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Abstract
Image analysis is a branch of signal analysis that focuses on the extraction of meaningful information from images through
digital image processing techniques. Convolution is a technique used to enhance specific characteristics of an image, while
deconvolution is its inverse process. In this work, we focus on the deconvolution process, defining a new approach to retrieve
filters applied in the convolution phase. Given an image I and a filtered image I ′ = f (I ), we propose three mathematical
formulations that, starting from I and I ′, are able to identify the filter f ′ that minimizes the mean absolute error between I ′
and f ′(I ). Several tests were performed to investigate the applicability of our approaches in different scenarios. The results
highlight that the proposed algorithms are able to identify the filter used in the convolution phase in several cases. Alternatively,
the developed approaches can be used to verify whether a specific input image I can be transformed into a sample image I ′
through a convolution filter while returning the desired filter as output.

1 Introduction

In recent years, numerous works on image processing have
dealt with image denoising and feature extraction problems.
On signal analysis problems, denoising algorithms are fun-
damental to improve the quality of the data; in particular, in
image analysis, the denoising process is essential to improve
the image quality (Chen and Fomel 2015). Feature extraction
problems are closely related to artificial vision, finding appli-
cations in object detection and recognition, motion tracking,
identity recognition, and numerous other problems related
to automatic photograph and video processing (Bovik 2010,
Alpaydin 2009).

One of the basic techniques used for image processing
is the convolution and its inverse, the deconvolution (Nuss-
baumer 2012). Convolution is a mathematical operation that,
given two functions f and g, produces a third one that
expresses how the shape of one is modified by the other.
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In the convolution, for real-valued functions, contrary to the
cross-correlation operator, f (x) or g(x) is reflected about
the y-axis. In addition to the problems mentioned above,
convolution has applications that include probability (Harikr-
ishna andAmuthan 2020, Shrivastava 2019), statistics (Wang
et al. 2020, Castro et al. 2019), natural language process-
ing (Behera et al. 2019, Afreen et al. 2019), etc. Otherwise,
deconvolution is an algorithm-based process used to reverse
the effects of convolution on recorded data. Aswell as convo-
lution, it is used in signal processing and image processing,
but it also has several different applications. In general, the
objective of deconvolution is to find the solution of a con-
volution equation f × g = h. To solve this equation, the
convolution theorem (Weisstein 2014) proposes an approach:

Theorem 1 The Fourier transform of a convolution of two
functions is equal to the product of the Fourier transform of
the two functions.

Therefore, the approach is not applicable since the function
g could not be unique, the function h can contain zeros, and
real data could be affected by noise. According to these,
while the convolution can always be calculated, this is not
possible for deconvolution, due, in particular, to the loss of
information that occurs during the process. Several methods
have been developed in order to calculate the best possi-
ble inverse convolution, such as Van-Cittert deconvolution
(Chengqi et al. 1994); Wiener deconvolution (Dhawan et al.
1985); blind deconvolution (Michailovich and Tannenbaum
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2007); Gaussian elimination (Zhao and Desilva 1998); sin-
gular value decomposition (SVD) (Sadek 2012); truncated
singular value decomposition (TSVD) (Wu et al. 2017).

In this work, we focus on the deconvolution, defining
a new approach to retrieve filters applied in the convolu-
tion phase. We examined image filters, such as Blur, Sobel,
Laplace, Emboss, etc., that are commonly used to enhance
specific characteristics of images (e.g., SobelX can enhance
horizontal lines, Laplace extracts contours, etc.). In this
paper, we propose an approach able to extract the applied
filter starting from the original image and a filtered ver-
sion of the original one. Most of the existing techniques are
able to recover the filter starting from a dataset of possible
filters (Torres et al. 2008). Other approaches use linear pro-
gramming (LP) or integer linear programming (ILP) (Maria
and Fahmy 1974, Chottera and Jullien 1982a, b), neural net-
work (Burger et al. 2012), or genetic algorithms (Pedrino
et al. 2013, Harvey and Marshall 1996) to generate filters
that can reproduce a specific analyzed transformation; some
of the main papers about the filter retrieval problem (FRP)
are the following. Maria and Fahmy 1974 proposed a useful
technique that minimizes the p-error criterion in designing
two-dimensional digital recursive filters. The approach uti-
lizes an LP formulation of the problem from the frequency
domain.Also,Chottera and Jullien (1982a, b) propose a novel
technique, based on an LP model, which is able to describe
the two-dimensional recursive filters considering the magni-
tude and phase of the image signal. In particular, the phase is
considered linear and is specified as a desired constant group
delay. The LP model tries to obtain the minimum approx-
imation error by performing a univariant search in a range
of group delay values. Furthermore, Coyle and Lin (1988),
Coyle et al. (1989), Gabbouj and Coyle (1991) discussed
about an LP flow formulation to solve the problem of find-
ing an optimal stack filter that obtains the minimum mean
absolute error (MAE) between its output and the desired sig-
nal. Another research field about filter design follows what
is defined by Harvey and Marshall (1996). They defined a
method of designing ad hoc morphological filters for spe-
cific tasks. Their idea was to develop an ad hoc filter for
specific tasks.

Based on what defined by Coyle et Al., Dellamonica et al.
(2007), proposed a new algorithm for optimal MAE stack
filter design based on the duality between the filter design
problem and the minimum cost network flow problem. Tor-
res et al. (2008), proposed an algorithm for filter generation
and filter retrieval. Based on an original image and a filtered
version of the original one, the method identifies which filter
was applied to the original to obtain the filtered one from
a large list of available filters. Considering that the search-
ing phase of the filter sequence is time-consuming, (Pedrino
et al. 2013), presented a new approach, namely IFbyGP, for
constructing image filters using an evolutionary program-

ming approach; it searches for the most efficient operator
sequence for a given image processing application.

Considering the importance of the quality of images for
fingerprint recognition, Wang et al. (2008) in their paper
propose the design of a Log-Gabor filter for image enhance-
ments. Furthermore, in the field of image restoration, Jaiswal
and Rajesh (2009) and Khmag et al. (2015) discussed
about the generation of denoising filters based on second-
generation wavelet transformation. Venkatappareddy et al.
(2017), proposed two methods based on threshold decompo-
sition and stacking properties for generate median filter.

1.1 Filtering example and notations

In this section, we present the notation used in this paper and
provide an example that describes how a filter is applied to a
specific image and how the MAE is computed.

In this work, we will use grayscale images; even consider-
ing only one channel, trivially, our work can be extended to
images with more channels as RGB. Furthermore, as shown
in Figs. 1a, b, we will consider the pixels’ value in the con-
tinuous range [0, 1] even if they are generally represented by
the discrete integer range [0, 255].

Given an image I and given a filter f = k×h, we indicate
with I ′ = f (I ) the image resulting by the application of the
filter f to the image I . To obtain the output image I ′, the
filter matrix is applied pixel by pixel; in detail, the value of a
generic pixel I

′
i, j is computed using the following equation:

f (Ii, j ) = I
′
i, j =

k∑

a=1

h∑

b=1

I
(i−� k

2 �+a−1)( j−� h
2 �+b−1) × fab

(1)

Figure 1 shows an application example of the SobelX filter
f on an input image I , producing as result the image I ′.
In the case of h or k even, the indexes need to be changed
accordingly. In the rest of the work, we assume h and k as
uneven.

Given the example in Fig. 1, Eq. 1 can be exploded as
follows:

I ′
i, j = Ii−1, j−1 × f1,1 + Ii−1, j × f1,2 + Ii−1, j+1 × f1,3

+ Ii, j−1 × f2,1 + Ii, j × f2,2 + Ii, j+1 × f2,3

+ Ii+1, j−1 × f3,1 + Ii+1, j × f3,2 + Ii+1, j+1 × f3,3
(2)

In order to calculate the difference between two images,
we used themean absolute error (MAE). It is computed as the
mean of the differences pixel by pixel in absolute values of
the two images. More formally, let I ′ and I ′′ be two images,
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Fig. 1 Example of filter applied to an image I . a and b show the original
5 × 5 images and the matrix of pixels values, respectively. c shows the
filter matrix applied on the input image in Fig. d. g shows the resulting

filtered images, and e shows the resulting matrix of pixels values after
the convolution. f highlights the resulting matrix after the threshold cut
application

the MAE is computed according to the formula:

MAE(I ′, I ′′) =

w(I ′)∑
i=1

h(I ′)∑
j=1

|I ′
i, j − I

′′
i, j |

w(I ′) × h(I ′)
(3)

1.2 Problem definition

In this paper, we propose a mathematical formulation able
to generate a filter that minimizes the mean absolute error.
Given an image I and a filtered image I ′ = f (I ), we define
a mathematical formulation that, starting from I and I ′, is
able to identify the filter f ′ that minimizes theMAE between
I ′ and I ′′ = f ′(I ). In real cases, I ′ is not exactly equal to
f (I ), due to possible noise or threshold error, in particular,
I ′ = f (I ) + ε, where ε is the error of the output image.
Our formulation is able to produce a filter f ′ that could be
equal or equivalent to f (ε = 0), otherwise (ε > 0) similar.
We propose a simplified version of the formulation that does
not consider any cut or threshold to the pixel values. Then,
a normalized version of the model is proposed, in which the
value of the pixel is bounded between 0 and 1. Finally, a
third formulation considers the activation variables on the
pixels for image thresholding. We clarify that all models are
formulated to generate a k × h filter with each component of
the filter in the range [−δ, δ] (δ is a parameter).

The importance of this approach, firstly, concerns the pos-
sibility of exactly model the FRP, and, also, allow us to
certificate the goodness of the obtained filter. In this way,
it is possible to certificate if a given transformation can be

obtained using a k×h filter or not. The results obtained show
that our approach is competitive with respect to the state of
the art when the images are noise-free; in fact, we are capable
to retrieve the used filter in all the considered cases.

The paper is organized as follows: Sect. 2 describes in
detail the mathematical formulation of the FRP, outlining
the different formulations and the possibilities of each one;
Sect. 3 describes the experiments performed to evaluate the
goodness of the approach and the results obtained. Finally,
Sec. 4 provides a brief discussion on the FRP and proposes
different possibilities for future works.

2 Mathematical formulation

2.1 LP-model

Given an input image I , we want to find

f ′ =
⎡

⎢⎣
x11 . . . xh1
...

. . .
...

x1k . . . xhk

⎤

⎥⎦

such that MAE(I ′, f ′(I )) is minimum. For each xi j ∈
f ′, xi j ∈ [−δ, δ], with δ ∈ �. Let ci, j be an auxiliary vari-
able that represents the value of the pixel i, j ∈ I applying
the filter f ′ on it. Let ei, j be a variable equal to the absolute
value of the difference between ci, j and I

′
i, j . We want to:
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Minimize
∑

i, j

ei, j ∀i, j ∈ I (4)

s.t.

ci, j = f ′(Ii, j ) ∀i, j ∈ I (5)

ci, j − I
′
i, j ≤ ei, j ∀i, j ∈ I (6)

I
′
i, j − ci, j ≤ ei, j ∀i, j ∈ I (7)

xi, j ∈ [−δ, δ] ∀i, j ∈ I (8)

ei, j , ci, j ∈ � ∀i, j ∈ I (9)

Constraint 5 binds the value of the pixel i, j ∈ I to be
equal to f ′(Ii, j ), while constraints 6 and 7 are used to impose
ei, j to be greater than or equal to the error between I

′
i, j and

ci, j in absolute value.
Since the model is composed of linear equations and does

not have integer variables, the solution can be provided in
polynomial time. Nevertheless, applying a filter on an image
could produce pixel values that exceed the interval [0,1], as
can be seen from Fig. 1e. This leads the LPmodel to produce
an implicit error on filter generation, due to the truncation of
the pixel values. In fact, the MAE is calculated on the thresh-
olded images and not on the values obtained. According to
this, a second mathematical formulation is defined, which
considers this boundary.

2.2 ILP-model for normalization

In this model, we introduce c
′
i, j , c

0
i, j , c

1
i, j defined as follows:

c
′
i, j =

⎧
⎪⎨

⎪⎩

0 if ci, j ≤ 0

ci, j if ci, j ∈ (0, 1)

1 if ci, j ≥ 1

ci, j ≥ 1 
⇒ c1i, j = 1

ci, j ≤ 0 
⇒ c0i, j = 1

c
′
i, j is an auxiliary variable that represents the value of the

pixel i, j ∈ I applying the filter f ′ on it. c0i, j and c1i, j are

two auxiliary variables used to normalize the values of c
′
i, j .

Let M be a sufficient big number1, we want to minimize our
objective function (4) s.t. constraint (5) and all the following
constraints are satisfied:

1 The value of M was calculated considering the maximum value of the
pixel after applying the filter f ′. According to Eq. (1), to obtain themax-
imum value we will have that

∑k
a=1

∑h
b=1 I(i−� k

2 �+a−1)( j−� h
2 �+b−1) =

k × h and fab = δ, for a = 1, ..., k and b = 1, ..., h. Hence, the value
of M = k × h × δ

c0i, j + c1i, j ≤ 1 ∀i, j ∈ I (10)

ci, j + Mc0i, j ≥ 0 ∀i, j ∈ I (11)

ci, j − Mc1i, j ≤ 1 ∀i, j ∈ I (12)

c
′
i, j ≤ ci, j + Mc0i, j ∀i, j ∈ I (13)

c
′
i, j ≥ ci, j − Mc1i, j ∀i, j ∈ I (14)

c
′
i, j ≥ c1i, j ∀i, j ∈ I (15)

c
′
i, j ≤ 1 − c0i, j ∀i, j ∈ I (16)

c
′
i, j − I

′
i, j ≤ ei, j ∀i, j ∈ I (17)

I
′
i, j − c

′
i, j ≤ ei, j ∀i, j ∈ I (18)

xi, j ∈ [−δ, δ] ∀i, j ∈ I (19)

ei, j , ci, j , c
′
i, j ∈ [0, 1] ∀i, j ∈ I (20)

c0i, j , c
1
i, j ∈ {0, 1} ∀i, j ∈ I (21)

Constraint 10 assures that at most one variable among c0i, j
and c1i, j is active (equal to 1). Constraint 11 imposes c0i, j to
be equal to 1 when ci, j ≤ 0, while constraint 12 enforces
c1i, j to be equal to 1 when ci, j ≥ 1. Constraint 13 ensures

that the value of c
′
i, j will be less than or equal to the value of

ci, j if c0i, j is not active. Constraint 14 ensures that the value

of c
′
i, j will be greater than or equal to the value of ci, j if c

1
i, j

is not active. Constraint 15 enforces c
′
i, j = 1 if c1i, j = 1;

contrariwise, constraint 16 imposes c
′
i, j = 0 if c0i, j = 1.

The combination of the constraints guarantees that c
′
i, j ,

c1i, j and c0i, j are set correctly: Constraints 11 and 12 do not

assure that c1i, j or c
0
i, j will not be activated if ci, j ∈ (0, 1).

In fact, this condition is respected considering constraints 13
and 14. Furthermore, 13 and 14 do not certify that c

′
i, j value

will be 0 or 1, but with 15 and 16 we enforce it.
Finally, constraints 17 and 18 are used to impose ei, j to

be greater than or equal to the error between I
′
i, j and c

′
i, j in

absolute value.

2.3 ILP-model for thresholding

A thirdmathematical formulation regards the thresholding of
the output image. The thresholding is one of themost popular
image processing techniques used, in particular in image seg-
mentation (Arora et al. 2008, Sathya and Kayalvizhi 2011),
and object detection algorithm (Park 2001). Let I be our
original image and I ′ = f ′(I ) be our filtered image, apply-
ing a threshold to I ′ corresponds to create an image I ′′ s.t.
I ′′
i, j ∈ {0, 1},∀i, j ∈ I ′′. The value I ′′

i, j is equal to 1 if
I ′′
i, j ≥ t , otherwise is equal to 0. The result of this process
is a binary image in which the white pixels usually highlight
important features of the original image. For instance, if in
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Fig. 1f we consider a thresh value of 0.9, only the last column
and the three central pixels of the image will be set to 1 in
the output image. Let t ∈ [0, 1] be the threshold value and
yi, j ∈ {0, 1} be the auxiliary variable, which represents the
value of the pixel i j applying f ′ and the thresholding on it.
Wewant tominimize our objective function (4) s.t. constraint
(5), and all the following constraints are satisfied:

ci, j − t ≤ Myi, j ∀i, j ∈ I (22)

t − ci, j ≤ M(1 − yi, j ) ∀i, j ∈ I (23)

yi, j − I
′
i, j ≤ ei, j ∀i, j ∈ I (24)

I
′
i, j − yi, j ≤ ei, j ∀i, j ∈ I (25)

xi, j ∈ [−δ, δ] ∀i, j ∈ I (26)

ei, j , ci, j , t ∈ [0, 1] ∀i, j ∈ I (27)

yi, j ∈ {0, 1} ∀i, j ∈ I (28)

Constraints 22 and 23 exploit if ci, j overcomes the thresh-
old, so if the pixel should be activated or not. If ci, j > t ,
yi, j = 1 and the pixel is activated, otherwise yi, j = 0. Con-
straints 24 and 25 are used to impose ei, j to be greater than
or equal to the error between I

′
i, j and yi, j in absolute value.

3 Computational experiments

Several tests were performed to verify the effectiveness of
our methods. All the experiments were performed on Win-

dows 10 OS, with AMD Ryzen 7 3750H Processor 2.3 GHz
CPU and 16 GB of RAM. The algorithms were implemented
in JAVA 14, and the mathematical formulation was solved
using CPLEX version 12.9. In general, for our computational
experiment (if not explicitly described), we defined the size
of the filter 3x3 and a range [−10, 10] with δ = 10. We
considered a 3x3 filter size because this is one of the most
common kernel sizes in the literature (Simonyan and Zisser-
man 2014). Therefore, someworks compared the behavior of
different sizes for different purposes; these sizes generally go
from 1x1 to 7x7 (He et al. 2016, Szegedy et al. 2015). Even if
several tests confirm that small sizes are better for image pro-
cessing, in the field of semantic segmentation larger kernel,
up to 15x15, can produce better results (Peng et al. 2017).

Furthermore, another critical parameter that should be set
is the range of the filter.As said,we set that range to [−10, 10]
even if generally this range is not bounded; however, after
several tests, described in Sect. 3.5, we can affirm that even
bounding the filter range to [−10, 10], the performance of
our approaches is not affected.

In the remaining of this paper, we named as fi a generic
filter; for more information regarding the filters, refer to
Appendix A.

In all the performed tests, the computation time reported
is shown in seconds; it is essential to clarify that in the fol-
lowing tests, the time limit for the execution of the proposed
approaches was set to 1800 seconds. According to this, when
the time limit is reached, the models return the best filter
found.

Table 1 Computational results
of LP model on well-known
filter cases
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Fig. 2 Racoon Test images. a is
the input image and b, c, d, e, f,
g, h, i, j and k are the output
images obtained applying f321,
f532, f562, f653, f656, fsobel ,
flaplace, fblur , f prewi t t and
femboss , respectively

(a) Original (b) 321 (c) 532

(d) 562 (e) 653 (f) 656

(g) Sobel (h) Laplace (i) Blur

(j) Prewitt (k) Emboss

Several experiments have been designed to study the
behavior of the developedmodels. Test A analyzes the ability
of the models to identify filters applied to reference images.
Test B studies the robustness of the proposed models, partic-
ularly their tolerance to the noise present on the input data.
Test C verifies that the models can identify filters capable
of emphasizing specific characteristics of the images. Test D
aims to verify the impact of the image sample size on the
quality of the solution produced. Finally, test E checks the
behavior of the model if we try to identify filters of differ-
ent sizes than those initially used for creating the sample
images.

3.1 Test A: identification of well-known filters

In this specific test, we performed our experiment on a
geometrical benchmark. We used grayscale images with
dimension equal to 32 × 32 pixels. We performed several

tests applying well-known filters, i.e., fsobel , flaplace, fblur ,
f prewi t t , femboss . Table 1 shows the filters produced by LP
model. The ILP model is able to identify the filters opti-
mally with computational times not exceeding 0.30 seconds.
For this reason, ILP results are omitted from the table. In
the first three columns, the input image, the filter applied,
and the resulting image are reported. Then, the fourth and
fifth columns display the filter obtained by the model and the
output image produced by applying this filter on the input
image. Finally, the last column reports the percentage MAE
according to the formula (3).

The LPmodel provides filters able to reproduce the output
image with low MAE, which does not exceed the 2%.

To test further the proposed approaches, we conducted
several experiments on larger images: Fig. 2a and Fig. 3a.
Both the images are grayscale. Figure 2a is 1024x768 and
Fig. 3a is 512x512 as size. On these samples, we have applied
several filters: in addition to thewell-knownfilters, f321, f532,
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Fig. 3 Lena Test images. a is
the input image and b, c, d, e, f,
g, h, i, j and k are the output
images obtained applying f321,
f532, f562, f653, f656, fsobel ,
flaplace, fblur , f prewi t t and
femboss , respectively

(a) Original (b) 321 (c) 532

(d) 562 (e) 653 (f) 656

(g) Sobel (h) Laplace (i) Blur

(j) Prewitt (k) Emboss

f562, f653, f656 are applied on them. Figures 2 and 3 show
the output images.

We considered a portion of the image to execute our test,
i.e., the top-left corner with size 20x20 pixels, starting from
(0,0) to (19,19). The results are reported in Table 2, organized
as follows: The first two columns report the sample used and
the ID of the filter applied. Then, the last two columns show
the results obtained by LP and ILP model. Each result is
composed of the filter computed by the model, the percent-

age MAE relative to the original output image and the image
produced applying the obtained filter, according to the for-
mula 3, and the computational times in seconds.

Since the images under test I are grayscale, the value of
each pixel i is defined in a range [0, 1]. The application of
a filter f could increase or decrease the value of i over the
limits. This introduces an error due to the truncation of the
value to 1 or 0.
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Table 2 Computational results
for test images

Sample ID LP Filter MAE Time ILP Filter MAE Time

Racoon 321 f pl321 18.3% 0.02 f321 0.0% 0.16

532 f ′ pl532 10.3% 0.02 f532 0.0% 0.18

562 f ′ pl562 2.8% 0.02 f562 0.0% 0.12

653 f ′ pl653 18.1% 0.02 f653 0.0% 0.20

656 f ′ pl656 8.4% 0.02 f656 0.0% 0.22

Sobel f ′ plsobel 9.0% 0.02 fsobel 0.0% 0.21

Laplace f ′ pllaplace 2.8% 0.02 flaplace 0.0% 0.12

Blur f ′ plblur 0.1% 0.02 f ′ plblur 0.1% 0.33

Prewitt f ′ plprewi t t 13.9% 0.02 f prewi t t 0.0% 0.17

Emboss f ′ plemboss 5.7% 0.02 femboss 0.0% 0.20

Lena 321 f ′′ pl321 1.1% 0.02 f321 0.0% 0.22

532 f ′′ pl532 3.5% 0.02 f532 0.0% 0.11

562 f ′′ pl562 1.4% 0.02 f562 0.0% 0.25

653 f ′′ pl653 3.6% 0.02 f653 0.0% 0.25

656 f ′′ pl656 3.8% 0.02 f656 0.0% 0.20

Sobel f ′′ plsobel 3.0% 0.02 fsobel 0.0% 0.20

Laplace f ′′ pllaplace 1.4% 0.02 flaplace 0.0% 0.22

Blur f ′′ plblur 0.2% 0.02 f ′′ plblur 0.2% 0.33

Prewitt f ′′ plprewi t t 1.0% 0.02 f prewi t t 0.0% 0.19

Emboss femboss 0.0% 0.02 femboss 0.0% 0.09

Despite this, as reported in Table 2, ILP model is able
to correctly identify all the filters applied on the test image,
except for fblur case, for which the error is always lower than
0.2.

3.2 Test B: filter identification on disrupted images

A further test was performed considering a noisy image: We
disrupted the output images 2b, 2c, 2d, 2e and 2f with differ-
ent percentage of noise, i.e., 1%, 3%, 5% and 10%. As we
can notice in Fig. 4, the disruption applied on the image does
not affect excessively the ILP result, which is able to provide
filters with MAE ≤ 4%.

Considering our computational experiments, the results
shown in Table 1, 2 and Fig. 4, allow us to affirm that our
approach is able to identify a big set of well-known filters
even when the image is altered with noise, with low MAE.

3.3 Test C: identification of filters for features
enhancement

In this experiment, we investigated the applicability of our
models to the retrieval of filters that can emphasize fea-
tures highlighted manually. To verify this question, we tested
our model considering samples with different shapes, e.g.,
hexagon, flower, rectangle and triangle. For each sample, we
have manually highlighted several features: For hexagon, tri-
angle and rectangle we emphasized the vertices; for hexagon

and triangle, we strongly marked the edges. Finally, for the
flower, we considered the petals.

Table 3 shows the computed filter for the proposed cases.
The table is organized as follows: In the first two columns, the
input image and the features to highlight are shown. The third
column displays the image producedwith the filter computed
by the ILP model. Finally, the last two columns report the
computational time in seconds and the MAE in percentage.

The results provided by the LP model are not reported
because, in most of the cases, the solution provided is a all-
black filter, the one that makes the image entirely black. This
is due to the fact that we want to minimize the error by pro-
viding a good filter. In our instances, the percentage of black
pixels is higher than the white ones. Then, the all-black filter
has a low absolute MAE value, but the same MAE relative
to the white-pixel percentage in the image is massive. Our
approach is able to identify all the filters related to the edge
detection reasonably. In particular, cases in which wewant to
identify a filter that emphasizes discontinuous regions, i.e.,
the vertices, our approaches approximate them with a con-
tinuous one.

Since the percentage of black pixels affects the overall
results of our approach, we performed another test by feature
extraction. We considered 4 cases: the angle of the hexagon,
the petals of the flower, the angle of the square and the angle
of the triangle. Table 4 shows the results of LP and ILPmodel.

By feature extraction, LP and ILP are able to identify bet-
ter filters; generally, the results reported in this section show
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Fig. 4 MAE analysis computed on test images (2) with different per-
centages of noise. For each graph, on the x-axis is reported the noise
percentage, instead on the y-axis the MAE percentage; the blue line

refers to the linear programming model described in Sect. 2.1, while
the orange line refers to the integer linear programming model shown
in Sect. 2.2

that our approach, with just a single image in which the fea-
ture is manually highlighted, is capable of identifying a filter
k × h useful to emphasize the desired characteristics, with
respect to the techniques as neural networks (Burger et al.
2012) which needs ad hoc training set to recognize features.
Furthermore, an important consideration about these special
tests is that if our approach cannot produce a reliable filter
capable of emphasizing the desired feature, we can affirm
that it is not possible to enhance the feature through filters.

3.4 Test D: robustness tests

When working on large images, a fragment of the image (a
sample) is selected to decrease the processing time. In this
experiment, we verified the correlation between the selected
sample and the result obtained, in order to test the stability
of the proposed method.

When considering a sample of an image, it is crucial to
take into account the size and the significance of the sample.
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Table 3 Computational results
of ILP model on special
scenario filter cases

To see if the size of a sample affects the final result, we
tested our approaches on four different sample size: 20× 20,
50 × 50, 100 × 100, 200 × 200 (Image 2a). Each sample
was elaborated starting from (0,0). The results are reported in
Fig. 5. The ILP results are omitted because the model could
identify the filters optimally not exceeding 0.30 seconds of
computational time.

It is possible to notice that the LPmodel is size dependent.
Moreover, in the majority of the cases, the more extensive is
the sample, the lower is the error committed.

To verify if a different sample can affect the final result, we
tested our approaches on four different samples of the same
image with different variances. The samples considered are
shown in Fig. 6 and exploited in Table 5 and Table 6. In
Table 5 is reported the top-left (starting point) and bottom-
right (ending point) corner of the image portion considered,
while in Table 6 is reported the percentage variance of each
portion.

The results are shown in Fig. 7. The ILP results are omit-
ted because the model could identify the filters optimally not
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Table 4 Computational results of LP and ILP model on features filter cases

Fig. 5 MAE analysis computed on test images (2) with different sizes
of the same feature. The feature considered for this set of tests is the top-
left corner of the test imageswith the size of 20x20, 50x50, 100x100 and
200x200. In the graph, on the x-axis is reported the feature size, instead

on the y-axis, the MAE percentage; each line represents the result of
the linear programming model 2.1 computed on different images. The
integer linear programming model is not reported because it is able to
identify the filter optimally with a MAE equal to 0 in all the cases

exceeding 0.30 seconds of computational time. It is possible
to notice that the LP model is sample dependent, but there is
no strong relation between the variance of the sample con-
sidered and the output obtained. Nevertheless, if the sample
variance is beyond 10%, the LP model elaborates filters that
produce images with relatively highMAEwith respect to the
original one.

3.5 Test E: filters with different range and size

In this paper, we defined a priori the size and range of the
filter values that we want to identify.

In this section, we wanted to study the behavior of our
models in case a different size or range of values is set for
the filter to be searched with respect to the original filter that
produced the input image.
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Fig. 6 The features considered for the test described in Sect. 3.4. These
feature are reported in Table 5

In particular, our models take as input the size of the fil-
ter k × h, and δ which defines the range of values for a
generic element of the filter f ′

ab. According to this, given the
original filter f and the computed filter f ′, we wanted to
study what happens when f ′ has different size or range with
respect to f . For what concerns the different size, the exper-
iment was performed on the test image 2a on which were
applied five different filters: f701, f811, f911, f532, f562. We
produced the filters with LP and ILP models consider-
ing different ranges: [−2, 2], [−4, 4], [−6, 6], [−8, 8] and
[−10, 10] and elaborated the output images. The results
are reported in Table 7, organized as follows: In the first
column is described the range considered by the model
and the filter under test, with range interval showed in
square brackets; the last two columns report the percentage
MAE and the computational time for LP and ILP model,
respectively.

As it is reported, the ILP model is range dependent: Let
Max( f ) be the element of f with the maximum absolute
value, the more δ is closer to Max( f ), the lower is the
MAE among the images. Instead, the LP model is not range
dependent on mid-high δ values. Furthermore, the compu-
tational times of ILP model follow a descending trend for
δ ≤ Max( f ). Then, the times are constant for δ ≥ Max( f ).

For the identification of the filter of different size,
we applied on the test image 2a three different 5x5 fil-
ters: fsharpen, fverticaledges, femboss5x5. We elaborated fil-
ters with LP and ILP models considering different size as
input: 3×3, 5×5 and 7×7. We produced the output images
and computed theMAE according to Eq. 3. The computation
times of the LPmodel are not reported because it can provide
its solutions in less than 1 second. The results are reported in
Table 8.

When the size of the filter to compute is smaller than the
size of the original one, ILP reaches the time limit. Nev-
ertheless, the computed filters are able to produce images
with MAE ≤ 12%. Instead, when the size of the filter to

Table 5 Features considered for the test. The table reports the top-left
(start) and the bottom-right (end) corners of the studied features. These
are reported graphically in Fig. 6

Name Start End

TopLeft (0,0) (19,19)

Nose (600,450) (619,469)

Eye (550,300) (569,319)

Ear (450,50) (469,69)

Table 6 Variances of the samples considered

Variance TopLeft Nose Eye Ear

321 11.500% 1.400% 2.400% 4.600%

532 6.500% 0.600% 3.300% 0.500%

562 1.000% 0.006% 0.230% 0.130%

653 13.300% 0.640% 1.150% 1.340%

656 4.650% 0.480% 10.170% 0.390%

Fig. 7 MAE analysis computed on test images (2) with different fea-
tures of the same size. The characteristics of the features considered
for these tests are shown in Table (5). For each graph, on the x-axis
are reported the features (e.g., Top-left, Nose, Eye, Ear), instead on the
y-axis the MAE percentage. At the same time, the chart refers to the
linear programming model described in Sect. 2.1, and the results of the
integer linear programming model shown in Sect. 2.2 are not reported
because it is able to identify the filter optimally with a MAE equal to 0
in all the cases

compute is greater than or equal to the original one, ILP
is able to identify the applied filter correctly. It is essen-
tial to notice that when the size of the filter to compute is
greater than the original one, ILP identifies the filter, but it
produces a scaled version of it. An example is provided as
follows:

fsharpen =

⎡

⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 1 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1

⎤

⎥⎥⎥⎥⎦
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Table 7 Results of test of computing filters with different ranges
of value: [−2, 2], [−4, 4], [−6, 6], [−8, 8], [−10, 10]. The MAEs are
computed between the original output image and the one produced by
applying the obtained filter.We can notice that the LPmodel is not range
dependent, while the ILP model is strongly dependent. Let Max( f ) be
the element of f with the maximum absolute value, the more δ is near
to Max( f ), the less is the error committed by the model

Range f Range LP Model ILP Model

MAE Time MAE Time

[−2, 2] 562 [−4, 1] 2.80% 0.00 0.71% 9.48

532 [−2, 6] 10.32% 0.00 2.50% 14.06

701 [−7, 1] 3.75% 0.00 3.54% 46.17

811 [−1, 8] 9.50% 0.00 2.90% 48.38

911 [−1, 9] 6.40% 0.00 5.00% 36.39

[−4, 4] 562 [−4, 1] 2.80% 0.00 0.00% 0.00

532 [−2, 6] 10.32% 0.00 0.92% 10.88

701 [−7, 1] 2.14% 0.00 1.87% 24.19

811 [−1, 8] 9.15% 0.00 1.75% 24.38

911 [−1, 9] 5.50% 0.00 2.65% 15.77

[−6, 6] 562 [−4, 1] 2.80% 0.00 0.00% 0.00

532 [−2, 6] 10.32% 0.00 0.00% 0.00

701 [−7, 1] 0.84% 0.00 0.78% 2.78

811 [−1, 8] 9.15% 0.00 1.00% 3.69

911 [−1, 9] 4.92% 0.00 1.65% 12.72

[−8, 8] 562 [−4, 1] 2.80% 0.00 0.00% 0.00

532 [−2, 6] 10.32% 0.00 0.00% 0.00

701 [−7, 1] 0.00% 0.00 0.00% 0.00

811 [−1, 8] 9.15% 0.00 0.00% 0.00

911 [−1, 9] 4.92% 0.00 0.70% 1.56

[−10, 10] 562 [−4, 1] 2.80% 0.00 0.00% 0.00

532 [−2, 6] 10.32% 0.00 0.00% 0.00

701 [−7, 1] 0.00% 0.00 0.00% 0.00

811 [−1, 8] 9.15% 0.00 0.00% 0.00

911 [−1, 9] 4.92% 0.00 0.00% 0.00

fsharpen7x7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 −1 −1 −1 −1 −1 0
0 −1 2 2 2 −1 0
0 −1 2 1 2 −1 0
0 −1 2 2 2 −1 0
0 −1 −1 −1 −1 −1 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 8 MAE obtained comparing the figures produced applying the
original filters to the test image and the figures produced applying the
filters generated using the LP (2.1) and ILP (2.2) models to the test
image. The original filters are 5×5, while the produced filters are 3×3,
5 × 5 and 7 × 7. When the size of the filter to compute is smaller than
the size of the original one, ILP reaches the time limit. Nevertheless,
the computed filters are able to produce images with MAE ≤ 12%.
Instead, when the size of the filter to compute is greater than or equal
to the original one, ILP is able to identify correctly the applied filter

Size LP I LP T imeI L P

3 × 3 fsharpen 16.50% 12.21% 1800.00

fverticaledges 5.40% 1.70% 1800.00

femboss5x5 26.40% 7.75% 1800.00

5 × 5 fsharpen 12.38% 0.00% 1.42

fverticaledges 3.50% 0.00% 0.33

femboss5x5 18.00% 0.00% 0.31

7 × 7 fsharpen 12.80% 0.00% 2.24

fverticaledges 5.00% 0.00% 0.36

femboss5x5 22.50% 0.00% 0.38

4 Conclusion

In this work, we faced the filter retrieval problem, in which
we want to identify the filter applied on an input image given
the output image. We proposed three mathematical formula-
tions: Two of them are related to the deconvolution process,
one to the thresholding instead. We formulated a linear pro-
gramming model (LP) and an integer linear programming
(ILP) model for the deconvolution filters. Several tests were
performed to prove the validity and the performance of the
models. It is possible to notice from the results that our for-
mulations, in particular the ILP model, are able to identify
several filters applied on an input image, even if the output
image is disrupted by noise, with just a mere 20x20 sample
of the total image. The output images produced by the com-
puted filters have low MAE considering the original one as
oracle. Also, our models are able to enhance features with
just a single image in which the feature is manually high-
lighted. Finally, suppose our approach is not able to produce
a reliable filter capable to emphasize the desired feature. In
that case, we can affirm that is not possible to enhance the
feature through filters. A significant feature of the filters is
their low computational complexity; this makes them usable
in many contexts where the computing power is minimal.
Thanks to the work done in recent years on numerous papers
related to the identification of drone routes (Carrabs et al.
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2017a, Carrabs et al. 2017b, 2020), an exciting direction for
this research could be to improve the navigation algorithms
by integrating obstacle recognition systems currently widely
used for drones, with suitable filters. This approach could
lead to usable energy savings to improve the routes produced.
In particular, drones use the images captured by video cam-
eras for multiple purposes, particularly for positioning and
recognizing obstacles and targets. The processing connected
to the analysis of these images requires an energy consump-
tion that otherwise would have been exploited to extend the
flight time. The use of filters for some of these tasks could
lead to impressive energy savings. Given that for many com-
plex applications (e.g., object detection), a single convolution
kernel, whatever its size, is not enough; several approaches
in literature tried to find the best combination of different
filters to reproduce the desired effect (Coyle and Lin 1988,
Coyle et al. 1989, Gabbouj and Coyle 1991). For this reason,
a possible future improvement for this work, considering its
effectiveness in the filter retrieval in simple cases, is its usage,
in combination with other techniques such as genetic algo-
rithm (Cerrone et al. 2016), neural networks (Abiodun et al.
2018), heuristics (Cerrone et al. 2017) and meta-heuristic
Carrabs et al. 2014 approaches, to reproduce more complex
scenarios such as the creation of filter sequences to be applied
to the image to enhance specific characteristics. In recent
years, approaches based on neural networks have benefited
enormously from the use of filters; these networks using con-
volutional filters are able to process images very effectively
(Khan et al. 2020). An exciting direction for this research
could be to develop filters suitable for joint use with neural
networks.
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A Filters

The majority of the filters produced in our experimentation
are 3x3. For simplicity, we report them as a one row vector.

For example

⎡

⎣
1 0 −1
2 0 −2
1 0 −1

⎤

⎦

is reported as [1, 0, -1, 2, 0, -2, 1, 0, -1].

fsobel 1.000, 0.000, −1.000, 2.000, 0.000, −2.000, 1.000,
0.000,
−1.000

flaplace 0.000, 1.000, 0.000, 1.000, −4.000, 1.000, 0.000, 1.000,
0.000

fblur 0.111, 0.111, 0.111, 0.111, 0.111, 0.111, 0.111, 0.111,
0.111

f prewi t t 1.000, 1.000, 1.000, 0.000, 0.000, 0.000, −1.000,
−1.000, −1.000

femboss −2.000, −1.000, 0.000, −1.000, 1.000, 1.000, 0.000,
1.000, 2.000

f321 1.000, 2.000, 1.000, 0.000, 0.000, 0.000, −1.000,
−2.000, −1.000

f532 −2.000, −2.000, 0.000, −2.000, 6.000, 0.000, 0.000,
0.000, 0.000

f562 0.000, 1.000, 0.000, 1.000, −4.000, 1.000, 0.000, 1.000,
0.000

f653 −1.000, −2.000, −1.000, 0.000, 0.000, 0.000, 1.000,
2.000, 1.000

f656 −1.000, 0.000, 1.000, −2.000, 0.000, 2.000, −1.000,
0.000, 1.000

f701 1.000, 1.000, 1.000, 1.000, −7.000, 1.000, 1.000, 1.000,
1.000

f811 −1.000, −1.000, −1.000, −1.000, 8.000, −1.000,
−1.000, −1.000, −1.000

f911 −1.000, −1.000, −1.000, −1.000, 9.000, −1.000,
−1.000, −1.000, −1.000

The remaining filters are 5x5 and reported as follows:

fsharpen =

⎡

⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 1 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1

⎤

⎥⎥⎥⎥⎦

fverticaledges =

⎡

⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 −1 0 0
0 0 4 0 0
0 0 −1 0 0
0 0 −1 0 0

⎤

⎥⎥⎥⎥⎦
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f1 0.347, −0.014, −0.333, 2.576, 0.011, −2.587,
0.267, 0.001, −0.268

f2 0.014, 0.893, 0.000, −0.024, −2.720, 0.836, 0.092,
0.744, 0.164

f3 0.153, 0.041, 0.136, 0.066, 0.099, 0.110, 0.111,
0.137, 0.106

f4 0.543, 1.469, 0.210, −0.127, −1.974, 0.563,
−0.416, 0.504, −0.773

f5 −1.416, −0.883, 0.006, −0.883, 1.437, 0.927,
0.006, 0.927, 0.880

f ′ pl321 1.203, 0.727, 0.593, −0.063, −1.342, −2.213,
0.850, 0.854, −0.024

f ′ pl532 −1.298, 0.087, 0.084, −0.390, 0.926, 0.208, 0.052,
0.580, 0.098

f ′ pl562 0.148, 0.436, 0.166, 0.231, −1.938, 0.290, 0.218,
0.421, 0.131

f ′ pl653 −0.352, −1.372, −0.122, −0.058, −0.217, −0.047,
0.845, 0.949, 0.689

f ′ pl656 0.026, 1.085, 1.508, −2.071, −1.014, −0.737,
0.244, 0.126, 1.413

f ′ plsobel 0.648, 0.628, 0.878, −0.058, −0.217, −0.047,
−0.155, −1.051, −0.311

f ′ pllaplace 0.148, 0.436, 0.166, 0.231, −1.938, 0.290, 0.218,
0.421, 0.131

f ′ plblur 0.107, 0.110, 0.106, 0.118, 0.114, 0.117, 0.107,
0.108, 0.109

f ′ plprewi t t 1.068, 0.515, 0.613, −0.365, −0.778, −2.085,
0.860, 0.434, 0.176

f ′ plemboss −1.576, −0.011, −0.047, −0.280, 0.627, 0.283,
0.085, −0.085, 2.067

f ′′ pl321 0.813, −0.016, −0.732, 1.632, −0.001, −1.572,
0.691, 0.022, −0.828

f ′′ pl532 −1.005, −0.796, −0.111, −0.601, 2.562, −0.186,
−0.055 0.210, 0.011

f ′′ pl562 -0.095, −0.519, 0.018, −0.369, 1.864, −0.532,
0.113, −0.525, 0.064

f ′′ pl653 −0.187, −0.016, 0.268, −0.368, −0.001, 0.428,
−0.309, 0.022, 0.172

f ′′ pl656 −0.588, −0.905, −0.424, 0.107, 0.014, 0.022,
0.450, 0.812, 0.530

f ′′ plsobel 0.412, 1.095, 0.576, 0.107, 0.014, 0.022, −0.550,
−1.188, −0.470

f ′′ pllaplace −0.095, −0.519, 0.018, −0.369, 1.864, −0.532,
0.113, −0.525, 0.064

f ′′ plblur 0.096, 0.119, 0.119, 0.119, 0.104, 0.110, 0.115,
0.100, 0.115

f ′′ plprewi t t 0.815, 0.020, −0.718, 0.729, 0.002, −0.766, 0.687,
0.035, −0.797

femboss5x5 =

⎡

⎢⎢⎢⎢⎣

−1 −1 −1 −1 0
−1 −1 −1 0 1
−1 −1 0 1 1
−1 0 1 1 1
0 1 1 1 1

⎤

⎥⎥⎥⎥⎦
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