1 8 21 7 15 8 2 13 15 4 8 18 2 26 2
50 1 5 24 7 14 9 3 8 19 4 7 19 3 25 2

ENB2012

10 7 14 9 11 11 8 7 12 11 4 22 4 3 24 3
20 4 10 16 9 13 8 2 11 17 3 20 7 3 23 4
30 3 5 22 12 13 5 2 13 15 3 19 8 4 22 4
40 0 7 23 15 11 4 2 10 18 4 20 6 4 21 5
50 0 4 26 16 10 4 2 14 14 4 18 8 4 23 3

Concrete

10 4 16 10 5 19 6 3 13 14 5 12 13 7 18 5
20 1 14 15 6 15 9 2 12 16 2 11 17 5 17 8
30 0 9 21 4 16 10 2 13 15 1 14 15 4 19 7
40 1 7 22 2 16 12 1 9 20 2 13 15 2 18 10
50 1 6 23 1 20 9 2 12 16 2 13 15 3 15 12

Airfoil

10 0 12 18 4 20 6 5 12 13 7 10 13 7 16 7
20 0 6 24 4 17 9 2 17 11 2 14 14 4 18 8
30 0 4 26 3 19 8 3 16 11 3 14 13 3 20 7
40 0 2 28 3 14 13 3 12 15 2 15 13 0 16 14
50 0 3 27 2 19 9 3 14 13 2 14 14 1 15 14

Disorders

10 6 16 8 7 15 8 5 11 14 6 14 10 4 20 6
20 3 15 12 6 13 11 3 10 17 2 8 20 3 21 6
30 2 13 15 6 13 11 2 11 17 3 9 18 5 19 6
40 3 8 19 6 16 8 4 8 18 3 11 16 5 18 7
50 2 8 20 6 15 9 3 13 14 1 10 19 6 15 9

Kin8nm

10 0 15 15 6 18 6 6 15 9 0 19 11 1 26 3
20 0 4 26 4 16 10 3 14 13 2 17 11 1 29 0
30 0 0 30 1 19 10 0 11 19 1 21 8 2 27 1
40 0 0 30 0 18 12 0 12 18 0 18 12 1 25 4
50 0 0 30 0 22 8 0 21 9 0 17 13 1 24 5

Pol

10 6 12 12 6 13 11 4 10 16 10 11 9 7 14 9
20 7 9 14 8 11 11 3 9 18 9 10 11 5 16 9
30 6 9 15 7 9 14 6 11 13 6 12 12 3 18 9
40 3 9 18 7 11 12 4 13 13 5 12 13 6 16 8
50 2 7 21 5 12 13 4 12 14 5 10 15 6 15 9

Libras

10 5 14 11 7 15 8 1 12 17 7 8 15 8 16 6
20 5 11 14 7 13 10 5 11 14 7 10 13 7 18 5
30 8 11 11 9 10 11 5 14 11 7 12 11 3 20 7
40 4 8 18 9 9 12 3 11 16 8 10 12 4 20 6
50 2 9 19 11 6 13 2 12 16 7 12 11 3 21 6

Quake

10 0 17 13 5 20 5 4 11 15 6 13 11 4 21 5
20 0 8 22 5 17 8 3 17 10 2 17 11 2 24 4
30 0 4 26 5 19 6 3 15 12 2 16 12 2 24 4
40 0 2 28 4 14 12 4 11 15 1 17 12 1 20 9
50 0 0 30 3 19 8 5 11 14 1 14 15 1 22 7

All sum 114 427 959 306 735 459 158 615 727 188 657 655 179 1007 314
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Moreover, we also compare the results of WKNN-GP with those obtained
by the recent GP methods in the literature on the same data sets. Note that
the results from the literature are obtained from complete data sets, which
make them different from the ones used in our work. Moreover, the train-test
split is also different. The results are shown in Table 9. This table shows results
from state-of-the-art symbolic regression method along with the best results
obtained when using incomplete data (referred to as “incomplete”). Below is
a brief description of the compared methods from the related works.

– In [46], the methods used are GPTIPS: an open-source SR toolbox for
MATLAB [35], FFX: fast function extraction [24], EFS: evolutionary fea-
ture synthesis [3], and geometric semantic genetic programming with re-
duced trees (GSGP-Red) [23]. They used a random 0.7/0.3 training/testing
ratio in 100 independent runs evaluated by root mean square error (RMSE).

– In [25], four different symbolic regression methods are compared: sequential
symbolic regression (SSR), canonical genetic programming (GP), geometric
semantic genetic programming (GSGP), and genetic recursive symbolic
regression (GRSR). Thee used RMSE in then runs with a 5-fold cross-
validations.

– In [42], they showed the results of semantic backpropagation (SB)-based
GP without LS (noLS), with LS but independently from SB (iLS), and
with LS in synergy with SB (sLS). They split the data set into 0.75/0.25
train/test sets randomly in 30 independent runs evaluated using MSE nor-
malised by variance and multiplied by 100, NMSE = MSE∗100

σ2 .

To convert RMSE to RSE we used the equation RSE = RMSE2

σ2 , while

NMSE is converted to RSE by RSE = NMSE
100 . The variance is obtained form

[42] and it is calculated from the complete data if not available in the referred
study. For the method GPSR, we apply the standard genetic programming-
based symbolic regression provided by DEAP [10] on the complete data sets
before imposing the synthetic incompleteness.

It is clear that the results on incomplete data are mostly worse than the re-
sults of the related work. Such significant difference are expected due to several
reasons. The incompleteness adds noise to the data used for learning, which
affects the produced models negatively. Another reason is that the methods
in the related work represent state-of-the-art algorithms that aim at improv-
ing the symbolic regression performance, while in our work we use standard
GP-based symbolic regression. However, it can be noticed that the errors are
mostly in the same order of magnitude.
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Table 9: Symbolic regression results from related studies on complete data sets
compared with the results on incomplete data.

Data Method RSE Data Method RSE Data Method RSE

Yacht

noLS [42] 0.0094

Airfoil

GPTIPS [25] 0.3601

Concrete

GPTIPS [25] 0.2754
iLS [42] 0.0062 EFS [25] 0.2759 EFS [25] 0.1482
sLS [42] 0.0061 FFX [25] 0.2695 FFX [25] 0.1285
SSR [25] 0.0154 GSGP-Red [25] 3.0988 GSGP-Red [25] 0.2776
GRSR [25] 0.0075 noLS [42] 0.43 noLS [42] 0.37
GSGP [25] 0.0268 iLS [42] 0.32 iLS [42] 0.21
GP 0.0928 sLS [42] 0.29 sLS [42] 0.18
Incomplete 0.0101 SSR [25] 0.1969 SSR [25] 0.1247

Forest

SSR [25] 0.7414 GRSR [25] 0.3621 GRSR [25] 0.1767
GRSR [25] 0.7018 GSGP [25] 4.8068 GSGP [25] 0.1937
GSGP [25] 0.7885 GP 1.9378 GP 0.0858
GP [25] 0.3735 Incomplete 0.4396 Incomplete 0.4299
Incomplete 0.9007

Pol
GPSR [10] 0.5714

Disorders
GPSR [10] 0.0871

ENB2012

SSR [25] 0.0651 Incomplete 0.5851 Incomplete 0.0915
GRSR [25] 0.0854

Libras
GPSR [10] 0.7672

Kin8nm
GPSR [10] 0.7157

GSGP [25] 0.0357 Incomplete 0.7781 Incomplete 0.723
GP [25] 0.0885

Quake
GPSR [10] 0.8198

Incomplete 0.0913 Incomplete 0.8591

5.3 Imputation Time

Table 10 shows the average computation time of the WKNN-GP method com-
pared to the other imputation methods when used for imputing a single in-
stance. As shown in Table 10, WKNN-GP is much faster than the other im-
putation methods except for GPI on all the ten data sets. Most imputation
methods are expensive as they require using the training data for estimating
missing values in a new instance. However, in our method, the imputation
models can be used independently to impute incomplete test instances.

Table 10: The testing computation time (in seconds) of the six imputation
methods.

Data Set KNN CART RF GPI GP-KNN WKNN-GP
Yacht 0.12 2.63 5.13 0.0787 467 0.0928
Forest 0.25 10.05 16.89 0.0235 654 0.0397

ENB2012 0.08 5.97 12.56 0.0421 768 0.0546
Concrete 0.09 8.75 17.11 0.0285 985 0.0367
Airfoil 0.18 5.62 12.55 0.0857 1221 0.0889

Disorders 0.07 2.39 5.62 0.0479 478 0.0538
Kin8nm 0.09 87.14 187.08 0.0668 33431 0.07

Pol 0.18 761.19 1103.83 0.0978 3142 0.1135
Quake 0.09 3.89 10.25 0.0437 974 0.0586
Libras 0.16 527.19 630.75 0.0867 11214 0.0984

GPI and WKNN-GP build imputation models in the training process and
the built models are used directly to impute new incomplete instances. Thus,
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the imputation time of the unseen data is decreased dramatically. The slowest
one is GP-KNN and it needs to construct an imputation model for each missing
value using the training data set. WKNN-GP is more efficient for imputing new
incomplete instances than the other imputation methods. On the other hand,
WKNN-GP is slightly slower than GPI in many cases. This is a small cost for
the much better symbolic regression accuracy and imputation performance.

As seen above, once GP-based models are learned, they can be applied
efficiently for imputing values in new instances. This is because GP typically
evolves expression trees that are very quick to evaluate compared with other
methods (e.g., random forest). However, constructing GP-based imputation
models is a time consuming process. The comparison of the training time for
the imputation methods are shown in Table 11. This table includes how much
time it takes to learn an imputation model with GP against using the other
methods. Note that, there is no training time for the KNN method. WKNN-
GP spends much loner time than four of the five methods, which is at least 10
times longer than CART. The only method that takes more time than WKNN-
GP is GP-KNN. However, the training process of WKNN is affordable in most
cases, as it only takes several minutes for model training. In the future, we
aim to develop new methods to improve the efficiency of WKNN-GP.

Table 11: The training computation time (in seconds) of the six imputation
methods.

Data Set KNN CART RF GPI GP-KNN WKNN-GP
Yacht 0 45.3675 91.0575 153.465 934 625.8656

Forest 0 53.2625 61.6685 73.995 1373.4 395.2929

ENB2012 0 80.595 91.78 96.4834 2150.4 543.6522

Concrete 0 12.46875 31.22575 5.0445 922.1675 366.3394

Airfoil 0 109.59 171.61 131.978 930.4 687.3109

Disorders 0 40.63 120.83 95.8 1099.4 537.4082

Kin8nm 0 206.9575 280.62 120.908 7805.567 697.62

Pol 0 69.648 86.618 91.88 3702.9353 1132.617

Quake 0 62.75 74.0625 69.2 3116.8 583.363

Libras 0 89.223 154.338 157.94 2805 982.2288

5.4 Learned Models

One main advantage of GP-based modelling is the interpret-ability. Although
the level of the interpretability depends on some factors such as GP program
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size, GP produces mathematical models that tend to be interpreteable, which
allows more insightful analysis of the obtained results. In Table 12, we show
simplified GP imputation models produced by the proposed method for a
randomly picked run on the Concrete data set. We can see that some predictive
features are used as imputation predictors for different incomplete features
frequently. For example, the feature f2 is used for the three incomplete features.
On the other hand, the feature f7 is used for modelling f3 but not f1 and f6.

Table 12: WKNN-GP imputation models for three incomplete features on the
Concrete data set.

Feature Model (simplified expression)

f1 [1− f2f5 −
f2
5

f2
] ∗ [−f4

2 f5 + f2
2 f5 − f2

2 f
2
5 + f2f2

5 − f4
2 f

2
5 − f3

2 f
2
5 − f2

2 f
3
5 + f2f3

5 ]

f3
f5+f0+1

f2+1
+ 3f5 − f2 + 8

f6
2f0f2−2f0+f2−2

f0f2
f7

+5f5+f7+1

2f2

6 Conclusions and Future Work

In this work, a method to improve symbolic regression performance on incom-
plete data is proposed. This method is called Weighted KNN-GP (WKNN-
GP) which integrates two imputation methods: weighted K-nearest neighbour
(WKNN) and genetic programming imputation (GPI). Such an integration is
presented to utilize both the instance-based similarity of KNN clustering and
the feature-based predictability of GP regression.

The evaluation is conducted on real-world data sets considering the im-
putation accuracy, the symbolic regression performance, and the imputation
time. The experimental results show that WKNN-GP outperforms the GPI
and KNN methods individually. Moreover, it is significantly better than some
state-of-the-art imputation methods. WKNN-GP is efficient for imputing new
incomplete instances and it achieves this without sacrificing the imputation ac-
curacy. Although GPI is slightly faster than WKNN-GP, WKNN-GP is signif-
icantly better according to both the imputation accuracy and the imputation
performance.

For future work, different missingness types (e.g. MCAR and MNAR)
will be considered when investigating symbolic regression with missing val-
ues. Moreover, the proposed method could be adapted for different machine
learning tasks such as classification and clustering.
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