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Abstract— This research provides a novel intelligent control structure for 4D nonlinear 

hyperchaotic systems. This is a hybrid design containing a new interval type-2 fuzzy fourfold 

function-link brain emotional controller and a smooth robust controller. It comprises a fuzzy 

inference system and three subnetworks. The subnetworks are a new fourfold function-link 

network, a type-2 fuzzy amygdala network and a type-2 fuzzy prefrontal cortex network that 

decrease the synchronization errors efficiently, follow the reference signal well and achieve good 

performance. Two Lyapunov stability functions are utilized to get the adaptive laws, and they are 

applied to online tune the parameters of the system. The proposed design is used to synchronize 

two 4D nonlinear hyperchaotic systems and the simulation results are given to demonstrate its 

superiority and effectiveness. 

Keywords— Interval type-2 fuzzy system, fourfold function-link network, fuzzy brain emotional 

controller, 4D nonlinear hyperchaotic system 

 

1. Introduction 

 

Over the years, chaos studies had a strong influence on the development of global science and 

technology, in which chaotic synchronization is one of the interesting topics that attract many scholars 

(Hsu et al. 2009; Sothmann et al. 2012; Sun et al. 2013; Vaidyanathan and Rasappan 2014; Wang et al. 

2019a; Wu et al. 2017). Synchronization of chaotic systems is described as the phenom that happens 

when a master system controls a slave system by tuning a given characteristic of their motion (Lin and 

Huynh ; Wang et al. 2019b). Nowadays, various chaotic and hyperchaotic systems have been investigated 

in many fields (Chen et al. 2018; Panahi et al. 2019; Pham et al. 2017). Particularly, the 4D hyperchaotic 

systems comprising complex shapes of equilibrium points are studied in recent years (Rakheja et al. 
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2019; Sambas et al. 2018; Vaidyanathan et al. 2018). The first Lyapunov exponent is generally used to 

define the disorders of chaotic systems. Moreover, the studies of chaos with hidden attractions are 

significant since they can create undesirable and harmful problems with minor changes in dynamics such 

as engine system (Marzbanrad and Babalooei 2016), airplane system (Andrievsky et al. 2018), 

transportation system (Adeli and Jiang 2008), electro-mechanical system (Xue et al. 2019), radar system 

(Beal et al. 2016), and bridge system (Ni et al. 2019). Recently, many control systems have been proposed 

for nonlinear chaotic systems to achieve good control performance such as an adaptive fuzzy control 

(Sambas et al. 2020), a passive control (Sambas et al. 2019a), an active backstepping control (Sambas et 

al. 2021), an adaptive control (Sambas et al. 2019b), an integral sliding mode control (Vaidyanathan et 

al. 2019), a double function-link brain emotional control (Huynh et al. 2020c), a modified grey wolf-

based multilayer type-2 asymmetric fuzzy control (Le et al. 2020b), a self-organizing interval type-2 

fuzzy asymmetric cerebellar model articulation control (Le et al. 2020a), a wavelet interval type-2 fuzzy 

brain emotional control (Huynh et al. 2020a), and a brain-imitated neural network control (Lin et al. 

2021). 

A function-link network (FLN) is a kind of feed-forward network model that is efficiently applied 

for function approximation with quick convergence speed and less computational load (Patra and Pal 

1995). In the past year, many scholars have used the FLN in their researches to achieve better results 

(Huynh et al. 2019; Lin and Huynh ; Zhou et al. 2018). A single FLN was used to adjust the weights for 

two independent networks in a brain emotional learning network (BELN) that are the amygdala and 

orbitofrontal cortex networks. However, it is necessary to attain the BELN's weights precisely and their 

values separately. Recently, a dual FLN was proposed to improve this drawback (Huynh and Lin 2019; 

Lin et al. 2021). In this research, a new fourfold FLN is designed for the proposed type-2 fuzzy BELN's 

structure. 

LeDoux proposed a brain emotional learning network (BELN), which is a computational 

simulation system describing the data processing scheme of the mammal brain (LeDoux 1991). A BELN 

connects a stimulus to the equivalent emotional reaction appearing in an amygdala of a brain. The brain 

has an amygdala and an orbitofrontal cortex so that an output of the BELN is associated among the two 

networks, which influence each other. For that reason, BELN still works well with system uncertainty 

with fast learning speeds and good approximation capabilities, and it can reduce tracking errors 

effectively. Over the years, some remarkable studies have applied BELN in different fields (Dashti et al. 

2017; Hsu et al. 2016; Kong et al. 2019; Le et al. 2018).  

So far, intelligent controllers based on type 1 (T1) and type 2 (T2) platforms have been developed 

for different applications in different fields (Boubellouta et al. 2019; Lin and Huynh 2019; Mendel et al. 
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2019; Zhao and Lin 2019). Since T1-fuzzy logic systems (FLSs) is required to have membership 

functions that are well defined, it cannot thoroughly handle the large uncertainty of inputs and parameters 

of nonlinear systems well. To overcome this drawback, T2-FLS and interval T2-FLS are typically used 

as they have general expanded features than T1-FLS, more freely generated for better control 

performance and improved response to uncertain input of membership functions (Le 2019; Rong et al. 

2018). In order to design effective networks, many researches have come up with solutions that combine 

different efficient techniques (Lin et al. 2018; Wang et al. 2017), additional functional networks (Ding 

et al. 2019; Huynh et al. 2020b; Huynh et al. 2019) and extra algorithms (Huynh et al. 2018; Rahmani et 

al. 2018; Ravi et al. 2017) to build networks automatically. 

This study develops a new more efficient interval type-2 fuzzy fourfold function-link brain 

emotional controller (IT2FFFLBC) for 4D nonlinear hyperchaotic systems. The proposed IT2FFFLBC 

control system includes a IT2FFFLBC and a smooth robust controller. The IT2FFFLBC is used as the 

main controller and a smooth robust controller is used to eliminate the approximate error term and to 

warrant the system stability. The main contributions of this research are summarized as follows: 1) The 

proposed IT2FFFLBC comprises a set of fuzzy inference rules and three subnetworks that are the 

fourfold function-link network, the type-2 fuzzy prefrontal cortex network, and the type-2 fuzzy 

amygdala network to efficiently reduce the synchronization error and achieve good performance. (2) A 

new fourfold FLN is designed to tune the particular weights for the type-2 fuzzy structures of the 

orbitofrontal cortex and amygdala of the proposed IT2FFFLBC. (3) Effective adaptive learning laws for 

updating the system parameters effectively are obtained from two Lyapunov functions, and they are also 

used to prove the stability of the system. (4) Finally, the simulation results and some comparisons in root 

mean square error with former studies for a 4D hyperchaotic Lorenz–Lu system and a 4D hyperchaotic 

Rikitake two-wing dynamo system have shown the effectiveness and advantage of the proposed control 

system. 

2. Theoretical Problems 

The master system (MS) for a nth order 4D nonlinear hyperchaotic system is defined as:  
( ) ( ) ( ( ))n

MS MS MS
t tx f x    (1) 

The slave system (SS) is given as: 
( ) ( ) ( ( ) ( ) ( ))n

SS SS SS SS SS
t t t t  y f y u n    (2) 

where  

1 2( ) ( ),  ( ), ,  ( ) m

MS MS MS MSm
t x t x t x t  x @ K  is the output for the MS. 

1 2( ) ( ),  ( ), ,  ( ) m

SS SS SS SSm
t y t y t y t  y @ K  is the output for the SS. 

( 1)( ) ( ),  ( ), ,  ( )
T

T T n T mn

MS MS MS MSt t t t
   x x x x&@ K  is the state for the MS. 
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( 1)( ) ( ),  ( ), ,  ( )
T

T T n T mn

SS SS SS SSt t t t
   y y y y&@ K  is the state for the SS. 

( ( )) , ( ( ))m m

MS MS SS SS
t t f x f y  are the unknown bounded nonlinear functions. 

 1 2( ) ( ), ( ), , ( )
T m

SS SS SS SSm
t u t u t u t u @ K  is the control input for the SS. 

 1 2( ) ( ),  ( ), , ( )
T m

SS SS SS SSm
t n t n t n t n K  is the unknown bounded external noise for the SS, where m 

is the number of outputs and inputs of the system, and the subscript letters SS and MS indicate the slave 

system and master system, respectively. 

The synchronization error state is defined as follows: 

 1 2( ) ( ) ( ) ( ), ( ), , ( )
T m

Sync SS MS m
t t t e t e t e t e y x@ @ K   (3) 

The error vector is then defined as: 
( 1)( ) ,  , ,  

T
T T n T mn

SS Sync Sync Synct
   & &&@ Ke e e e    (4) 

If the unknown bounded nonlinear functions ( ( )), ( ( ))
MS MS SS SS

t tf x f y , and the external noise ( )
SS

tn  of 

the SS are known, the ideal controller is then determined as: 
* ( )( ) ( ( ) ( ) ( )n T

IDC SS SS SS SS SS
t t t t    u f y y n K e    (5) 

where  1 2, , ,
T mn m

n

@ KK K K K  is the gain matrix with real values. 

Inserting (5) into (2), attain the following error dynamic condition 
( ) 0n T

Sync SS e K e    (6) 

If K  is suitably determined to satisfy the Hurwitz stability criterion to produce the roots on the left side 

of the complex plane, i.e. lim ( ) 0
SS

t
t


e  . Due to ( ( )), ( ( ))

MS MS SS SS
t tf x f y  and ( )

SS
tn  are unknown, 

* ( )
IDC

tu  in (5) is unattainable. As a result, an IT2FFFLBC is used to imitate * ( )
IDC

tu . 

3. Interval Type-2 Fuzzy Fourfold Function-Link Brain Emotional Controller 

1) Fourfold Function-Link Network 

 

Fig. 1. Fourfold FLN 
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This study proposes a new fourfold FLN (FFLN) to expand the processing ability of the 

IT2FFFLBC. The main FFLN duty is to enhance accuracy for lower and upper weights of the type-2 

fuzzy orbitofrontal cortex and amygdala networks of the proposed structure. The FFLN structure is 

displayed in Fig. 1, where the FFLN operates on input variables by producing a linearly independent set. 

The proposed FFLN uses the cosine and sine functions because of their simple and clear functions and 

rapidly computed. Define  1 2      
T N

N
I I I I @ K , the inputs are then allocated in the extended space 

as follows:  1 2      
T M

M
    Φ K , where  and M N  are respectively the number of the outputs 

and the total number of input signals. Particularly, if the input is 
1 2[ , ]T

I II  , then

 1 1 1 21, , cos( ), sin( ), ,I I I I   Φ  2 2 1 2cos( ), sin( ),I I I I     . Next, the FFLN outputs are 

determined as: 

1 1

1

ˆ
M

T

k k mk m Mk M mk m k

m

q q q q


          K Kw q   (7)  

1 1

1

ˆ
M

T

k k mk m Mk M mk m k

m

q q q q


          K Kw q   (8)  

1 1

1

ˆ
M

T

k k mk m Mk M mk m k

m

p p p p


          K Kv p   (9) 

1 1

1

ˆ
M

T

k k mk m Mk M mk m k

m

p p p p


          K Kv p   (10) 

for 1,2, , ,  1,2, , ,m M k L K K  

where m
   is the -thm   function expansion output, ˆ ˆ ˆ ˆ, , , and k k k kv w  v w   are the output of FFLN, 

, , , and 
mk mk mk mk

p q p q   are the connective weight among ˆ ˆ ˆ ˆ, , ,  and 
k k k k m

v w  v w  , and connective weight 

vectors are defined as 

 1 , , , , M

k k mk Mkp p p K Kp ,  (11)  

1 , , , , M

k k mk Mk
p p p   K Kp ,  (12)  

 1 , , , , M

k k mk Mkq q q   q   (13) 

1 , , , , M

k k mk Mk
q q q     q   (14) 
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2)  Interval Type-2 Fuzzy Fourfold Function-Link Brain Emotional Controller 

 

Fig. 2. Structure of IT2FFFLBC 

The structure of IT2FFFLBC is shown in Fig. 2, which is composed of five layers: input layer, fuzzy 

membership function layer, output weight layer using FFLN, amygdala- orbitofrontal layer and output 

layer. The signal propagation in each layer is described below: 
 

Layer 1: Input layer 

1[ , , , ]T N

i N
I I I L LI , for 1,  2,  ...,  i N  (15) 

where i
I  is the -thi  input. 

Layer 2: Fuzzy membership function layer 
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2

2

( )
exp

2

i ik
ik ik

ik

I m
a o


  

   
 

, for 1,2,...,k L  (16) 

2

2

( )
exp

2

i ik
ik ik

ik

I m
a o


  

   
 

, for 1,2,...,k L  (17) 

where ,   and ,  
ik ik ik ik

a o a o  are the upper and lower values for the type-2 Gaussian membership function. 

ik
  is the variance, 

ik
m  is the mean, and L  is the number of layers. 

1

N

k ik

i

a a


  (18) 

1

N

k ik

i

o o


  (19) 

1

N

k ik

i

a a


  (20) 

1

N

k ik

i

o o


  (21) 

The proposed structure utilizes the following fuzzy inference rules: 

1 1 2 2

1 1 2 2

ˆIf  is  ,  is , ,  and  is ,  then , for 1, 2, ,
:

ˆIf  is  ,  is , ,  and  is ,  then , for 1, 2, ,

T

k k N Nk k kk

T

k k N Nk k k

I a I a I a v i N
R

I o I o I o w k L

  


 

p

q

L L

L L




  (22) 

Layer 3: Output weight layer using FFLN 

1
ˆ ˆ ˆ[ , , , , ]T L

k L
w w w w K K   (23) 

1
ˆ ˆ ˆ[ , , , , ]T L

k Lw w w w K K   (24) 

1̂
ˆ ˆ[ , , , , ]T L

k L
v v v K Kv  (25) 

1̂
ˆ ˆ[ , , , , ]T L

k Lv v v K Kv  (26) 

where ,   and ,  w w v v  are respectively the weights of orbitofrontal and amygdala; and they are defined 

as: 

11 1 11 1

1

1

     ˆ
           

ˆ     

           

ˆ    

m M

T

k k mk Mk m

L ML mL ML

q q qw

w q q q

w q q q

     
    
    
           
    
         

Φ

L L

M M O M O M M

L L

M MM O M O M

L L

w q   (27) 



 8 

1 11 1 1 1

1

1

ˆ      

           

ˆ     

           

ˆ    

m M

T

k k mk Mk m

L mL ML ML

w q q q

w q q q

q q qw

     
     
     
             
     
         

Φ

L L

M M O M O M M

L L

M M O M O M M

L L

w q   (28) 

11 1 11 1

1

1

    ˆ
           

ˆ    

           

ˆ    

m M

T

k k mk Mk m

L ML mL ML

p p pv

v p p p

v p p p

     
    
    
           
    
         

Φ

L L

M M O M O M M

L L

M MM O M O M

L L

v p  (29) 

1 11 1 1 1

1

1

ˆ     

           

ˆ    

           

ˆ    

m M

T

k k mk Mk m

L mL ML ML

v p p p

v p p p

p p pv

     
     
     
             
     
         

Φ

L L

M M O M O M M

L L

M M O M O M M

L L

v p  (30) 

where  1, , , ,
T

m M
   Φ L L ,  

11 1 1

1 1

1

   

           

, , , ,    

           

   

m M

TT

k L k mk Mk

L mL ML

p p p

p p p

p p p

 
 
 
  
 
 
  

L L

M O M O M

K K L L

M O M O M

L L

p p p p , 

11 1 1

1 1

1

   

           

, , , ,    

           

   

m M

T
T

k L k mk Mk

L mL ML

p p p

p p p

p p p

 
 
 
      
 
 
  

L L

M O M O M

K K L L

M O M O M

L L

p p p p ,  

11 1 1

1 1

1

   

           

, , , ,    

           

   

m M

TT

k L k mk Mk

L mL ML

q q q

q q q

q q q

 
 
 
  
 
 
  

L L

M O M O M

K K L L

M O M O M

L L

q q q q  , and 

11 1 1

1 1

1

   

           

, , , ,    

           

   

m M

T
T

k L k mk Mk

L mL ML

q q q

q q q

q q q

 
 
 
      
 
 
  

L L

M O M O M

K K L L

M O M O M

L L

q q q q . 

Layer 4: Amygdala- orbitofrontal layer 
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1 1

1 1

L L
l l T

k k k k
l k k
k L L

l l

k k

k k

a v a

a

a a

 

 

 
 

 

Φp

  (31) 

1 1

1 1

L L
r r T

k k k k
r k k
k L L

r r

k k

k k

a v a

a

a a

 

 

 
 

 

Φp

  (32) 

1 1

1 1

L L
l l T

k k k k
l k k
k L L

l l

k k

k k

o v o

o

o o

 

 

 
 

 

Φq

  (33) 

1 1

1 1

L L
r r T

k k k k
r k k
k L L

r r

k k

k k

o v o

o

o o

 

 

 
 

 

Φq

  (34) 

where l

k
a , r

k
a , l

k
o  and r

k
o  are calculated by the KM algorithm (Mendel 2011), and Rp and Lp are the right 

and left switch points 

,   

,   

k pl

k

k p

a k L
a

a k L

  
  (35) 

,   

,   

k pr

k

k p

a k R
a

a k R

  
  (36) 

,   

,   

k pl

k

k p

o k L
o

o k L

  
  (37) 

,   

,   

k pr

k

k p

o k R
o

o k R

  
  (38) 

2

l r

k k
k

a a
a


   (39) 

2

l r

k k
k

o o
o


   (40) 

a

k k k
A a z  (41) 

where a

k
z  is the kth output weight of amygdala and k

A  is the kth amygdala output. 

o

k k k
O o z   (42) 
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where o

k
z  is the kth output weight of orbitofrontal cortex and 

k
O  is the kth orbitofrontal output. 

Layer 5: Output layer 

The proposed IT2FFFLBC is shown in Fig. 2, which is determined as:  

2

a o

IT FDFLBEC
   u A O az oz  (43) 

 2 1where ,WT FDFLBEC k Lu u u K Ku  
1 , ,  z ,  za a a a

k L
z   K Kz , and 

1 , ,  z ,  zo o o o

k L
z   K Kz , 

1 1 , ,  ,  
T

a a a

k k L La z a z a z   K KA  and 1 1 , ,  ,  
T

o o o

k k L Lo z o z o z   K KO . 

 

4. Online Learning Laws and Convergence Analysis 

 

Fig. 3. Block diagram of synchronization for 4D nonlinear hyperchaotic systems using the proposed 

IT2FFFLBC 

The ideal controller in (5) theoretically makes the system stable. However, the nonlinear functions 

( ( )), ( ( ))
MS MS SS SS

t tf x f y  and the external noise ( )
SS

tn  are unobtainable accurately in general. As a result, 

(5) is unobtainable, so the proposed IT2FFFLBC is used for 4D nonlinear hyperchaotic systems as 

presented in Fig. 3. The total control effort is defined as: 

IT2FFFLBC SRC u u u  (44) 

where IT2FDFLBCu  is the main controller that imitates *

IDC
u . SRC

u  is a smooth robust compensator which 

spurns the dissimilarity between *

IDC
u and the proposed IT2FFFLBC. Suppose that we obtain an optimal 
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controller, IT2FF

*

FLBCu , that mimics an ideal controller *

IDC
u  in (5), then 

* *

IT2FFFLBC

* * * *a o

IDC
    u u a z o z   (45) 

where   is the minimum error between 
*

IDC
u  and IT2FF

*

FLBCu , and assume it is bounded; 

* * * *, ,  and a oa o  z z  are respectively optimal parameters of , ,  and a oa o  z z . However, IT2FD

*

FLBCu  cannot be 

obtained, thus an online estimation of IT2FFFLBC, IT2FFFLBCû , is applied to estimate IT2FF

*

FLBCu . Using 

(43), the control law (44) becomes 

SRCIT2FFF SLBC RC
ˆ ˆ ˆˆ ˆa o    u u u az oz u  (46) 

where ˆ ˆ ˆ ˆ, ,  and a oa o  z z  are respectively estimations of the optimal parameters * * * *, ,  and a oa o  z z . The 

estimation error, u%, is then calculated by subtracting (46) from (45): 

* * *ˆ ˆaT aT oT oT

IDC SRC
      % % %% %u u u z a z a z o z o+ u  (47) 

where * ˆ %a a a  , * ˆa a a %z z z  , * ˆ %o o o  and * ˆo o o %z z z  . The expansion of and % %a o   in the 

Taylor series is attained as (Slotine and Li 1991): 

k k k k

k k k k

k k k k

k k k k

       


      

% %%% % % %%

% %%% % % %%

T T T T T T T

m p p q q a

T T T T T T T

m p p q q o

a = a m a a a p a p a q a q H

o = o m o o o p o p o q o q H

 

 

 

 
 (48) 

where  and Hna oH H  are vectors with high-order terms, and 
ka

m
, 

ka


,
k

a
 , 

k

k

a
p

,
k

k

a
p

, 
k

k

a
q

,

k

k

a
q

, 
ko

m
, 

ko


,
k

o
 ,

k

k

o
p

, 
k

k

o
p

,
k

k

o
q

 and 
k

k

o
q

 are determined as: 

   
{

11

0, 0, , , ,0, 0

T

k k k

k Nk L k Nk N

a a a

m m   

             
L L L1442 443m

 (49) 

   
{

11

0, 0, , , ,0, 0

T

k k k

k Nk L k Nk N

a a a

    

             
L L L1442 443

 (50) 

   
{

11

0, 0, , , ,0, 0

T

k k k

k Nk L k Nk N

a a a

    

            
L L L1442 443

 (51) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

a a a

p p   

            
L L L1442 443p

 (52) 
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   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

a a a

p p   

      
       

L L L1442 443p
 (53) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

a a a

q q   

            
L L L1442 443q

 (54) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

a a a

q q   

      
       

L L L1442 443q
 (55) 

   
{

11

0, 0, , , ,0, 0

T

k k k

k Nk L k Nk N

o o o

m m   

             
L L L1442 443m

 (56) 

   
{

11

0, 0, , , ,0, 0

T

k k k

k Nk L k Nk N

o o o

    

             
L L L1442 443

 (57) 

   
{

11

0, 0, , , ,0, 0

T

k k k

k Nk L k Nk N

o o o

    

            
L L L1442 443

 (58) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

o o o

p p   

            
L L L1442 443p

 (59) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

o o o

p p   

      
       

L L L1442 443p
 (60) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

o o o

q q   

            
L L L1442 443q

 (61) 

   
{

11

0, 0, , , , 0, 0

T

k k k

k k Mk L k Mk M

o o o

q q   

      
       

L L L1442 443q
 (62) 

 

Rewriting (48) gives 

ˆ
k k k kk k k k

       % %%% % %%* T T T T T T T

m p p q q aa a + a m a a a p a p a q a q H    (63) 

* ˆ
k k k kk k k k

       % %%% % %%T T T T T T T

m p p q q oo o+ o m o o o p o p o q o q H     (64) 

Inserting (48), (63) and (64) into (47), yields 
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   
   

ˆ ˆ ˆ

ˆ ˆ ˆ ( )

k k k k

k k k k

aT aT aT

k k k k

oT oT oT

k k k k AE SRC
t

      

       

% %%% % % %% %

% %%% % %% %

T T T T T T T

m p p q q

T T T T T T T

m p p q q

u z a z a m + a a z a p a p a q a q

z o z o m + o o z o p o p o q o q u

 

 

 

  




 (65) 

where the approximation error, 

 
 

*

*

( )

           ,

k k k k

k k k k

aT a T

AE k k k k

oT o T

k k k k

t        

       

T T T T T T T

m p p q q a

T T T T T T T

m p p q q o

z a m a a a p a p a q a q + z H

z o m o o o p o p o q o q  z H

 

 

  

  

% %%% % %% %

% %%% % %% %
 

is supposedly bounded by 
*( )AE t   , where *  is a positive constant. 

This research uses the high-order sliding mode for improving the control system. Define the sliding 

surface as: 

1 2

(1) ( 3) ( 2) ( 1)

1( ) n n n

Sync Sync Sync Syncn Sn ynct
  

   @ Ks e e e e + eK K K K   (66) 

Then, taking the derivative of (66), gives 

(2) (

1 2 1

2) ( 1) ( )

( )

( )

       

n n n

Sync Sync Sync Synn n

T

c Sync

n

Sync SS

t



    

 

& & KK K K K

K

s e e e e + e

e e
  (67) 

Equation (67) is represented by using (45) and (47) as: 

( ) * ( ) n

Sync S

T

IDCSt   &s e eK u u  (68) 

Theorem 1: Consider the nth order 4D master-slave nonlinear hyperchaotic systems respectively 

given in (1) and (2). The proposed IT2FFFLBC control system is given in (44), in which IT2FFFLBCu  is 

determined in (44). The online learning laws are specified as (69)-(77) and the smooth robust 

compensation controller is given in (78). Then, the proposed IT2FFFLBC control system attains the 

robust stability. 

 ˆ ˆ ˆ( )
k k

a o

k k
s t &

p p pp a z o z  (69) 

 ˆ ˆ ˆ( )
k k

a o

k ks t &
p p pp a z o z  (70) 

 ˆ ˆ ˆ( )
k k

a o

k k
s t &

q q qq a z o z   (71) 

 ˆ ˆ ˆ( )
k k

a o

k ks t &
q q qq a z o z  (72) 

ˆˆ ( )a

a T
t&

z
z s a  (73) 

ˆˆ ( )o

o T
t &

z
z s o   (74) 
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ˆ ˆ ˆ( )T a o
t    

&
m m mm s a z o z  (75) 

ˆ ˆ ˆ( )T a o
t    

& s a z o z    (76) 

ˆ ˆ ˆ( )T a o
t    

&
s a z o z    (77) 

ˆ sgn( ),  if      (a)
 

ˆ ,  if               (b)
SRC





  
 

s s
u

s s
  (78) 

where , , , , , , , ,a o        p p q q mz z    are the positive learning rates and ̂  is the estimated value of * . 

̂  is an independent control parameter and   is a positive constant, which divides the linear region 

between the rate of attenuation and the rate of convergence. If   is small, the control effort is easily 

affected by the phenomenon of chatter. Conversely, if   is increased to avoid chatter, the convergence 

speed will occur very slowly. 

Proof: In case s , the first Lyapunov function is selected as: 

2

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2

1 1 1

2 2 2 2

a o

T T T T T aT a oT o

A

T T T

m

V t t t tr tr tr tr tr tr

 

     

   

       


  

% % % %% % % % % % % %

%
% %% % % %

p p q q z z

s s p p p p q q q q z z z z

m m    

  (79) 

Taking the derivative of (79), then using (65) and (68), gives 

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1
         ( ) ( )

a o

T T T T T

A

aT a oT o T T T

m

V t t t tr tr tr tr

tr tr
 

   

     

     


    

& && && % % % %& % % % %

&%%
&&& & &% %% %% % % % % %

p p q q

z z

s s p p p p q q q q

z z z z m m    

  

   
   

ˆ ˆ ˆ( )

ˆ ˆ ˆ ( )

1 1 1
     ( ) ( ) (

k k k k

k k k k

T aT aT aT

k k k k

oT oT oT

k k k k AE SRB

T T T

t

t

tr tr tr
  

      
        

 

T T T T T T T

m p p q q

T T T T T T T

m p p q q

p p q

s z a z a m + a a z a p a p a q a q

      z o z o m + o o z o p o p o q o q u

p p p p q

% %%% % %% %

% %%% % %% %

& &% % %% %

 

 

 

  

1 1 1
) ( ) ( ) ( )

1 1 1
     

a o

T aT a oT o

T T T

m

tr tr tr

 

  

   

   


  

q z z

q q q z z z z

m m

& & & &% % % % % % %

&%%
& &% %% % % %   

 (80) 
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Remark 1 

* * * * * * * * *, , , , , , ,  ,  and a op p q q z z m   are constants, thus, 

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ,  ,  ,  , , , ,  , and a a o o                & & && & && & && & && & && & &% % %% % %% % %p p p p q q q q z z z = z  m m     . 

Remark 2 

ˆ ˆ
ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

k k

k k

k k

k k

aT T T a

aT T T a

aT T T a

aT T a

k k

aT T a

k k

aT T a

k k

aT T a

k k

 
 

 
 






 

% %

% %

% %

% %

% %

% %

% %

m m

T

p p

T

p p

T

q q

T

q q

z a m m a z

z a a z

z a a z

z a p p a z

z a p p a z

z a q q a z

z a q q a z

 

 

 

 

 , 

ˆ ˆ
ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

k k

k k

k k

k k

oT T T o

oT T T o

oT T T o

oT T o

k k

oT T o

k k

oT T o

k k

oT T o

k k

 
 

 
 






 

% %

% %

% %

% %

% %

% %

% %

m m

T

p p

T

p p

T

q q

T

q q

z o m m o z

z o o z

z o o z

z a p p a z

z a p p a z

z a q q a z

z a q q a z

 

 

 

 
, and 

1

1

1

1

1

1

ˆ( )

ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

L
aT a aT a

k

L
oT o oT o

k

L
T T

k k

k

L
T T

k k

k

L
T T

k k

k

L
T T

k k

k

tr

tr

tr

tr

tr

tr

























 


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Then, (80) becomes 
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  (81) 

Via the adaptive laws in (69)-(77) and the robust controller in (78a), (81) is then rewritten as: 
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If the error bound is updated as: 

ˆ
( ) ,t    

&&%
s   (83) 
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where   is the positive learning-rate constant, then (82) is rewritten as: 
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Since ( )
A

V t&  is negative semi-definite, ( ) (0)
A A

V t V& & , it points out that s(t) and % are bounded. Define 

   ( ) ( ) ( ) ( ) ( ) ( )
AE AE A

t t t t t V t       s s &@   , then taking the integral ( )t  with respect to 

time, gives 
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Since (0)
A

V&  is bounded, and ( )
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V t&  does not increase and bound, then obtain 
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Furthermore, ( )t&  is bounded, then lim ( ) 0
t

t


  . It means 0s  when  (Slotine and Li 1991). 

Consequently, the IT2FFFLBC control system is asymptotically stable for the case s . 

The robust compensator in (78a) employs a (.)sign  function to warrant the system stability. However, 

the robust compensation controller is normally intermittent across s. It implies that the control input will 

occur the chattering phenomenon. To prove the stability for the case s , the second Lyapunov 

function is selected as: 
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  (87) 

where   is the positive learning-rate constant. 

In theory, there is an optimal constant *  that satisfies the robust stability for (78b) as follows: 

* ( )AE t s     (88) 

Taking the derivative of (87) and using (69)-(77) and (78b), gives 

t 
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The parameter estimation law is selected as 

ˆ ,T    &&% s s    (90) 

Thus (89) becomes 
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Therefore, the IT2FFFLBC control system is asymptotically stable for the case s . As a result of 

two cases, the proof is complete. 

 

5. Simulation Results 

This study uses two 4D nonlinear chaotic systems, a 4D hyperchaotic Lorenz–Lu system and a 

4D hyperchaotic Rikitake dynamo system, to demonstrate the effectiveness and superiority of the 

proposed structure. 

 

1)  Chaos Synchronization for 4D Hyperchaotic Lorenz–Lu System (Chen et al. 2006; Chen et al. 

2011) 

The MS for the 4D hyperchaotic Lorenz’s system is given as: 
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The SS of the 4D hyperchaotic Lu’s system is given as: 
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where 1 2 3 4 1 2 3 4( ), ( ), ( ), ( ), ( ), ( ), ( ) and ( )
MS MS MS MS SS SS SS SS

x t x t x t x t y t y t y t y t  are respectively the states of MS 

and SS. The parameters of the MS and SS are set as 10, 28, 8 / 3, 0.1,
MS MS MS MS

a b c d     

36, 20, 3, 1,
SS SS SS SS

a b c d     respectively. In this example, the external noises (see Fig. 4) are 
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assumed as 
1 2 3 4( ) [ ( ), ( ), ( ), ( )]

SS SS SS SS SS
t n t n t n t n t n  [0.2 cos( ), 0.1 sin( ), 0.3 sin(2 ), 0.1 cos( )],π t t t t   

the initial position states for the MS        1 2 3 40 1.0,  0 1.0,  0 1.0,  0 1.0MS MS MS MSx x x x       and the 

SS        1 2 3 40 5.0,  0 2.0,  0 5.0,  0 2.0SS SS SS SSy y y y        are used. The initial parameters for 

learning rates are selected as 0.2,  p p
  0.1,  q q  0.5,a o  

z z
0.1, 0.05,    m  

and  0.5,   and 1 4 43.8  I , 2 4 40.8  I . The simulation results for this example are displayed in 

Figs. 5-17. Particularly, the 3D trajectory phase portraits of the 4D synchronization are manifested in 

Figs. 5-8. The 2D state trajectories are plotted in Figs. 9-15. In addition, the synchronization errors are 

displayed in Fig. 16, which points out that the tracking errors are quickly driven to zero. Finally, the 

control efforts are presented in Fig. 17. The simulation results of synchronization for the 4D hyperchaotic 

Lorenz–Lu system attain good performance and rapid response regardless of the influence of external 

noises and uncertainty parameters of the system. Moreover, the total RMSE is measured to demonstrate 

that the proposed IT2FFFLBC control system synchronizes the master-slave systems well with smaller 

tracking errors than other control systems (see Table 1). The results for the proposed IT2FFFLBC control 

system are also compared with some former methods such as adaptive PID (Chen et al. 2011), radial 

basis function neural network (RBFNN) (Chen et al. 2011), neuro-wavelet control (NWC) using integral 

(I)-type training method (Chen et al. 2011), NWC using (proportional–integral) PI-type training method 

(Chen et al. 2011). From that, we can see the IT2FFFLBC control system is qualified to handle well the 

noises and uncertainties than the other control systems. Table 1 points out that the proposed IT2FFFLBC 

control system has a smaller root mean square error (RMSE) and attains better in synchronizing the 4D 

hyperchaotic Lorenz–Lu system with smaller tracking errors than other methods. Our findings indicate 

that the IT2FFFLBC control system can work well with the impact of external noises and uncertainties 

of system parameters. 
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Fig. 4. External noises using for synchronization of the 4D hyperchaotic Lorenz–Lu system 

 

 

Fig. 5. 3D trajectory phase portrait of master (X1, X2, X3) and slave (Y1, Y2, Y3) 
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Fig. 6. 3D trajectory phase portrait of master (X1, X2, X4) and slave (Y1, Y2, Y4) 

 

 

Fig. 7. 3D trajectory phase portrait of master (X1, X3, X4) and slave (Y1, Y3, Y4) 
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Fig. 8. 3D trajectory phase portrait of master (X2, X3, X4) and slave (Y2, Y3, Y4) 

 

Fig. 9. The state trajectory for master (X1, X2) and slave (Y1, Y2) 
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Fig. 10. The state trajectory for master (X1, X3) and slave (Y1, Y3) 

 

Fig. 11. The state trajectory for master (X1, X4) and slave (Y1, Y4) 
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Fig. 12. The state trajectory for master (X2, X3) and slave (Y2, Y3) 

 

Fig. 13. The state trajectory for master (X2, X4) and slave (Y2, Y4) 
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Fig. 14. The state trajectory for master (X3, X4) and slave (Y3, Y4) 

 

Fig. 15. State trajectories for master-slave (X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4) 
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Fig. 16. Errors for synchronization of the 4D hyperchaotic Lorenz–Lu system 

 

Fig. 17. Control efforts for synchronization of the 4D hyperchaotic Lorenz–Lu system 
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Table 1 The comparison of RMSE between IT2FFFBC control system and the former methods 

 RMSE1 RMSE2 RMSE3 RMSE4 Average RMSE 

Adaptive PID 8.2922 5.8457 1.9369 9.7788 6.4634 

RBFNN 2.6765 1.9455 1.0070 3.1995 2.2071 

NWC with I-type training method 1.5102 1.0407 0.6064 1.6916 1.2122 

NWC with PI-type training method 0.3828 0.2693 0.1324 0.4483 0.3082 

IT2FFFLBC control system 0.1219 0.0924 0.0671 0.1842 0.1164 

 

2) Chaos Synchronization for 4D Hyperchaotic Rikitake Two-Wing Dynamo System (Vaidyanathan 

et al. 2018) 

The MS is given as: 
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and, the SS is given as: 
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where 1 2 3 4 1 2 3 4( ), ( ), ( ), ( ), ( ), ( ), ( ) and  ( )
MS MS MS MS SS SS SS SS

x t x t x t x t y t y t y t y t  are the states of the MS and SS. 

The parameters of the MS and SS are set as 1.0,  1.0,  0.7
MS SS MS SS MS SS

           . In this 

example, the external noises (see Fig. 18) are given as 
1 2 3 4( ) [ ( ),  ( ),  ( ),  ( )]

SS SS SS SS SS
t n t n t n t n t n

[0.2 cos( ), 0.1 cos( ), 0.3 cos(2 ), 0.1 cos( )],π t t t t       the initial position states of the MS 

       1 2 3 40 0.4,  0 0.4,  0 0.4,  0 0.4MS MS MS MSx x x x      and the SS 

       1 2 3 40 1.0,  0 1.0,  0 1.0,  0 1.0SS SS SS SSy y y y         are utilized. The initial parameters of the 

IT2FFFLBC control system are 0.5, 0.1, 0.2,a o          p p q q z z
 0.5, m  0.1,     

and  0.5   . The simulation results using the proposed IT2FFFLBC control system for the 4D 

hyperchaotic Rikitake two-wing dynamo system are plotted in Figs. 19-31. Specifically, the 3D results 

are plotted in Figs. 19-22. The 2D results of state trajectories are illustrated in Figs. 23-29, respectively. 

Subsequent, the synchronization errors are shown in Fig. 30, which indicate that they are rapidly 

converged to zero. Then, the control efforts are shown in Fig. 31. At the initial, the control efforts are 

increased to suitable values, then they are reduced to nearly zero after achieving the synchronization. 

According to the simulation results, our findings point out that the synchronization of the 4D 

hyperchaotic Rikitake two-wing dynamo system attains good performance and quick response even with 
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the impact of external noises and uncertain parameters. The results in RMSE of some recent controllers 

such as a recurrent cerebellar model articulation controller (RCMAC) (Huynh et al. 2020), a fuzzy brain 

emotional learning controller (Lin and Chung 2015), a brain-imitated neural network controller (Lin et 

al. 2021), and the proposed IT2FFFLBC control system are compared and shown in Table 2. The 

proposed IT2FFFLBC control system synchronizes well the master-slave systems with smaller tracking 

errors than other controllers. In summary, from the simulation results of two examples, our findings show 

that the IT2FFFLBC control system can work well for 4D nonlinear hyperchaotic systems with the 

impact of external noises. 

 

 

Fig. 18. External noises using for synchronization of the 4D hyperchaotic Rikitake Dynamo System 
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Fig. 19. 3D trajectory phase portrait of master (X1, X2, X3) and slave (Y1, Y2, Y3) 

 

Fig. 20. 3D trajectory phase portrait of master (X1, X2, X4) and slave (Y1, Y2, Y4) 
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Fig. 21. 3D trajectory phase portrait of master (X1, X3, X4) and slave (Y1, Y3, Y4) 

 

Fig. 22. 3D trajectory phase portrait of master (X2, X3, X4) and slave (Y2, Y3, Y4) 
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Fig. 23. The state trajectory of master (X1, X2) and slave (Y1, Y2) 

 

Fig. 24. The state trajectory of master (X1, X3) and slave (Y1, Y3) 
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Fig. 25. The state trajectory of master (X1, X4) and slave (Y1, Y4) 

 

Fig. 26. The state trajectory of master (X2, X3) and slave (Y2, Y3) 
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Fig. 27. The state trajectory of master (X2, X4) and slave (Y2, Y4) 

 

Fig. 28. The state trajectory of master (X3, X4) and slave (Y3, Y4) 
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Fig. 29. The state trajectory of master-slave (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4) 

 

Fig. 30. The errors of synchronization for the 4D hyperchaotic Rikitake Dynamo System 
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Fig. 31. The control efforts of synchronization for the 4D hyperchaotic Rikitake Dynamo System 

 

Table 2 RMSE for the proposed control system 

 RMSE1 RMSE2 RMSE3 RMSE4 Average RMSE 

RCMAC 0.0228 0.0195 0.0227 0.0179 0.0207 

FBELC 0.0163 0.0141 0.0160 0.0132 0.0149 

Brain-imitated neural network 0.0088 0.0078 0.0085 0.0074 0.0081 

IT2FFFLBC control system 0.0040 0.0042 0.0034 0.0044 0.0040 

 

6. Conclusion 

 

In this research, we design the interval type-2 fuzzy fourfold function-link brain emotional 

controller for 4D nonlinear hyperchaotic systems. The principal novelty of this research is the successful 

design of the new fourfold function-link for the IT2FFFLBC that can adjust efficiently the lower and 

upper weights for orbitofrontal cortex and amygdala networks. A smooth robust compensator is used to 

eliminate undesired approximate errors and to avoid the chattering phenomenon. Two Lyapunov 

functions are utilized to determine the online learning laws for tuning network parameters and to prove 

the stability of the system. Subsequently, simulation results of two 4D hyperchaotic Lorenz–Lu and 4D 

hyperchaotic Rikitake two-wing dynamo systems show that the IT2FFFLBC control system efficiently 
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achieves good synchronization. In summary, the proposed controller can deal with system uncertainty 

and external noise with small tracking errors. However, the major limitation of the proposed scheme is 

that the learning rates of the adaptive laws are selected by trial-and-error to improve the control 

performance. The learning rates are very important and they will change the control performance 

significantly. Our future work will apply some optimization algorithms to select the optimal learning 

rates of the proposed control system. The other future study is to apply the proposed control system to 

some practical nonlinear systems. 
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Figure 1

Fourfold FLN



Figure 2

Structure of IT2FFFLBC



Figure 3

Block diagram of synchronization for 4D nonlinear hyperchaotic systems using the proposed IT2FFFLBC



Figure 4

External noises using for synchronization of the 4D hyperchaotic Lorenz–Lu system



Figure 5

3D trajectory phase portrait of master (X1, X2, X3) and slave (Y1, Y2, Y3)



Figure 6

3D trajectory phase portrait of master (X1, X2, X4) and slave (Y1, Y2, Y4)



Figure 7

3D trajectory phase portrait of master (X1, X3, X4) and slave (Y1, Y3, Y4)



Figure 8

3D trajectory phase portrait of master (X2, X3, X4) and slave (Y2, Y3, Y4)



Figure 9

The state trajectory for master (X1, X2) and slave (Y1, Y2)



Figure 10

The state trajectory for master (X1, X3) and slave (Y1, Y3)



Figure 11

The state trajectory for master (X1, X4) and slave (Y1, Y4)



Figure 12

The state trajectory for master (X2, X3) and slave (Y2, Y3)



Figure 13

The state trajectory for master (X2, X4) and slave (Y2, Y4)



Figure 14

The state trajectory for master (X3, X4) and slave (Y3, Y4)



Figure 15

State trajectories for master-slave (X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4)



Figure 16

Errors for synchronization of the 4D hyperchaotic Lorenz–Lu system



Figure 17

Control efforts for synchronization of the 4D hyperchaotic Lorenz–Lu system



Figure 18

External noises using for synchronization of the 4D hyperchaotic Rikitake Dynamo System



Figure 19

3D trajectory phase portrait of master (X1, X2, X3) and slave (Y1, Y2, Y3)



Figure 20

3D trajectory phase portrait of master (X1, X2, X4) and slave (Y1, Y2, Y4)



Figure 21

3D trajectory phase portrait of master (X1, X3, X4) and slave (Y1, Y3, Y4)



Figure 22

3D trajectory phase portrait of master (X2, X3, X4) and slave (Y2, Y3, Y4)



Figure 23

The state trajectory of master (X1, X2) and slave (Y1, Y2)



Figure 24

The state trajectory of master (X1, X3) and slave (Y1, Y3)



Figure 25

The state trajectory of master (X1, X4) and slave (Y1, Y4)



Figure 26

The state trajectory of master (X2, X3) and slave (Y2, Y3)



Figure 27

The state trajectory of master (X2, X4) and slave (Y2, Y4)



Figure 28

The state trajectory of master (X3, X4) and slave (Y3, Y4)



Figure 29

The state trajectory of master-slave (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4)



Figure 30

The errors of synchronization for the 4D hyperchaotic Rikitake Dynamo System



Figure 31

The control efforts of synchronization for the 4D hyperchaotic Rikitake Dynamo System


