
Preideals in EQ-algebras
N. Akhlaghinia 

Shahid Beheshti University
Rajab Ali Borzooei  (  borzooei@sbu.ac.ir )

Shahid Beheshti University https://orcid.org/0000-0001-7538-7885
M. Aaly Kologani 

Shahid Beheshti University

Research Article

Keywords: Bounded EQ-algebra, (pre)ideal, generated preideal, complete lattice, distributive lattice,
Heyting algebra, MV -algebra

Posted Date: July 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-462251/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Soft Computing on August 21st, 2021. See
the published version at https://doi.org/10.1007/s00500-021-06071-y.

https://doi.org/10.21203/rs.3.rs-462251/v1
mailto:borzooei@sbu.ac.ir
https://orcid.org/0000-0001-7538-7885
https://doi.org/10.21203/rs.3.rs-462251/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-021-06071-y


Preideals in EQ-algebras

N. Akhlaghinia, R. A. Borzooei(∗), M. Aaly Kologani
Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

narges.akhlaghinia@gmail.com, borzooei@sbu.ac.ir, mona4011@gmail.com
(∗)Corresponding Author

Abstract

EQ-algebras were introduced by Novák in [15] as an algebraic structure of truth values for fuzzy
type theory (FFT). Novák and De Baets in [17] introduced various kinds of EQ-algebras such as
good, residuated, and IEQ-algebras. In this paper, we define the notion of (pre)ideal in bounded EQ-
algebras (BEQ-algebras) and investigate some properties. Then we introduce a congruence relation
on good BEQ-algebras by using ideals, and then we solve an open problem in [18]. Moreover, we
show that in IEQ-algebras, there is an one-to-one corresponding between congruence relations and
the set of ideals. In the follows, we characterize the generated preideal in BEQ-algebras and by
using this, we prove that the family of all preideals of a BEQ-algebra, is a complete lattice. Then we
show that the family of all preideals of a prelinear IEQ-algebras, is a distributive lattice and become
a Heyting algebra. Finally, we show that we can construct an MV -algebra form the family of all
preideals of a prelinear IEQ-algebra.

Mathematics Subject Classification 2010: 06D99, 06D35, 06B10.
Keywords: Bounded EQ-algebra, (pre)ideal, generated preideal, complete lattice, distributive lattice,
Heyting algebra, MV -algebra.

1 Introduction

Fuzzy type theory was developed as a counterpart of the classical higher-order logic. Since the algebra
of truth values is no longer a residuated lattice, a specific algebra called an EQ-algebra was proposed by
Novák [15, 16, 17] and it continued in [2, 3, 6, 10, 19, 21]. The main primitive operations of EQ-algebras
are meet, multiplication, and fuzzy equality. Implication is derived from the fuzzy equality and it is not
a residuation with respect to multiplication. Consequently, EQ-algebras overlap with residuated lattices
but are not identical with them. Novák and De Baets in [17] introduced various kinds of EQ-algebras.
Novák and El-Zekey in [9], proved that the class of EQ-algebras is a variety. El-Zekey in [8] introduced
prelinear good EQ-algebras and proved that a prelinear good EQ-algebra is a distributive lattice. Novák
and De Baets in [17] defined the concept of prefilter on EQ-algebras which is the same as filter of other
algebraic structures such as residuated lattices, MTL-algebras, and etc. But the binary relation has
been introduced by prefilters is not a congruence relation. For solving this problem, they added another
condition to the definition of prefilter so filter of EQ-algebras is defined. In studying logical algebras,
filter theory or ideal theory is very important. From logic point of view, various filters have natural
interpretation as various sets of provable formulas. At present, the filter theory of EQ-algebras has been
widely studied and some important results are obtained. In particular, Liu and Zhang in [13], introduced
positive implicative and implicative (pre)filters of EQ-algebras and showed that these two concepts are
the same in IEQ-algebras. Xin et al. [19], have studied fantastic (pre)filters of good EQ-algebras. In
[14], the family of prefilter of an EQ-algebras was studied. The notion of ideals has been introduced
in many algebraic structures such as lattices, rings, MV -algebras. Ideals theory is a very effective tool
for studying various algebraic and logical systems. In some logical algebras such as equality, hoop, and
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MV -algebras, filters and ideals are dual notions [1, 18]. While in BL-algebra, with the lack of a suitable
algebraic addition, the focus is shifted filters. So the notion of ideals is missing in BL-algebras. To fill
this gap the paper [12], introduced the notion of ideals in BL-algebras, which generalized in a natural
sense the existing notion in MV -algebras and subsequently all the results about ideals in MV -algebras.
The paper also constructed some examples to show that, unlike in MV -algebras, ideals and filters are
dual but behave quite differently in BL-algebra. So the notion of ideal from a purely algebraic point of
view has a proper meaning in BL-algebras.

In this paper, we define the notion of (pre)ideal in bounded EQ-algebras and investigate the relation is
induced by an ideal in good EQ-algebras, is a congruence relation. Also, we show that in IEQ-algebras,
any congruence relation introduce an ideal. In the rest of paper, we define the generated preideal by a
subset. By this means we prove that the family of all preideals of an EQ-algebra, is a complete lattice.
Also, we prove that in prelinear IEQ-algebras, the family of all preideals forms an MV -algebra.

2 Preliminaries

In this section, we recollect some definitions and results which will be used in this paper [8, 9, 13].
An EQ-algebra is an algebraic structure E = (E,∧,⊗,∼, 1) of type (2, 2, 2, 0), where for any a, b, c, d ∈

E, the following statements hold:
(E1) (E,∧, 1) is a ∧-semilattice with top element 1. For any a, b ∈ E, we set a 6 b if and only if a∧b = a.
(E2) (E,⊗, 1) is a (commutative) monoid and ⊗ is isotone with respect to 6.
(E3) a ∼ a = 1.
(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) 6 c ∼ (d ∧ b).
(E5) (a ∼ b)⊗ (c ∼ d) 6 (a ∼ c) ∼ (b ∼ d).
(E6) (a ∧ b ∧ c) ∼ a 6 (a ∧ b) ∼ a.
(E7) a⊗ b 6 a ∼ b.

The operations ”∧ ”, ”⊗ ”, and ” ∼ ” are called meet, multiplication, and fuzzy equality, respectively.
For any a, b ∈ E, we defined the binary operation implication on E by, a → b = (a ∧ b) ∼ a. Also, in
particular 1 → a = 1 ∼ a = ã. If E contains a bottom element 0, we say E is bounded and denote it by
BEQ-algebra. Then an unary operation ¬ is defined on E by ¬a = a ∼ 0 = a → 0.

Let E = (E,∧,⊗,∼, 1) be an EQ-algebra and a, b, c ∈ E are arbitrary elements. Then E is called
(i) spanned, if E is a BEQ-algebra and 0̃ = 0,
(ii) separated, if a ∼ b = 1, then a = b,
(iii) good, if a ∼ 1 = a,
(iv) an involutive (IEQ-algebra), if E is a BEQ-algebra and for any a ∈ E, ¬¬a = a,
(v) residuated, where (a⊗ b) ∧ c = a⊗ b if and only if a ∧ ((b ∧ c) ∼ b) = a,
(vi) lattice-ordered EQ-algebra, if it has a lattice reduct,1

(vii) prelinear EQ-algebra, if the set {(a → b), (b → a)} has the unique upper bound 1,
(viii) lattice EQ-algebra (or ℓEQ-algebra), if it is a lattice-ordered EQ-algebra and

((a ∨ b) ∼ c)⊗ (d ∼ a) 6 (d ∨ b) ∼ c.

Proposition 2.1. [9] Let E be an EQ-algebra. Then, for all a, b, c ∈ E, the following properties hold:
(i) a ∼ b = b ∼ a.
(ii) b 6 a → b.
(iii) a ∼ b 6 a → b.
(iv) a ∼ b 6 (a ∼ c) ∼ (b ∼ c).
(v) a ∼ b 6 (a ∧ c) ∼ (b ∧ c).
(vi) a → b 6 (c → a) → (c → b) and a → b 6 (b → c) → (a → c).

1Given an algebra < E,F >, where F is a set of operations on E and F ′ ⊆ F , then the algebra < E,F ′ > is called the
F ′-reduct of < E,F >.
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(vii) If a 6 b, then c → a 6 c → b and b → c 6 a → c.
(viii) If E is separated, then a → b = 1 if and only if a 6 b.
(ix) If E is a good BEQ-algebra, then ¬a = ¬¬¬a.
(x) If E is a BEQ-algebra, then a → b 6 ¬b → ¬a and if E is involutive, then a → b = ¬b → ¬a.
(xi) If E is prelinear, then a → (b ∧ c) = (a → b) ∧ (a → c).

An EQ-algebra E has exchange principle condition, if for any a, b, c ∈ E, a → (b → c) = b → (a → c).

Proposition 2.2. [13] Let E be an EQ-algebra. Then, for all a, b, c ∈ E, the following statements are
equivalent:
(i) E is good,
(ii) E is separated and satisfies exchange principle condition,
(iii) E is separated and a ≤ (a → b) → b.

Theorem 2.3. [17] Every involutive EQ-algebra is a good ℓEQ-algebra.

Let E be an EQ-algebra, a, b, c ∈ E and ∅ 6= F ⊆ E. Then;
• F is called a prefilter of E , if 1 ∈ F and if a ∈ F and a → b ∈ F , then b ∈ F .
• a prefilter F of E is called a filter of E , if a → b ∈ F , then (a⊗ c) → (b⊗ c) ∈ F .
The set of all prefilters of E is denoted by PF(E).

Remark 2.4. [17] Let F be a (pre)filter of EQ-algebra E . If a ∈ F and a 6 b, then b ∈ F .

Remark 2.5. [9] Let E be a separated EQ-algebra. The singleton subset {1} ⊆ E is a filter of E .

Theorem 2.6. [9] Let F be a filter of EQ-algebra E. A binary relation ≈F on E which is defined by
a ≈F b if and only if a ∼ b ∈ F , is a congruence relation on E and E/F = (E/F,∧F ,⊗F ,∼F , F ) is a
separated EQ-algebra, where, for any a, b ∈ E, we have,

[a] ∧F [b] = [a ∧ b] , [a]⊗F [b] = [a⊗ b] , [a] ∼F [b] = [a ∼ b] , [a] →F [b] = [a → b].

A binary relation 6F on E/F which is defined by [a] 6F [b] if and only if [a] ∧F [b] = [a] is a partial
order on E/F and for any [a], [b] ∈ E/F , [a] 6F [b] if and only if a → b ∈ F if and only if [a] →F [b] = [1].

Notation. From now on, in this paper, E = (E,∧,⊗,∼, 1) or simply E is a BEQ-algebra, unless
otherwise state.

3 (Pri)Ideals in EQ-algebras

In this section, we introduce the notion of (pre)ideals in BEQ-algebras and investigate some properties
of them. Also, we prove that the ideals introduce a congruence relation on E .

Definition 3.1. Let I be a nonempty subset of E. Then I is called a preideal of E , if for any a, b, c ∈ E,
it satisfies the following conditions:

(I1) If a 6 b and b ∈ I, then a ∈ I,

(I2) If a, b ∈ I, then ¬a → b ∈ I.

A preideal of E is an ideal of E if it satisfies the following condition:

(I3) If ¬(a → b) ∈ I, then ¬((a⊗ c) → (b⊗ c)) ∈ I.

The set of all preideals of E is denoted by PI(E) and the set of all ideals of E is denoted by I(E). It is
clear that I(E) ⊆ PI(E).
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Example 3.2. (i) Let E = {0, a, b, c, d, 1} be a chain where 0 6 a 6 b 6 c 6 d 6 1. For any x, y ∈ E,
we define the operations ⊗ and ∼ on E as Table 1 and Table 2:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 a b
c 0 0 0 a a c
d 0 0 a a a d
1 0 a b c d 1

Table 1

∼ 0 a b c d 1
0 1 c b a 0 0
a c 1 b a a a
b b b 1 b b b
c a a b 1 c c
d 0 a b c 1 d
1 0 a b c d 1

Table 2

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 1 1 1 1
b b b 1 1 1 1
c a a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

Table 3

By routine calculations, we can see that E = (E,∧,⊗,∼, 0, 1) is a BEQ-algebra and the operation →
is as Table 3. Also, we can see that I = {0, a} is a preideal of E . But I is not an ideal of E . Because,
¬(1 → d) = ¬d = 0 ∈ I but ¬((1⊗ d) → (d⊗ d)) = ¬(d → a) = c /∈ I.

(ii) Let E = {0, a, b, c, d, e, f, 1} be a lattice with the following digram (Figure 1), and the operations
⊗ and ∼ are defined on E as Table 4 and Table 5.

⊗ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 c
d 0 0 0 0 d d d d
e 0 0 0 0 d e d e
f 0 0 0 0 d d d f
1 0 a b c d e f 1

Table 4

∼ 0 a b c d e f 1
0 1 e f d c a b 0
a e 1 d f c a c a
b f d 1 e c c b b
c d f e 1 c c c c
d c c c c 1 f e d
e a a c c f 1 d e
f b c b c e d 1 f
1 0 a b c d e f 1

Table 5

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a e 1 e 1 1 1 1 1
b f f 1 1 1 1 1 1
c d f e 1 1 1 1 1
d c c c c 1 1 1 1
e a a c c f 1 f 1
f b c b c e e 1 1
1 0 a b c d e f 1

Table 6

0

ba

d

c

fe

1

Figure 1

Then E = (E,∧,⊗,∼, 0, 1) is a BEQ-algebra [17] and the operation → is as Table 6. Let I = {0, a, b, c}.
It is easy to see that I is an ideal of E .

Remark 3.3. For the sake of brevity, from now on we define for any a, b ∈ E, a⊕ b = ¬a → b. Also, we
consider a⊕ (a⊕ · · · (a⊕ a) · · · ) = na and 0a = 0. By Proposition 2.1(ii), we know that for any n ∈ N+,
a 6 2a 6 · · · 6 na.

Proposition 3.4. If I ∈ I(E), then for any a ∈ E, the following statements hold.
(i) 0 ∈ I.
(ii) If a ∈ I, then ¬¬a ∈ I.
(iii) If E is good, then ¬¬a ∈ I implies that a ∈ I.
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(iv) For any n ∈ N, na ∈ I if and only if a ∈ I.
(v) If I and J are two (pre)ideals of E, then I ∩ J is a (pre)ideal of E.

Proof. (i) Let I ∈ (P)I(E). Since I 6= ∅, there exists an elemenet a ∈ I such that 0 6 a. Then by (I1),
0 ∈ I.
(ii) Suppose a ∈ I. Since 0 ∈ I, by (I2), ¬¬a = ¬a → 0 ∈ I.
(iii) If ¬¬a ∈ I, since E is good, by Proposition 2.2(iii), we have a 6 ¬¬a and by (I1), we get a ∈ I.
(iv) If na ∈ I, then since a 6 na by (I1), we have a ∈ I. Conversely, if a ∈ I, then by (I2), we obtain for
any n ∈ N, na ∈ I.
(v) The proof is clear.

Remark 3.5. It is obvious that all of the properties in Proposition 3.4, for I ∈ PI(E) hold, too.

Proposition 3.6. Let ϕ : E → G be an EQ-homomorphism. Then the following statements hold.
(i) If I ∈ PI(G), then ϕ−1(I) ∈ PI(E). Also, if I ∈ I(G), then ϕ−1(I) ∈ I(E).
(ii) If ϕ is an isomorphism and I ∈ PI(E), then ϕ(I) ∈ PI(G). Also, if I ∈ I(E), then ϕ(I) ∈ I(G).
(iii) If E is spanned, then J = {a ∈ E|ϕ(a) = 0} ∈ PI(E). Also, if G is involutive, then J is an ideal of
E.

Proof. (i) Suppose a, b ∈ E, a 6 b, and b ∈ ϕ−1(I). Since ϕ is a homomorphism, we have ϕ(a) 6 ϕ(b).
Since I is a preideal of G and ϕ(b) ∈ I, by (I1), we get ϕ(a) ∈ I and so, a ∈ ϕ−1(I). Now, let a, b ∈ ϕ−1(I).
Then ϕ(a), ϕ(b) ∈ I and so, ϕ(¬a → b) = ¬ϕ(a) → ϕ(b) ∈ I. Hence, (I2) holds. Therefore, ϕ−1(I) is a
preideal of E . Now, suppose I is an ideal of G. Let ¬(a → b) ∈ ϕ−1(I). Then ϕ(¬(a → b)) ∈ I and for
any c ∈ E, we have

ϕ
(

¬((a⊗ c) → (b⊗ c))
)

= ¬
(

(ϕ(a)⊗ ϕ(c)) → (ϕ(b)⊗ ϕ(c))
)

.

Since I is an ideal of G, for any c ∈ E, we have ϕ
(

¬((a⊗ c) → (b⊗ c))
)

∈ I and so

(

¬((a⊗ c) → (b⊗ c))
)

∈ ϕ−1(I)

Hence, ϕ−1(I) is an ideal of E .
(ii) Let x, y ∈ G. Suppose x 6 y and y ∈ ϕ(I). Then there exist b ∈ I and a ∈ E such that a 6 b,
ϕ(a) = x, and ϕ(b) = y. Since I is a preideal of E , we obtain a ∈ I and so x = ϕ(a) ∈ ϕ(I). Now, let
x, y ∈ ϕ(I). Then there exist a, b ∈ I such that ϕ(a) = x and ϕ(b) = y. Since I is a preideal of E , we
have ¬a → b ∈ I. Hence, ¬x → y = ϕ(¬a → b) ∈ ϕ(I) and so ϕ(I) is a preideal of G. Now, suppose I is
an ideal of G. Let ¬(x → y) ∈ ϕ(I) and z ∈ G. Since ϕ is an isomorphism, there exists c ∈ E such that
ϕ(c) = z. Then

¬
(

(x⊗ z) → (y ⊗ z)
)

= ϕ
(

¬((a⊗ c) → (b⊗ c))
)

∈ ϕ(I).

Thus, ϕ(I) is an ideal of G.
(iii) Since ϕ is an EQ-homomorphism and ϕ(0) = 0, it is clear that J 6= ∅. Let a 6 b and b ∈ J .
Since ϕ is a homomorphism, ϕ(a) 6 ϕ(b) = 0. Thus, a ∈ J . Suppose a, b ∈ J . Then ϕ(¬a → b) =
¬ϕ(a) → ϕ(b) = ¬0 → 0 = 0 and so ¬a → b ∈ J . Hence J ∈ PI(E). Now, suppose G is involutive. Let
¬(a → b) ∈ J . Then ϕ(¬(a → b)) = 0 and so ¬(ϕ(a) → ϕ(b)) = 0. Since E is involutive, we obtain that
ϕ(a) → ϕ(b) = 1 and so ϕ(a) 6 ϕ(b). Thus, for any c ∈ E,

ϕ(a)⊗ ϕ(c) = ϕ(a⊗ c) 6 ϕ(b⊗ c) = ϕ(b)⊗ ϕ(c)

Hence, ϕ((a⊗ c) → (b⊗ c)) = 1 and so ϕ(¬((a⊗ c) → (b⊗ c))) = 0. Therefore, ¬((a⊗ c) → (b⊗ c)) ∈ J
and J ∈ I(E).

In the following example, we show that the spanned condition in Proposition 3.6(iii) is necessary.
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Example 3.7. Let E = {0, a, b, 1} be a chain where 0 6 a 6 b 6 1. For any x, y ∈ E, we define the
operations ⊗ and ∼ on E as Table 7 and Table 8:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Table 7

∼ 0 a b 1
0 1 a a a
a a 1 b b
b a b 1 1
1 a b 1 1

Table 8

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b a b 1 1
1 a b 1 1

Table 9

Then E = (E,∧,⊗,∼, 0, 1) is a BEQ-algebra and the operation → is as Table 9 [13]. Since 1 ∼ 0 =
a 6= 0, we get E is not spanned. Let id : E → E be the identity homomorphism. Then {x ∈ E|id(x) =
0} = {0}. But {0} is not a preideal of E . Because 0⊕ 0 = ¬0 → 0 = 1 → 0 = a /∈ {0}.

Proposition 3.8. Let E ,G be two BEQ-algebras. Then K is an (pre)ideal of E × G if and only if there
exist I ∈ I(E)(I ∈ PI(E)) and J ∈ I(G)(J ∈ PI(G)) such that K = I × J .

Proof. (i) Let K ∈ PI(E × G). We consider I = {a ∈ E|(a, b) ∈ K for some b ∈ G} and J = {b ∈
E|(a, b) ∈ K for some a ∈ E}. It is clear that K = I × J . Now, we prove that I is a preideal of E .
Since (0, 0) ∈ K, we have 0 ∈ I and so I is non-empty. Suppose a1 6 a2 and a2 ∈ I. Then there
exists b ∈ G, such that (a2, b) ∈ K. Since (a1, b) 6 (a2, b) and K is a preideal of E × G, (a1, b) ∈ K
and so a1 ∈ I. Now, let a1, a2 ∈ I. Then there exist b1, b2 ∈ G such that (a1, b1), (a2, b2) ∈ K. Since
(a1, b1)⊕ (a2, b2) = (a1 ⊕ a2, b1 ⊕ b2) ∈ K and b1 ⊕ b2 ∈ G, we obtain a1 ⊕ a2 ∈ I. Hence I ∈ PI(E).

Now, let K be an ideal. We show that I is an ideal, too. Suppose ¬(a1 → a2) ∈ I. Then there exists
b ∈ G, such that (¬(a1 → a2), b) ∈ K. Form the definition of J , we get b ∈ J . By Proposition 3.4(ii), we
have ¬¬b ∈ J . Thus,

¬((a1, b) → (a2, 0)) = ¬((a1 → a2),¬b) = (¬(a1 → a2),¬¬b) ∈ K.

Since K is ideal, for any c ∈ E, we have

(

¬((a1 ⊗ c) → (a2 ⊗ c)),¬¬b
)

= ¬
(

((a1, b)⊗ (c, 1)) → ((a2, 0)⊗ (c, 1))
)

∈ K.

Hence, ¬((a1 ⊗ c) → (a2 ⊗ c)) ∈ I and I is an ideal of E . By the similar way, we can prove that
J ∈ (P)I(G).
Let I ∈ PI(E) and J ∈ PI(G). We show K = I × J is a preideal of E × G. It is obvious that K is
non-empty. Suppose a1, a2 ∈ E and b1, b2 ∈ G such that (a1, b1) 6 (a2, b2) and (a2, b2) ∈ K. Then
a2 ∈ I and b2 ∈ J . Since a1 6 a2 and b1 6 b2, we get a1 ∈ I and b1 ∈ J and so (a1, b1) ∈ K. Now,
let (a1, b1), (a2, b2) ∈ K. Then a1, a2 ∈ I and b1, b2 ∈ J . Since a1 ⊕ a2 ∈ I and b1 ⊕ b2 ∈ J , we get
(a1, b1)⊕ (a2, b2) = (a1 ⊕ a2, b1 ⊕ b2) ∈ K. Therefore, K ∈ PI(E × G).
Now, suppose I is an ideal of E and J is an ideal of G. Let ¬

(

(a1, b1) → (a2, b2)
)

∈ K. Then ¬(a1 →
a2) ∈ I and ¬(b1 → b2) ∈ J . Thus, for any (c, d) ∈ E ×G, we get

¬
(

((a1, b1)⊗ (c, d)) → ((a2, b2)⊗ (c, d))
)

=
(

¬((a1 ⊗ c) → (a2 ⊗ c)),¬((b1 ⊗ d) → (b2 ⊗ d))
)

∈ I × J = K.

Hence, K is an ideal of E × G.

Corollary 3.9. Let
∏n

i=1
Ei be a finite product of BEQ-algebras. Then K is an (pre)ideal of

∏

Ei if and
only if for any i, there exists Ii ∈ I(Ei)(Ii ∈ PI(Ei)) such that K =

∏n

i=1
Ii.

Theorem 3.10. Let E be good and I be a non-empty subset of E. Then I ∈ PI(E) if and only if it
satisfies the following conditions:
(i) 0 ∈ I,
(ii) For any a, b ∈ E, if ¬(¬a → ¬b) ∈ I and a ∈ I, then b ∈ I.
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Proof. Let I ∈ PI(E). Then by Proposition 3.4(i), 0 ∈ I. Now, suppose for any a, b ∈ E, ¬(¬a → ¬b) ∈ I
and a ∈ I. By (I2),

¬a → ¬(¬a → ¬b) = (¬a → ¬b) → ¬¬a ∈ I.

On the other hand,

b → ((¬a → ¬b) → ¬¬a) = (¬a → ¬b) → (b → ¬¬a) = (¬a → ¬b) → (¬a → ¬b) = 1.

Since E is separated, we obtain b 6 ¬a → ¬(¬a → ¬b) and by (I1), we get b ∈ I.
Conversely, let a 6 b and b ∈ I. By Proposition 2.1(vii), we have ¬b 6 ¬a and so ¬b → ¬a = 1. Since
E is good, ¬(¬b → ¬a) = ¬1 = 0 ∈ I. Since b ∈ I, by (ii), we have a ∈ I. Now, suppose a, b ∈ I.
By Propositions 2.2(iii) and 2.1(vi), we have ¬a 6 (¬a → b) → b 6 ¬b → ¬(¬a → b). Hence, by
Proposition 2.1(vii), ¬(¬b → ¬(¬a → b)) 6 ¬¬a. Since ¬¬a ∈ I, by Proposition 3.4(iii), we obtain
¬(¬b → ¬(¬a → b)) ∈ I. Therefore by (ii), ¬a → b ∈ I.

Corollary 3.11. Let E be good and I ∈ PI(E). For any a, b ∈ E if ¬(¬a ∼ ¬b) ∈ I and a ∈ I, then
b ∈ I.

Proof. Suppose ¬(¬a ∼ ¬b) ∈ I and a ∈ I for any a, b ∈ E. By Proposition 2.1(iii) and (vii), ¬a ∼ ¬b 6
¬a → ¬b and so ¬(¬a → ¬b) 6 ¬(¬a ∼ ¬b). Since I ∈ PI(E), by (I1), ¬(¬a → ¬b) ∈ I and by Theorem
3.10, b ∈ I.

In the following example, we show that the good condition in Theorem 3.10, is necessary.

Example 3.12. Let E be the BEQ-algebra as in Example 3.7. Since 1 ∼ a = b 6= a, we obtain
E is not good. By some calculations, we can see I = {0, a} is a preideal of E . On the other hand
¬(¬0 → ¬1) = ¬(1 → a) = ¬b = a ∈ I. But 1 /∈ I.

Definition 3.13. Let X be a subset of E. The set of all complement elements (with respect to X) is
denoted by N(X) and is defined by N(X) = {x ∈ E|¬x ∈ X}.

Example 3.14. Let E be a BEQ-algebra as in Example 3.2(ii) and X = {e, f}. It is easy to see that
N(X) = {a, b}.

Proposition 3.15. Let E be good. For any a, b ∈ E, ¬a → ¬b = ¬¬(¬a → ¬b).

Proof. Since E is good, by Proposition 2.2(iii), we have ¬a → ¬b 6 ¬¬(¬a → ¬b). On the other hand,
by Proposition 2.1(ix), we get

¬¬(¬a → ¬b) → (¬a → ¬b) =¬a → (¬¬(¬a → ¬b) → ¬b)

=¬a → (b → ¬¬¬(¬a → ¬b))

=¬a → (b → ¬(¬a → ¬b))

=¬a → ((¬a → ¬b) → ¬b)

=(¬a → ¬b) → (¬a → ¬b)

=1.

Since E is separated, ¬¬(¬a → ¬b) 6 ¬a → ¬b. Thus, ¬a → ¬b = ¬¬(¬a → ¬b).

Proposition 3.16. Let E be good. If I ∈ PI(E) and F ∈ PF(E), then the following statements hold:
(i) I = NN(I).
(ii) F ⊆ NN(F ).
(iii) N(F ) = NNN(F ).
(iv) N(F ) ∈ PI(E).
(v) N(I) ∈ PF(E), also if I ∈ I(E), then N(I) ∈ F(E).
(vi) Let E be involutive. If F ∈ F(E), then N(F ) ∈ I(E).
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Proof. (i) Let a ∈ I. Since NN(I) = {x ∈ E|¬¬x ∈ I}, by Proposition 3.4(ii), we get a ∈ NN(I).
Conversely, if a ∈ NN(I), then ¬¬a ∈ I and so by Proposition 3.4(iii), we obtain a ∈ I. It is clear that
if I ∈ I(E), then NN(I) = I, too.
(ii) Let a ∈ F . By Proposition 2.2(iii), we have a 6 ¬¬a and so ¬¬a ∈ F . Thus, a ∈ NN(F ).
(iii) By Proposition 2.1(ix), the proof is clear.
(iv) Since F is a (pre)filter of E , ¬0 = 1 ∈ F and so 0 ∈ N(F ). Now, suppose ¬(¬a → ¬b) ∈ N(F ) and
a ∈ N(F ). Then ¬¬(¬a → ¬b) ∈ F and ¬a ∈ F . By Proposition 3.15, ¬a → ¬b ∈ F . Since ¬a ∈ F and
F is a (pre)filter of E , we obtain ¬b ∈ F . Hence, b ∈ N(F ) and so N(F ) ∈ PI(E).
(v) Since E is good, ¬1 = 0 ∈ I and so 1 ∈ N(I). Suppose a → b ∈ N(I) and a ∈ N(I). Then ¬(a →
b) ∈ I and ¬a ∈ I. By Proposition 2.1(vi) and (vii), a → b 6 ¬b → ¬a and so ¬(¬b → ¬a) 6 ¬(a → b).
Thus ¬(¬b → ¬a) ∈ I. By Propositions 2.1(ix), and 2.2(ii), we have

¬(¬¬a → ¬¬b) = ¬(¬b → ¬¬¬a) = ¬(¬b → ¬a) ∈ I.

Since ¬a ∈ I and I ∈ PI(E), by Theorem 3.10(ii), ¬b ∈ I and so b ∈ N(I). Hence N(I) ∈ PI(E). Now,
let I be an ideal of E . Suppose a → b ∈ N(I). Then ¬(a → b) ∈ I and so for any c ∈ E, we obtain
¬((a⊗ c) → (b⊗ c)) ∈ I. Thus, (a⊗ c) → (b⊗ c) ∈ N(I) an N(I) is a filter of E .
(vi) Let E be involutive and F be a filter of E . By (iv), we have N(F ) ∈ PI(E). Now, suppose
¬(a → b) ∈ N(F ). Then a → b = ¬¬(a → b) ∈ F . Since F is a filter of E , for any c ∈ E, we get

(a⊗ c) → (b⊗ c) = ¬¬((a⊗ c) → (b⊗ c)) ∈ F.

Hence, ¬((a⊗ c) → (b⊗ c)) ∈ N(F ) and N(F ) ∈ I(E).

In the following example, we show that the good condition in Proposition 3.16, is necessary.

Example 3.17. (i) Let E be the BEQ-algebra as in Example 3.7. Since 1 ∼ a = b 6= a, we know that E
is not good. By some calculations, we can see I = {0, a} is a preideal of E . Then N(I) = {a, b, 1}. But
N(I) is not a prefilter of E . Because 1 ∈ N(I) and 1 → 0 = a ∈ N(I), but 0 /∈ N(I).
(ii) Let E be the BEQ-algebra as in Example 3.2(i). Since E is good, by Remark 2.5, F = {1} is a filter
of E . But as we see in Example 3.2(i), N(F ) = {0} /∈ I(E).

Although, we proved in good EQ-algebras preideals and prefilters are dual of each others, but the
most properties of (pre)ideals will be proved in a different ways.

In [18], the notion of ideals in equality algebras was introduced. But the author could not prove the
binary relation introduced by ideals is a congruence relation and an open problem was stated. In the
following theorem, we prove the binary relation introduce by ideals of good BEQ-algebras is a congruence
relation. Since every good BEQ-algebra is an equality algebra [21], the open problem in [18] is solved.

Theorem 3.18. Let E be good and I ∈ PI(E). Then for any a, b ∈ E, a binary relation “≈I” on E can
be defined as follows:

a ≈I b if and only if ¬(a ∼ b) ∈ I.

(i) The binary relation “≈I” is an equivalence relation.

(ii) If I is an ideal of E, then “≈I” is a congruence relation.

(iii) If I is an ideal of E, then E/I = (E/I,∧I ,⊗I ,∼I) is a good BEQ-algebra where, for any a, b ∈ E,
we have,

[a] ∧I [b] = [a ∧ b] , [a]⊗I [b] = [a⊗ b] , [a] ∼I [b] = [a ∼ b] , [a] →I [b] = [a → b].
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Proof. (i) For any a ∈ E, a ∼ a = 1 and since E is good, ¬(a ∼ a) = 0 ∈ I and ≈I is reflexive. By
Proposition 2.1(i), it is clear that ≈I is symmetric. Suppose a ≈I b and b ≈I c. Then ¬(a ∼ b),¬(b ∼
c) ∈ I. By Proposition 2.1(iv), we have

a ∼ b 6 (a ∼ c) ∼ (b ∼ c) 6 ¬(a ∼ c) ∼ ¬(b ∼ c) 6 ¬¬(a ∼ c) ∼ ¬¬(b ∼ c).

By Proposition 2.1(vii), ¬(¬¬(a ∼ c) ∼ ¬¬(b ∼ c)) 6 ¬(a ∼ b). Since I ∈ PI(E) and ¬(a ∼ b) ∈ I,
we obtain ¬(¬¬(a ∼ c) ∼ ¬¬(b ∼ c)) ∈ I. By Corollary 3.11, we get ¬(a ∼ c) ∈ I and so ≈I is transitive.
(ii) Suppose a ≈I b and c ≈I d. Then ¬(a ∼ b),¬(c ∼ d) ∈ I. By Proposition 2.1(v), we have
a ∼ b 6 (a∧c) ∼ (b∧c) and c ∼ d 6 (c∧b) ∼ (d∧b). Thus, by Proposition 2.1(vii), ¬((a∧c) ∼ (b∧c)) ∈ I
and ¬((c ∧ b) ∼ (d ∧ b)) ∈ I. Since ≈I is an equivalence relation, we obtain (a ∧ c) ≈I (b ∧ d). By the
similar way, we can see that (a ∼ c) ≈I (b ∼ d). Since I ∈ I(E), we have ¬((a ⊗ c) ∼ (b ⊗ c)) ∈ I and
¬((b⊗ c) ∼ (b⊗ d)) ∈ I. Since ≈I is an equivalence relation on E , we get a⊗ c ≈I b⊗ d. Therefore ≈I is
a congruence relation.
(iii) By (ii), it is clear that E/I is a good BEQ-algebra.

Corollary 3.19. Let E be good and I ∈ I(E). Then for any a, b ∈ E, we define an order on E/I as
follows,

[a] 6 [b] if and only if ¬(a → b) ∈ I.

In the following example, we show that the converse of Theorem 3.18 may not be true in general.

Example 3.20. Let E be the EQ-algebra as in Example 3.2(i). By routine calculations, we can see that
E = (E,∧,⊗,∼, 1) is a good and non-involutive EQ-algebra. Since E is good, {1} is a filter of E and
θ = {(a, b) ∈ E × E|a = b} is a congruence relation on E . But I = {0} is not an ideal of E . Because,
¬(a → d) = ¬d = 0 ∈ I but ¬((1⊗ d) → (d⊗ d)) = ¬(d → a) = c /∈ I.

Theorem 3.21. Let E be good. If θ is a congruence relation on E, then the following statements hold:

(i) [0]θ is a preideal of E.

(ii) If E is involutive, then [0]θ is an ideal of E.

Proof. (i) Let θ be a congruence relation on E. It is clear that [0]θ is non-empty. Suppose a 6 b and
b ∈ [0]θ, then (b, 0) ∈ θ. Since for any a ∈ E, (a, a) ∈ θ, we obtain (a, 0) = (a ∧ b, a ∧ 0) ∈ θ. Thus, (I1)
is satisfied. Let a, b ∈ [0]θ. Then (¬a, 1) = (a ∼ 0, 0 ∼ 0) ∈ θ and so (¬a → b, 0) = (¬a → b, 1 → 0) ∈ θ.
Hence, [a⊕ b]θ = [0]θ and so (I2) holds and [0]θ ∈ PI(E).
(ii) Let ¬(a → b) ∈ [0]θ. Then [¬(a → b)]θ = [0]θ and so [a]θ → [b]θ = [1]θ. Since E/θ is separated,
by Proposition 2.1(viii), we have [a]θ 6 [b]θ and by (E2), for any c ∈ E, [a ⊗ c]θ 6 [b ⊗ c]θ. Thus,
[¬((a⊗ c) → (b⊗ c))]θ = [0]θ and so ¬((a⊗ c) → (b⊗ c)) ∈ [0]θ. Therefore, [0]θ ∈ I(E).

4 Generated preideals

In this section, we characterize the generated preideal by a subset of E and by using this we show that
the family of all preideals of E is a complete lattice. Also, we prove that under some conditions, PI(E)
forms an MV -algebra.

Definition 4.1. Let S be a nonempty subset of E. The smallest preideal of E containing S is called
the generated preideal by S and it is denoted by (S]P . It is also the intersection of all preideals of E
containing S.

Theorem 4.2. Let S be a nonempty subset of E. Then

(S]P = {a ∈ E|a 6 s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · ), for some n ∈ N and s1, · · · , sn ∈ S}.
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Proof. Let

I = {a ∈ E|a 6 s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · ), for some n > 1 and s1 · · · sn ∈ S}.

We should prove that I is the smallest preideal of E contains S. First, we show that I ∈ PI(E).
Let a, b ∈ E such that a 6 b and b ∈ I. There exists n ∈ N such that for s1, s2, · · · , sn ∈ S, b 6

s1⊕ (s2⊕· · · (sn−1⊕sn) · · · ). From a 6 b, we get a 6 s1⊕ (s2⊕· · · (sn−1⊕sn) · · · ), and so a ∈ I. Hence,
(I1) holds. Now, suppose a, b ∈ I. Then there exist n,m ∈ N, s1, s2, · · · , sn ∈ S and r1, r2, · · · , rm ∈ S
such that a 6 s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · ) and b 6 r1 ⊕ (r2 ⊕ · · · (rm−1 ⊕ rm) · · · ). By Proposition
2.1(vii), ¬(s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · )) 6 ¬a, and so

¬a → b 6 ¬(s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · )) → b.

Since b 6 r1 ⊕ (r2 ⊕ · · · (rm−1 ⊕ rm) · · · ), by Proposition 2.1(vii),

¬(s1⊕(s2⊕· · · (sn−1⊕sn) · · · )) → b 6 ¬(s1⊕(s2⊕· · · (sn−1⊕sn) · · · )) → (r1⊕(r2⊕· · · (rm−1⊕rm) · · · )).

Then
¬a → b 6 ¬(s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · )) → (r1 ⊕ (r2 ⊕ · · · (rm−1 ⊕ rm) · · · ))

and so
a⊕ b 6 (s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · ))⊕ r1 ⊕ (r2 ⊕ · · · (rm−1 ⊕ rm) · · · ).

Thus, a⊕ b ∈ I. Hence, I is a preideal of E .
For any a, b ∈ S, by Proposition 2.1(ii), a 6 ¬b → a = b ⊕ a and so a ∈ I. Now, suppose there exists
a preideal J such that S ⊆ J . It is enough to prove that I ⊆ J . Let a ∈ I. Then there exists n ∈ N
and s1, s2, · · · sn ∈ S, such that a 6 s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · ). Since S ⊆ J and J ∈ PI(E), by (I2),
s1 ⊕ (s2 ⊕ · · · (sn−1 ⊕ sn) · · · ) ∈ J , and so by (I1), a ∈ J . Hence, I is the smallest preideal of E contains
S. Therefore, I = (S]P .

In the following example, we show that the generated preideal of a set is not an ideal, in general.

Example 4.3. Let E be the BEQ-algebra as in Example 3.2(i). Let S = {0, a}. By routine calculations,
we can see that (S]P = {0, a}. But as we see in Example 3.2(i), (S]P is not an ideal of E .

Open problem. What is the form of generated ideals of subset?

Proposition 4.4. If E is involutive, then ⊕ is associative and commutative.

Proof. Let a, b, c ∈ E. By Propositions 2.1(x) and 2.2 (iii), we have

(a⊕ b)⊕ c = ¬(¬a → b) → c =¬c → ¬¬(¬a → b)

=¬c → (¬a → b)

=¬a → (¬c → b)

=¬a → (¬b → c)

=a⊕ (b⊕ c).

Hence, ⊕ is associative. Also, by Proposition 2.1(x), we get a⊕ b = ¬a → b = ¬b → a = b⊕ a. Thus, ⊕
is commutative.

In the following example, we show that the involutive condition in Proposition 4.4 is necessary.
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Example 4.5. (i) Let E = {0, a, b, 1} be a chain where 0 6 a 6 b 6 1. For any x, y ∈ E, we define the
operations ⊗ and ∼ on E as Table 10 and Table 11:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

Table 10

∼ 0 a b 1
0 1 a 0 0
a a 1 a a
b 0 a 1 b
1 0 a b 1

Table 11

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Table 12

It is easy to see that E = (E,∧,⊗,∼, 0, 1) is a non-involutive BEQ-algebra and the operation → is
as Table 12. We can see that ⊕ is not commutative, because 0⊕ b = 1 → b = b. But b⊕ 0 = 0 → 0 = 1.

(ii) Let E be the BEQ-algebra as in Example 3.7. We can see that ⊕ is not associative because,
0⊕ (0⊕ 0) = b but (0⊕ 0)⊕ 0 = a.

Proposition 4.6. If E is involutive and prelinear, then for any a, b, c ∈ E, the following statements hold:

(i) a ∧ (b⊕ c) 6 (a ∧ b)⊕ (a ∧ c).

(ii) For any n ∈ N, na ∧mb 6 (n+m)(a ∧ b).

Proof. (i) Let a, b, c ∈ E. By Propositions 2.1(x), (xi), and 2.2(iii), we have

(a ∧ (b⊕ c)) → ((a ∧ b)⊕ (a ∧ c)) =(a ∧ (b⊕ c)) → (¬(a ∧ b) → (a ∧ c))

=(a ∧ (b⊕ c)) → ((¬(a ∧ b) → a) ∧ (¬(a ∧ b) → c))

=
(

(a ∧ (b⊕ c)) → ((¬(a ∧ b) → a)
)

∧
(

(a ∧ (b⊕ c)) → (¬(a ∧ b) → c)
)

=
(

(¬(a ∧ b)) → ((a ∧ (b⊕ c)) → a)
)

∧
(

(a ∧ (b⊕ c)) → (¬(a ∧ b) → c)
)

=1 ∧
(

(a ∧ (b⊕ c)) → (¬(a ∧ b) → c)
)

=
(

(a ∧ (b⊕ c)) → (¬c → (a ∧ b))
)

=(a ∧ (b⊕ c)) → ((¬c → a) ∧ (¬c → b))

=
(

(a ∧ (b⊕ c)) → (¬c → a)
)

∧
(

(a ∧ (b⊕ c)) → (¬c → b)
)

=
(

¬c → ((a ∧ (b⊕ c)) → a)
)

∧
(

(a ∧ (b⊕ c)) → (¬b → c)
)

=
(

¬c → ((a ∧ (b⊕ c)) → a)
)

∧
(

(a ∧ (b⊕ c)) → (b⊕ c)
)

=1.

Therefore, by Proposition 2.1(viii), a ∧ (b⊕ c) 6 (a ∧ b)⊕ (a ∧ c).
(ii) First we show 2a ∧ 2b 6 4(a ∧ b). By (i), we have

(a⊕ a) ∧ (b⊕ b) 6((a⊕ a) ∧ b)⊕ ((a⊕ a) ∧ b)

6((a ∧ b)⊕ (a ∧ b))⊕ ((a ∧ b)⊕ (a ∧ b))

=4(a ∧ b).

By induction on n and m, the proof is complete.

In the following example, we show that the prelinear condition in Proposition 4.6 is necessary.

Example 4.7. Let E = {0, a, c, d,m, 1} be a lattice with a Hesse diagram as Figure 2. For any x, y ∈ E,
we define the operations ⊗ and ∼ on E as Table 13 and Table 14:
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⊗ 0 a c d m 1
0 0 0 0 0 0 0
a 0 a 0 0 a a
c 0 0 c c c c
d 0 0 c c c d
m 0 a c c m m
1 0 a c d m 1

Table 13

∼ 0 a c d m 1
0 1 d a a 0 0
a d 1 0 0 a a
c a 0 1 m d c
d a 0 m 1 d d
m 0 a d d 1 m
1 0 a c d m 1

Table 14

→ 0 a c d m 1
0 1 1 1 1 1 1
a d 1 d d 1 1
c a a 1 1 1 1
d a a m 1 1 1
m 0 a d d 1 1
1 0 a c d m 1

Table 15 0

a
d

c

m

1

Figure 2

Then E = (E,∧,⊗,∼, 0, 1) is a BEQ-algebra and the operation → is as Table 15. We can see
that E is not prelinear because, a → d = d and d → a = a but a ∨ d = m 6= 1. Also, we can see
d ∧ (a⊕ c) = d 
 (d ∧ a)⊕ (d ∧ c) = 0⊕ c = c.

Proposition 4.8. (PI(E),⊆) is a complete lattice where ” ∧ ” is the common intersection and for any
I1, I2 ∈ PI(E), I1 ∨ I2 = (I1 ∪ I2]P .

Proof. By Proposition 3.4(iv) and Theorem 4.2, the proof is clear.

Proposition 4.9. Let x, a, b ∈ E and I, I1, I2 ∈ PI(E). Then the following statements hold:

(i) (x]P = {a ∈ E|∃n ∈ N such that a 6 nx}.

(ii) If a 6 b, then (a]P ⊆ (b]P .

(iii) If a ∈ I, then (a]P ⊆ I.

(iv) I =
∨

a∈I

(a]P .

(v) If E is involutive, then (I ∪ {a}]P = {x ∈ E|x 6 na⊕ i, for some i ∈ I and n ∈ N}.

(vi) If E is involutive, then I1 ∨ I2 = (I1 ∪ I2]P = {x ∈ E|x 6 i1 ⊕ i2, for some i1 ∈ I1 and i2 ∈ I2}.

(vii) If E is involutive, then (a]P ∨ (b]P = (a⊕ b]P .

(viii) If E is involutive and prelinear, (a]P ∧ (b]P = (a ∧ b]P .

Proof. (i) Let I = {a ∈ E|∃n ∈ N such that a 6 nx}. We show that I is the smallest preideal of E
contains x. Suppose a 6 b and b ∈ I. Then there exists n ∈ N such that b 6 nx. From a 6 b, we have
a 6 nx and so a ∈ I. Hence, (I1) holds. Now, suppose a, b ∈ I. Then there exist n,m ∈ N, such that
a 6 nx and b 6 mx. By Proposition 2.1(ii) and (vii), we have ¬nx 6 ¬a and ¬a → b 6 (¬nx) → b.
Also, we have

a⊕ b = ¬a → b 6 (¬nx) → b 6 (¬nx) → (mx) = (nx)⊕ (mx) = (n+m)x.
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Thus a⊕ b ∈ I and I ∈ PI(E). By Proposition 2.1(ii), x 6 ¬x → x = 2x and so x ∈ I. Let J ∈ PI(E)
such that x ∈ J . Suppose a ∈ I. Then there exists n ∈ N such that a 6 nx. Since J is a preideal of E
and x ∈ J , by (I2), for any n ∈ N, we have nx ∈ J . Thus by (I1), we obtain a ∈ J and so (a]P = I.

(ii) First, we show that for any m ∈ N, ma 6 mb. Since a 6 b, by Proposition 2.1(vii), we have
¬b 6 ¬a and so ¬a → a 6 ¬b → b. Thus by induction on m, we can see that ma 6 mb. Now, suppose
x ∈ (a]P . Then there exists m ∈ N such that x 6 ma and so x 6 mb. Hence, (a]P ⊆ (b]P .

(iii) Suppose a ∈ I and x ∈ (a]P . There exists n ∈ N such that x 6 na. For any n ∈ N, na ∈ I and
by (I1), x ∈ I.

(iv) For any a ∈ I, by (i), we have (a]P ⊆ I and so
∨

a∈I

(a]P ⊆ I. Conversely, if a ∈ I, then a ∈ (a]P .

Thus a ∈
∨

a∈I

(a]P . Hence I =
∨

a∈I

(a]P .

(v) Let J = {x ∈ E|x 6 na⊕ i, for some i ∈ I and n ∈ N}. By Proposition 2.1(ii), for any i ∈ I we
have i 6 na ⊕ i and so I ⊆ J . Since E is good, by Propositions 2.2(iii) and 2.1(vii), a 6 a ⊕ i. Thus,
I ∪ {a} ⊆ J . Now, we prove that J is an (pre)ideal of E . Clearly, (I1) holds. Suppose x, y ∈ J . Then
there exist m,n ∈ N and i, j ∈ I such that x 6 na⊕ i and y 6 ma⊕ j. By Proposition 2.1(vi) and (vii)
we have

x⊕ y = ¬x → y 6 ¬(na⊕ i) → y 6 ¬(na⊕ i) → (ma⊕ j) = (na⊕ i)⊕ (ma⊕ j).

Since E is involutive, by Proposition 4.4, we have x⊕ y 6 (n+m)a⊕ i⊕ j. Since I is an (pre)ideal of E ,
i ⊕ j ∈ I and so x ⊕ y ∈ J . Hence, J is an (pre)ideal of E . Now, let A ∈ PI(E) such that I ∪ {a} ⊆ A.
By (I2), we get for any n ∈ N, na ∈ A. Suppose x ∈ J . Then there exist n ∈ N and i ∈ I such that
x 6 na⊕ i. Since I ⊆ A, we have na⊕ i ∈ A and by (I1), x ∈ A. Therefore, J ⊆ A.

(vi) Let B = {x ∈ E|x 6 i1 ⊕ i2 for some i1 ∈ I1 and i2 ∈ I2}. By Propositions 2.1(vii) and 2.2(iii),
for any i1 ∈ I1 and i2 ∈ I2, we have i1 6 i1 ⊕ i2 and i2 6 i1 ⊕ i2. Thus I1 ∪ I2 ⊆ B. Now, we show that
B ∈ PI(E). Obviously, (I1) holds. Let x, y ∈ B. Then there exist i1, j1 ∈ I1 and i2, j2 ∈ I2 such that
x 6 i1 ⊕ i2 and y 6 j1 ⊕ j2. By Proposition 2.1(vi) and (vii), we have

x⊕ y 6 ¬x → y = ¬(i1 ⊕ i2) → (j1 ⊕ j2) = (i1 ⊕ i2)⊕ (j1 ⊕ j2).

Since E is involutive, by Proposition 4.4, x⊕ y 6 (i1 ⊕ j1)⊕ (i2 ⊕ j2) and so B ∈ PI(E). Let D ∈ PI(E)
such that I1 ∪ I2 ⊆ D. Suppose x ∈ B. There exist i1 ∈ I1 and i2 ∈ I2 such that x 6 i1 ⊕ i2. By (I1)
and (I2), we obtain x ∈ D and so B ⊆ D.

(vii) Since a, b 6 a⊕ b, by (ii), we get (a]P , (b]P ⊆ (a⊕ b]P . For the converse, suppose x ∈ (a⊕ b]P .
By (i), there exists n ∈ N such that x 6 n(a ⊕ b). Since E is involutive, by Proposition 4.4, we have
x 6 n(a⊕ b) = na⊕ nb. Thus, by (iv), x ∈ (a]P ∨ (b]P and so (a⊕ b]P ⊆ (a]P ∨ (b]P .

(viii) Since a ∧ b 6 a and a ∧ b 6 b, by (ii), we have (a ∧ b]P ⊆ (a]P ∩ (b]P . For the converse, let
x ∈ (a]P ∩ (b]P . Then there exist n,m ∈ N, such that x 6 na and x 6 mb and so x 6 na ∧ mb. By
Proposition 4.6(ii), we get x 6 na∧mb 6 (n+m)(a∧b). Thus, x ∈ (a∧b]P and (a]P ∩(b]P ⊆ (a∧b]P .

Theorem 4.10. If E is involutive and prelinear, then (PI(E),∧,∨) is a distributive lattice.

Proof. Let I1, I2, I3 ∈ PI(E). Similar to any lattice, we should prove I1 ∧ (I2 ∨ I3) ⊆ (I1 ∧ I2)∨ (I1 ∧ I3).
Suppose a ∈ I1 ∩ (I2 ∧ I3). Then a ∈ I1 and a ∈ I2 ∧ I3. By Proposition 4.9(vi), there exist i2 ∈ I2 and
i3 ∈ I3 such that a 6 i2 ⊕ i3. By Proposition 4.6, we have a = a ∧ a 6 a ∧ (i2 ⊕ i3) 6 (a ∧ i2)⊕ (a ∧ i3).
Since a ∧ i2 ∈ I1 ∩ I2 and a ∧ i3 ∈ I1 ∩ I3, we have a ∈ (I1 ∧ I2) ∨ (I1 ∧ I3). Therefore, (PI(E),∧,∨) is a
distributive lattice.

Proposition 4.11. Let E be involutive and prelinear. For any I1, I2 ∈ PI(E), we define a binary
operation as I1 → I2 = {a ∈ E|I1 ∩ (a]P ⊆ I2}. Then I1 → I2 ∈ PI(E).

Proof. Let B = {a ∈ E|I1∩ (a]P ⊆ I2}. Since 0 ∈ (0]P and 0 ∈ I1, then 0 ∈ B and B is non-empty. Now,
suppose b 6 a and a ∈ B. By Proposition 4.9(ii), we have (b]P ⊆ (a]P and so I1 ∩ (b]P ⊆ I1 ∩ (a]P ⊆ I2.
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Thus (I1) holds.
Let a, b ∈ B. Then I1∩(a]P ⊆ I2 and I2∩(b]P ⊆ I2. By Proposition 4.8, we get (I1∩(a]P )∨(I1∩(b]P ) ⊆ I2.
By Theorem 4.10 and Proposition 4.9(vii), we obtain I1 ∩ (a ⊕ b]P = I1 ∩ ((a]P ∨ (b]P ) = (I1 ∩ (a]P ) ∨
(I1 ∩ (b]P ) ⊆ I2. Hence, a⊕ b ∈ B and (I2) is satisfied.

A Heyting algebra [4] is an algebraic structure (H,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0) which for any
x, y, z ∈ H, satisfies the following conditions:

(H1) (H,∧,∨) is a distributive lattice.

(H2) x ∧ 0 = 0 and x ∨ 1 = 1.

(H3) x → x = 1.

(H4) (x → y) ∧ y = y and x ∧ (x → y) = x ∧ y.

(H5) x → (y ∧ z) = (x → y) ∧ (x → z) and (x ∨ y) → z = (x → z) ∧ (y → z).

Theorem 4.12. If E is involutive and prelinear, then (PI(E),∧,∨,→, {0}, E) is a Heyting algebra where
∧ and ∨ are the same as Proposition 4.8.

Proof. From Theorem 4.10, (H1) holds. It is clear that (H2) is satisfied.
Let I1, I2, I3 ∈ PI(E). For any a ∈ E, I1 ∩ (a]P ⊆ I1. Thus, I1 → I1 = E and (H3) holds.
Obviously, (I1 → I2) ∧ I2 ⊆ I2. Let a ∈ I2. Then (a]P ⊆ I2 and so I1 ∩ (a]P ⊆ (a]P ⊆ I2. Thus,
a ∈ I1 → I2. Hence, I2 ⊆ (I1 → I2) ∧ I2. Now, let a ∈ I1 ∧ (I1 → I2). Then a ∈ I1 and a ∈ I1 → I2. By
Proposition 4.9(iii), (a]P ⊆ I1 and so I1 ∩ (a]P = (a]P ⊆ I2. Thus, a ∈ I2 and so a ∈ I1 ∩ I2. Conversely,
suppose a ∈ I1 ∧ I2. Then a ∈ I1 and a ∈ I2. Thus, a ∈ I1 ∩ (a]P ⊆ (a]P ⊆ I2 and so a ∈ I1 → I2. Hence,
a ∈ (I1 → I2) ∧ I1. Therefore, I1 ∧ (I1 → I2) = I1 ∧ I2 and so (H4) is satisfied.
Let a ∈ I1 → (I2 ∧ I3). Then I1 ∩ (a]P ⊆ I2 ∧ I3 and so I1 ∩ (a]P ⊆ I2 and I1 ∩ (a]P ⊆ I3. Thus
a ∈ I1 → I2 and a ∈ I1 → I3. Hence, I1 → (I2 ∧ I3) ⊆ (I1 → I2) ∧ (I1 → I3). Conversely, suppose
a ∈ (I1 → I2) ∧ (I1 → I3). Then I1 ∩ (a]P ⊆ I2 and I1 ∩ (a]P ⊆ I3. Since (PI(E),∧,∨) is a lattice, we
get I1 ∩ (a]P ⊆ I2 ∧ I3. Thus, a ∈ I1 → (I2 ∧ I3) and so (I1 → I2) ∧ (I1 → I3) ⊆ I1 → (I2 ∧ I3).
Let a ∈ (I1 ∨ I2) → I3. Then (I1 ∨ I2) ∩ (a]P ⊆ I3. By Proposition 4.10, (I1 ∩ (a]P ) ∨ (I2 ∩ (a]P ) =
(I1 ∨ I2) ∩ (a]P ⊆ I3. Thus, I1 ∩ (a]P ⊆ I3 and I2 ∩ (a]P ⊆ I3. Hence, a ∈ I1 → I3 and a ∈ I2 → I3
and so a ∈ (I1 → I3) ∩ (I2 → I3). Conversely, suppose a ∈ (I1 → I3) ∩ (I2 → I3). Then I1 ∩ (a]P ⊆ I3
and I2 ∩ (a]P ⊆ I3. By Proposition 4.8, we obtain (I1 ∩ (a]P ) ∨ (I2 ∩ (a]P ) ⊆ I3. From Proposition 4.10,
(I1 ∨ I2) ∩ (a]P ⊆ I3. Hence, (H5) holds. Therefore, (PI(E),∧,∨,→, {0}, E) is a Heyting algebra.

Corollary 4.13. If E is involutive and prelinear, then for any I, J ∈ PI(E), we have:

(i) (I ∧ J) → K = I → (J → K).

(ii) I ∧ (I → J) = J ∧ (J → I).

Proof. (i) Let a ∈ (I ∧J) → K. Then (a]P ∩ I ∩J ⊆ K. Now, suppose x ∈ (a]P ∩ I, then (x]P ⊆ (a]P ∩ I
and so (x]P ∩ J ⊆ (a]P ∩ I ∩ J ⊆ K. Thus, we get that (a]P ∩ I ⊆ J → K and so a ∈ I → (J → K).
Conversely, let a ∈ I → (J → K). Then (a]P∩I ⊆ J → K. Thus we have (a]P∩I∩J ⊆ (a]P∩I ⊆ J → K.
For any x ∈ (a]P ∩ I ∩J , we have (x]P = (x]P ∩J ⊆ K and so x ∈ K. Hence, we obtain (a]P ∩ I ∩J ⊆ K
and so a ∈ (I ∩ J) → K. Therefore, (I ∧ J) → K = I → (J → K).
(ii) Let a ∈ I∧(I → J). Then a ∈ I and so (a]P ⊆ I. Also, since a ∈ I → J , we have (a]P ∩I = (a]P ⊆ J .
Thus, we get a ∈ J and also a ∈ J → I. By the similar way, the proof of converse is clear.

Notation. For any I ∈ PI(E), we denote Ic = I → {0}.

Proposition 4.14. Let I ∈ PI(E). If E is involutive and prelinear, then

Ic = {a ∈ E| a ∧ i = 0, for any i ∈ I}.
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Proof. Let B = {a ∈ E| a ∧ i = 0, for any i ∈ I} and a ∈ B. Then for any i ∈ I, a ∧ i = 0. By
Propositions 4.9(iv), (viii), and 4.10, we have

I ∩ (a]P =
∨

i∈I

(i]P ∩ (a]P =
∨

i∈I

((i]P ∩ (a]P ) =
∨

i∈I

((i ∧ a]P ) =
∨

i∈I

(0]P = {0}. (4.1)

Thus, a ∈ Ic, and so B ⊆ Ic. Conversely, let a ∈ Ic. Then I ∩ (a]P = {0}. By (4.1), we get for any i ∈ I,
i ∧ a = 0 and so Ic ⊆ B. Therefore, Ic = B.

Corollary 4.15. Let E be involutive and prelinear. Then for any a ∈ E, ((a]P )
c = {x ∈ E|x ∧ a = 0}.

Proposition 4.16. Let I ∈ PI(E). If E is involutive and prelinear, then (Ic)c = I.

Proof. Let a ∈ (Ic)c. Then by Proposition 4.14, for any x ∈ Ic, we have a ∧ x = 0. On the other hand
for any i ∈ I, x ∧ i = 0, too. Thus, a ∈ I and so (Ic)c ⊆ I. Conversely, let a ∈ I. Then for any x ∈ Ic,
we have a ∧ x = 0. Hence we get a ∈ (Ic)c and so I ⊆ (Ic)c. Therefore, I = Icc.

An MV -algebra [6] is an algebraic structure (M, ∗,c , 0) of type (2, 1, 0) which for any a, b ∈ M , it satisfies
in the following conditions:
(MV 1) (M, ∗, 0) is a commutative monoid.
(MV 2) (ac)c = a.
(MV 3) 0c ∗ a = 0c.
(MV 4) (ac ∗ b)c ∗ b = (bc ∗ a)c ∗ a.

Theorem 4.17. If E is involutive and prelinear, then (PI(E), ∗,c , {0}) is an MV -algebra where for any
I, J ∈ PI(E),

I ∗ J = (Ic ∧ Jc)c = (Ic ∩ Jc)c.

Proof. First we show (PI(E), ∗, E) is a commutative monoid. Let I, J,K ∈ PI(E). Then (I ∗ J) ∗
K = ((Ic ∧ Jc) ∧ Kc)c and I ∗ (J ∗ K) = (Ic ∧ (Jc ∧ Kc))c. Since ∧ is associative, we have ∗ is
associative. Also, we can see that I ∗ J = (Ic ∩ Jc)c = (Jc ∩ Ic)c = J ∗ I and so ∗ is commutative. Since
{0}c = E, by Proposition 4.16, I ∗ {0} = (Ic)c = I and so {0} is the identity element of PI(E). Thus
(MV 1) is satisfied. Also, by Proposition 4.16, we can see that (MV 2) holds. Since {0}c = E, we get
{0}c ∗ I = E ∗ I = (Ec ∧ Ic)c = ({0} ∩ Ic)c = {0}c = E. Thus (MV 3) holds.
From Corollary 4.13, we have

(Ic ∧ J)c = (Ic ∧ J) → {0} = Ic → (J → {0}) = Ic → Jc

and so

(Ic ∗J)c ∗J = ((I ∧Jc)c ∧Jc)c = (Jc ∧ (Jc → Ic))c = (Ic ∧ (Ic → Jc))c = (Ic ∧ (Ic ∧J)c)c = (Jc ∗ I)c ∗ I.

Therefore, (MV 4) holds and proof is complete.

Corollary 4.18. If E is involutive and prelinear, then (PI(E),∨,∧,→, {0}, E) is BL, BE, MTL, and
hoop-algebras.

In the following example, we show that for an involutive and prelinear EQ-algebra, (PI(E),∨,∧,c , {0}, E)
is not a Boolean algebra.

Example 4.19. Let E be an EQ-algebra as in Example 3.2(ii). By some calculations, we can see
(a]P = {0, a}, ((a]P )

c = (b]P = {0, b}, and (a]P ∧ (b]P = {0}. But (a]P ∨ (b]P = {0, a, b, c} 6= E.
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5 Conclusions and future works

In this paper, the notion of (pre)ideal in BEQ-algebras was defined and proved that the equivalence
relation induced by an ideal in a good BEQ-algebra is a congruence relation. The generated preideal by
a subset was defined and proved that the family of all preideals of an EQ-algebra is a complete lattice,
distributive lattice and Hyting algebra. Also, it proved that for a prelinear IEQ-algebra, the family of
all preideals forms an MV -algebra. Since every good EQ-algebra is an equality algebra, most results of
this paper hold for equality algebras, too. In [1, 5, 12] different kinds of ideals in hoop, basic algebras
and BL-algebras were studied. In the future works, we will study the notions of some kinds of ideals in
EQ-algebras and we will try to characterize the generated ideals in EQ-algebras.
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