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Abstract
This paper suggests a new limited memory trust region algorithm for large unconstrained black box least squares problems,
calledLMLS. Main features ofLMLS are a new non-monotone technique, a new adaptive radius strategy, a newBroyden-like
algorithm based on the previous good points, and a heuristic estimation for the Jacobian matrix in a subspace with random
basis indices. Our numerical results show that LMLS is robust and efficient, especially in comparison with solvers using
traditional limited memory and standard quasi-Newton approximations.
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1 Introduction

In this paper, we consider the unconstrained nonlinear least
squares problem

min f (x):= 1
2‖E(x)‖22

s.t. x ∈ R
n,

(1)

with high-dimensional x ∈ R
n and continuously differen-

tiable E : Rn → R
r (r ≥ n), possibly expensive. However,

we assume that no derivative information is available.

1.1 Related work

In recent years, there has been a huge amount of literature on
least squares and its applications. Here we just list a useful
book and paper:
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• Ortega and Rheinboldt (2000) introduced an excellent
book, both covering algorithms and their analysis.

• An excellent paper, both covering Levenberg–Marquardt
algorithms, quasi-Newton algorithms, and trust region
algorithms and their local analysis without non-
singularity assumption, has been introduced by Yuan
(2011).

Derivative free unconstrained nonlinear black box least
squares solvers can be classified in two ways according
to how the Jacobian matrix is estimated, and according to
whether they are based on line search or on trust region:

• Quasi-Newton approximation. Sorber et al. (2012) intro-
ducedMINLBFGS (a limitedmemoryBFGS algorithm)
and MINLBFGSDL (a trust region algorithm using a
dogleg algorithm and limited memory BFGS approxi-
mation).

• Finite difference approximation. There are many trust
region methods using the finite difference method for
the Jacobian matrix estimation such as CoDoSol and
STRSCNE by Bellavia et al. (2004, 2012), NMPNTR
by Kimiaei (2016), NATRN and NATRLS by Amini
et al. (2016);Amini et al. (2016),LSQNONLIN from the
MATLABToolbox,NLSQERR (an adaptive trust region
strategy) byDeuflhard (2011), andDOGLEG byNielsen
(2012). They are suitable for small- and medium-scale
problems. Line search methods using the finite differ-
ence approximation areNLEQ (a dampedaffine invariant
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Newton method) by Nowak and Weimann (1990) and
MINFNCG (a family of nonlinear conjugate gradient
methods) by Sorber et al. (2012).

FMINUNC by MATLAB Optimization Toolbox is an
efficient solver for small- and medium-scale problems. It
uses the finite difference method to estimate the gradient
vector and the standard quasi-Newton method to estimate
the Hessian matrix. In fact, FMINUNC disregards the least
squares structure and only has access to function values. Nev-
ertheless, it will be shown that FMINUNC is more efficient
than LSQNONLIN using the least squares structure.

To solve the least squares problem (1), trust region meth-
ods use linear approximations of the residual vectors to make
surrogate quadratic models whose accuracy are increased by
restricting their feasible points. These methods use a compu-
tational measure to identify whether an agreement between
an actual reduction of the objective function and a predicated
reduction of surrogate quadratic model function is good or
not. If this agreement is good, the iteration is said success-
ful and the trust region radius is expanded; otherwise, the
iteration is said unsuccessful and the trust region radius is
reduced, for more details see (Conn et al. 2000; Nocedal and
Wright 1999).

The efficiency of trust region methods depends on how
the trust region radius is updated (see, e.g., Ahookhosh et al.
2013; Amini et al. 2016; Amini et al. (2016); Esmaeili and
Kimiaei (2014b, a, 2015); Fan (2006); Fan and Pan (2009,
2010); Kimiaei (2017); Yu and Pu (2008)) and whether non-
monotone techniques are applied (see, e.g., Ahookhosh and
Amini 2011;Ahookhosh et al. 2015, 2013;Amini et al. 2016;
Amini et al. (2016); Deng et al. (1993); Grippo et al. (1986);
Grippo and Sciandrone (2007); Kimiaei (2016, 2017); Yu
and Pu (2008)). Rounding errors may lead two problems:

(i) The model function may not decrease numerically for
some iterations. In this case, if there is no decrease in the
function value for such iterations, trust region radii are
expanded possibly several times which is an unnecessary
expansion for them,

(ii) The model function may decrease numerically but the
objective function may not decrease in the cases where
iterations are near a valley, deep with a small creek at the
bottom and steep sides. In this case, trust region radii are
reduced possibly many times, leading to the production
of quite a small radius, or even a failure.

Non-monotone techniques can be used in the hope of over-
coming the second problem.

1.2 Overview of the newmethod

We suggest in Sect. 2 a new trust region-based limited mem-
ory algorithm for unconstrained black box least squares
problems, called LMLS. This algorithm uses

• a non-monotone ratio and an adaptive radius formula to
quickly reach the minimizer when the valley is narrow;

• a Broyden-like algorithm to get a decrease in the function
valuewhen the trust region radius is so small and iteration
is unsuccessful;

• a finite difference approximation in a subspace with ran-
dom basis indices to estimate the Jacobian matrix;

• either a Gauss–Newton or a dogleg algorithm in a sub-
space with random basis indices to solve the trust region
subproblems.

Numerical results for small- to large-scale problems are
given in Sect. 3 showing the fact that the new method is
suitable for large-scale problems and is more robust and
efficient than solvers using limited memory and standard
quasi-Newton approximations.

2 The trust regionmethod

In this section, we construct an improved trust region algo-
rithm for handling problems in high dimensions:

• In Sect. 2.1 a Gauss-Newton direction in a subspace with
random basis indices is introduced.

• In Sect. 2.2 a non-monotone term and an adaptive tech-
nique are constructed to quickly reach the minimizer in
the presence of a narrow valley.

• In Sect. 2.3 a dogleg algorithm in a subspacewith random
basis indices is discussed.

• In Sect. 2.4 a Broyden-like technique is suggested based
on the old best points.

• In Sect. 2.5 our algorithm using new enhancements is
introduced.

We write J (x) for the Jacobian matrix of the residual vec-
tor E at x . Then the gradient vector is g(x):=∇ f (x):=J (x)T

E(x) and the Hessian matrix is

G(x):=J (x)T J (x) + ∇2E(x)T E(x)

If the residual vector E(x) is small, the second term in G(x)
is small. Hence, we approximate G(x) by the Gauss-Newton
Hessian matrix J (x)T J (x). We define the quadratic surro-
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gate objective function

Q(p):=1

2
‖E + J p‖2:= f + pT g + 1

2
(J p)T J p, (2)

where f := f (x), E :=E(x), J :=J (x), g:=g(x):=J T E . We
denote by A:k the kth column of a matrix A.

A trust regionmethod finds aminimizer of the constrained
problem

min Q(p)
s.t p ∈ R

n and ‖p‖ ≤ Δ,
(3)

whose constraint restricts feasible points by the trust region
radius Δ > 0. This problem is called the trust region sub-
problem. Given a solution p of (3), we define the actual
reduction in the objective function by

d f := f − f (x + p) (4)

and the predicted reduction in the model function by

dq:=Q(0) − Q(p). (5)

What constitutes an agreement between the actual and
predicted reduction around the current iterate x must bemea-
sured by the monotone trust region ratio

ρ:=d f

dq
. (6)

If such an agreement is good according to a heuristic for-
mula discussed in Sect. 2.2, the iteration is said successful,
x + p is accepted as a new point, said a best point, and the
radius is expanded; otherwise, the iteration is said unsuc-
cessful and so the radius is reduced.

2.1 A new subspace Gauss–Newtonmethod

In this subsection, we have two goals: estimating the Jaco-
bian matrix and constructing a Gauss-Newton direction in a
subspace with random basis indices.

Let msn be the subspace dimension. The Jacobian matrix
in a subspace with random basis indices is estimated by a
new subspace random finite difference called SRFD using
the following steps:

(1) At first, an initial subspace basis indices set is a random
subset of {1, . . . , n} consisting of msn members and its
complementary is Sc:={1, . . . , n} \ S.

(2) Next, if the complementary of old subspace basis indices
set Scold is not empty, a new index set I needs to be
identified before a new subspace basis indices set is
determined. In this case, if I consists of at least msn

members, I is a random subset of {1, . . . ,msn} with
the |Scold| members; otherwise, it is a permutation of
{1, . . . , |Scold|}. Then, a new subspace basis indices set
is determined by S:=Scold(I) and its complementary is
foundby Sc:=Scold\S. But if Scold is empty, a newsubspace
basis indices set and its complementary are restarted and
chosen in the same way as the initial subspace basis
indices set and its complementary, respectively.

(3) For any i ∈ S,

• the step size is computed by

hi :=
⎧
⎨

⎩

γs if xi = 0,

γs(sign xi )max
{
|xi |, ‖x‖1

n

}
otherwise,

where 0 < γs < 1 is a tiny factor and sign xi identifies
the sign of xi , taking one of values −1 (if xi < 0), 0
(if xi = 0), and 1 (if xi > 0).

• the randomapproximation coordinate direction p dis-
cussed in Kimiaei (2020) is used with the difference
that its i th component is updated by pi = pi + hi .

• the new trial residual E(x + p) and the new column
(E(x + p) − E)/hi of the Jacobian matrix are com-
puted.

It is well known that standard quasi-Newton methods are
more robust than limited memory quasi-Newton ones, but
they cannot handle problems in high dimensions; for stan-
dard quasi-Newton methods, see (Dennis and Moré 1977;
Dennis and Walker 1981; Nocedal 1992; Schnabel 1989),
and for limitedmemory quasi-Newtonmethods, see (Liu and
Nocedal 1989; Nazareth 1979; Nocedal 1992). On the other
hand, finite difference methods are more efficient than stan-
dard quasi-Newton ones. Hence, if used in a subspace with
random basis indices, they can be more efficient than limited
memory quasi-Newton methods for small- up to large-scale
problems.

Using S and Sc generated and updated by SRFD, we con-
struct a new subspace Gauss-Newton direction by

(psn)i := 0 for i ∈ Sc and (psn)S := − (J T:S J:S)−1 J T:S E . (7)

2.2 New non-monotone and adaptive strategies

In this subsection, a new non-monotone term – stronger than
the objective function f – is constructed and a new adap-
tive radius formula to update Δ is derived from it. They help
LMLS in finite precision arithmetic to quickly reach themin-
imizer in the cases where the valley is deepwith a small creek
at the bottom and steep sides.

Our non-monotone term is updated not only for successful
but also for unsuccessful iterations that may have happened
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before a successful iteration is found. This choice is based on
an estimated increase in f defined below which is updated
according to whether a decrease in f is found or not. It helps
us to generate a somewhat strong non-monotone term when
a decrease in f is not found and a somewhat weak non-
monotone term otherwise. Somewhat strong non-monotone
terms increase the chance of finding a point with better func-
tion value or at least a point with a little progress in the
function value instead of solving trust region subproblems
with high computational costs.

We denote by X a list of best points and by F a list of cor-
responding function values. Letmrs be themaximumnumber
of good points saved in X . In order to update X and F , we
use updateXF. Here we describe how to work it. Ifmrs is not
exceeded, points with good function values are saved in X
and their function values in F . Otherwise, theworst point and
its function value are found and replaced by the best point
and its function value, respectively.

Let γt ∈ (0, 1), γ ∈ (0, 1), γ init > 0, and γ > 1 be the
tuning parameters and let

f kmax:= max
i=1:mrs

{Fk
i } for all k = 0, 1, 2, · · · . (8)

Before a newnon-monotone term is constructed, an estimated
increase in f needs to be estimated by

δkf :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ init| f 0| if k = 0, f 0 ∈ (0,∞),

1 if k = 0, f 0 ∈ {−∞, 0,∞},
1

γ
( f k−1 − f (xk−1 + pk−1)) if k ≥ 1, f (xk−1 + pk−1) < f k−1,

max(γ δk−1
f , γ (| f (xk−1 + pk−1)| + | f kmax|)) if k ≥ 1, f (xk−1 + pk−1) ≥ f k−1.

(9)

Accordingly, the new non-monotone formula is defined by

f knm:=
{
f 0 if k = 0,
f k + δkf if k ≥ 1

(10)

and the new adaptive radius is constructed by

Δk
nm:=λk

√

f knm, (11)

where Δ0
nm > 0 is a tuning parameter and λk is updated

according to

λk :=
{

σ1λ
k−1, if ρk−1

nm < γt ,

min(λ,max(σ2λk−1, λ)), otherwise.
(12)

Here λ0 > 0, 0 < σ1 < 1 < σ2, and λ > λ > 0 are the
tuning parameters and the new non-monotone trust region

ratio is defined by

ρk−1
nm := f k−1

nm − f (xk−1 + pk−1)

Q̃k−1(0) − Q̃k−1(pk−1)
, (13)

where pk−1 is a solution of the following trust region sub-
problem in a subspace with the random basis indices set S
by SRFD

min Q̃k−1(p):=1

2
‖Ek−1 + J k−1

:S p‖2:= f k−1 + pT gk−1
S

+1

2
(J k−1

:S p)T J k−1
:S p

s.t p ∈ R
msn and ‖p‖ ≤ Δk−1

nm

(14)

with f k−1:= f (xk−1), Ek−1:=E(xk−1), J k−1
:S :=J:S(xk−1),

and gk−1
S :=(J k−1

:S )T Ek−1.

2.3 A subspace dogleg algorithm

We define the Cauchy step by

pc:= − t∗gS,
t∗:= argmin{Q̃(−tgS) | t ≥ 0, ‖tgS‖ ≤ Δnm}. (15)

The goal is to solve the trust region subproblem (14) such
that

‖p‖ ≤ Δnm and Q̃(p) ≤ Q̃(pc) (16)

hold. After the subspace Gauss-Newton direction is com-
puted by (7), if it is outside a trust region, a subspace dogleg
algorithm, called subDogleg, is used resulting in an esti-
mated step enforcing (16).

Themodel function Q̃ is reduced by (15) if dqsn:=Q̃(0)−
Q̃(psn) > 0. subDogleg first identifies whether dqsn > 0 or
not. Then we have one of the following cases:

Case 1. If dqsn > 0, the scaled steepest descent step

psd:= − gTS gS
(JSgS)T (JSgS)

gS (17)

is computed. If it is outside the trust region, an estimated
solution of (3) is either the Cauchy step computed by (15) or
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the dogleg step

pdg:=psd + t(psn − psd); (18)

both of (17) and (18) are on the trust region boundary. Here t
is found by solving the equation ‖psd+t(psn− psd)‖ = Δnm.
If the condition dp:=(psd)T (psn− psd) ≤ 0 holds, a positive
root is computed by

t :=−dp +
√

dp2 + ‖psn − psd‖(Δ2
nm − ‖psd‖2)

‖psn − psd‖2
∈ (0, 1). (19)

Otherwise, t is computed by

t := Δ2
nm − ‖psd‖2

dp +
√

dp2 + ‖psn − psd‖(Δ2
nm − ‖psd‖2)

∈ (0, 1); (20)

e.g., see Nielsen 2012.
Case 2. If dqsn ≤ 0, the model function Q̃ is convex

since the matrix (JSgS)T (JSgS) is symmetric and positive
semidefinite. An estimated solution of (3) is either psd com-
puted by (17) if it is inside the trust region or the Cauchy step
p:=Δnm(psd/‖psd‖) according to psd, otherwise.

2.4 Broyden-like technique

Before a successful iteration is found by a trust region algo-
rithm, the trust region subproblems may be solved many
times with high computational cost. Instead, our idea is to
use a new algorithm based on the previous best points in the
hope of finding a point with good function value.

Whenever LMLS cannot decrease the function value, a
new Broyden-like technique, called BroydenLike, is used
in the hope of getting a decrease in the function value. Let
x1, . . . , xmrs be the mrs best point stored in X . Then a point
in the affine space spanned by such points has the following
form

xz :=Xz, z ∈ R
mrs , eT z = 1, (21)

where e ∈ R
mrs is a vector all of whose components are one.

Given B:=
(
X
e

)

, the linear approximation E(xz) ≈ Bz is

used to replace (1) by the surrogate problem

min
1

2
‖Bz‖22

s.t. eT z = 1.
(22)

This is a quality constrained convex quadratic problem inmrs

variables and hence can be solved in closed form. Then a QR
factorization is made in the form B = QR, where Q is an
orthogonal matrix and R is a square upper triangular matrix.
By setting Z :=R−1, we make the substitution z:=Zy, define
aT :=eT Z , and obtain the mrs-dimensional minimal norm
linear feasibility problem

min
1

2
‖y‖22

s.t. aT y = 1
(23)

whose solution is y:=a/‖a‖2. Hence, a new trial point for
the next algorithm is

x trial:=xz :=XR−1a/‖a‖2. (24)

BroydenLike tries to find a point with better function
value when no decrease in f is found along p. It takes X ,
F , x , E , B, f , δ f , and fnm as input and uses the following
tuning parameter:

γ ∈ (0, 1) (tiny factor for adjusting δ f ),
γ > 1 (parameter for expanding δ f ),
γs (tiny parameter for the finite difference step size),
mrs (memory for affine space),
0 < γr < 1 (tiny parameter for adjusting the scaled
random directions).

It returns a new value of δ f and fnm (and f , X , F , E , S, and
JS if a decrease in f is found) as output.

Algorithm 1 BroydenLike, a Broyden-like method
QR factorization of the matrix B

1: Make a QR factorization for the matrix B and get the square upper
triangular matrix R.

Computation of a new trial point

2: Compute the new trial point x trial by (24).
3: Compute E trial:=E(x trial) and set f trial:=0.5‖E trial‖2.

Check whether the function value is improved or not?

4: if f trial ≤ fnm then � the new trial point is accepted
5: Set x :=x trial, E :=E trial, and f := f trial.
6: Save x in X and f in F by updateXF.
7: Compute S and JS :=J:S(x) by SRFD.
8: end if
9: Update δ f by (9) and compute fnm by (10).
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Since the Jacobian matrix may be singular or indefinite, a
new point may move toward either a maximum point or sad-
dle point. To remedy this disadvantage, BroydenLike does
not lead to accept such a point with largest function value.

2.5 A limitedmemory trust region algorithm

We describe all steps of a new limited memory algorithm,
called LMLS using the new subspace direction (7), the new
non-monotone technique (10), the new adaptive radius strat-
egy (11), and BroydenLike.

In each iteration, an estimated solution of the trust region
subproblem (14) is found. Whenever the condition ρnm ≥ γt
holds, the iteration is successfulwhile updating both the non-
monotone term (10) and adaptive radius formula (11), and
estimating the Jacobian matrix in a subspace with random
basis indices by SRFD. Otherwise, the iteration is unsuc-
cessful. In this case, BroydenLike is performed in the hope
of finding a decrease in the function value. If a decrease in
the function value is found, the iteration becomes successful;
otherwise, it remains unsuccessful while reducing the radius
and updating the non-monotone term (10) until a decrease
in the function value is found and the iteration becomes suc-
cessful.

LMLS solves unconstrained nonlinear black box least
squares problem. This algorithm takes the initial point x0,
and maximal number of function evaluations (nfmax). It
uses the following tuning parameters:

msn ( subspace dimension),
γt ∈ (0, 1) (parameter for trust region),
0 < σ1 < 1 < σ2 (parameters for updating λ),
γ init (parameter for updating the initial δ f ),
γ ∈ (0, 1) (tiny factor for adjusting δ f ),
γ > 1 (parameter for expanding δ f ),
λ (lower bound for λ),
λ (upper bound for λ),
γs (tiny parameter for adjusting finite difference step
sizes),
0 < γr < 1 (tiny parameter for adjusting randomapprox-
imation coordinate directions).

It returns a solution xbest of a nonlinear least squares problem
as output.

LMLSwas implemented in MATLAB; the source code is
available at

http://www.mat.univie.ac.at/~neum/software/LMLS.

Algorithm 2 LMLS, limited memory method for least
squares problems

Initialization

1: Choose λ0 ∈ (λ, λ).
2: Compute E0:=E(x0) and set f 0:=0.5‖E0‖2. Then set X :=x0 and

F := f 0.
3: Identify the initial subspace basis indices set S and J:S(x0)bySRFD.
4: Compute g0S :=J T:S (x0)E0 and δ0f by (9).
5: for � = 0, 1, 2, · · · do

Compute the �th search direction p�

6: Compute the subspace Gauss-Newton direction p�:=p�
sn by (7).

7: if ‖p�
sn‖ > Δ�

nm then
8: Obtain an approximated solution p� of (14) by subDogleg.

subDogleg is a variant of dogleg.m, available at
http://www.math.ubc.ca/~loew/m604/mfiles.htm

but with the difference that
• t is recomputed by (20) when t computed by (19) is not
positive,
• it can handle problems in high dimensions,
• the concavity of Q̃ is ignored,
• it is restricted to the subspace with random basis indices.

9: end if

Enforcing the descent condition (g�)T p� < 0 if it needs

10: if (g�)T p� ≥ 0 then � Due to rounding errors
11: Find ind:={i | g�

i p
�
i > 0}.

12: Set p�
i := − p�

i for i ∈ ind.
13: end if

Computation of a new trial point and its function value

14: Compute x trial:=x�+p�, E trial:=E(x trial), and f trial:=0.5‖E trial‖2.

Stopping test

15: if nfmax is exceeded then
16: LMLS ends, resulting xbest = x�.
17: end if

Identify whether the �th iteration is successful or not

18: Compute ρ�
nm by (13).

19: if ρ�
nm < γt then � Unsuccessful iteration

20: Call BroydenLike with the goal of satisfying f trial ≤ fnm.
21: if f trial > fnm then � BroydenLike cannot decrease f
22: Update δ�+1

f by (9) and f �+1
nm by (10).

23: Reduce λ�+1 to (12) and the radius Δ�+1
nm to (11).

24: end if
25: else � Successful iteration
26: Set x�+1:=x trial, f �+1:= f trial, and E�+1:=E trial.
27: Compute the new indices set S and J:S(x�+1) by SRFD.
28: Compute g�+1

S :=J:S(x�+1)T E�+1.

29: Update δ�+1
f by (9) and f �+1

nm by (10).

30: Expand λ�+1 to (12) and Δ�+1
nm to (11).

31: Store x�+1 in X and f �+1 in F by updateXF.
32: end if
33: end for

123

http://www.mat.univie.ac.at/~neum/software/LMLS
http://www.math.ubc.ca/~loew/m604/mfiles.htm


A new limited memory method for unconstrained nonlinear least squares 471

3 Numerical results

We updated the test environment constructed by Kimiaei and
Neumaier (2019) to use test problems suggested by Lukšan
et al. (2018). LMLS is compared with unconstrained least
squares and unconstrained optimization solvers, for some of
which we had to choose options different from the default to
make them competitive in the first subsection.

3.1 Codes compared

Least squares solvers:

• CoDoSol is a solver for constrained nonlinear systems of
equations, obtained from

http://codosol.de.unifi.it.

It combines Newton method and a trust region method,
see Bellavia et al. (2012). The following option was used

parms = [maxit,maxnf,tr,delta,scaling,

outflag] = [inf,nfmax, 1,−1, 0, 2].

Note that delta = −1 means that Δ0 = 1. According
to our numerical results, CoDoSol was not sensitive for the
initial radius; hence, the default was used.

• STRSCNE is a solver for constrained nonlinear systems
of equations, obtained from

http://codosol.de.unifi.it.

It combines Newton method and a trust region procedure,
see Bellavia et al. (2004). The option

parms = [maxit,maxnf,delta,outflag]
= [inf,nfmax,−1, 0]

was used. Note that delta = −1 means that Δ0 = 1.
According to our numerical results, STRSCNEwas not sen-
sitive for the initial radius; hence, the default was used for
Δ0.

• NLEQ1 is a damped affine invariant Newton method for
nonlinear systems, obtained from

http://elib.zib.de/pub/elib/codelib/nleq1_m/nleq1.m
and suggested byDeuflhard (2011) andwritten byNowak
andWeimann (1990). The default tuning parameterswere
used; only iopt.jacgen = 2, iopt.qrank1 = 1,
and wk.fmin = 1e − 50 were selected.

• NLEQ2 is the same as NLEQ1; only iopt.qrank1 =
0 was selected.

• MINLBFGS is a L-BFGS with line search algorithm,
obtained from

https://www.tensorlab.net/

and written by Sorber et al. (2012). The default param-
eters were used, except for m. MINLBFGS1 and
MINLBFGS2 are MINLBFGS with m = min(n, 30)
and m = min(n, 100), respectively.

• MINLBFGSDL is a L-BFGS with dogleg trust region
algorithm with the option set MaxIter = nfmax,
TolFun = 1e − 50, TolX = 1e − 50. The default
parameters were chosen for PlaneSearch and M .
MINLBFGSDL1, MINLBFGSDL2, MINLBFG
SDL3, and MINLBFGSDL4 areMINLBFGSDL with

(1) PlaneSearch = false and M = min(30, n),
(2) PlaneSearch = false and M = min(100, n),
(3) PlaneSearch = true and M = min(30, n),
(4) PlaneSearch = true and M = min(100, n).

According to our results,MINLBFGSDL1 was the best.

• MINFNCG is a nonlinear conjugate gradient solver,
obtained from

https://www.tensorlab.net/

andwritten bySorber et al. (2012). Weused the following
option set

MaxIter = nfmax; TolFun = 1e − 50;
TolX = 1e − 50.

The other tuning parameter was Beta ∈ {HS,HSm,

PR,FR,PRm,SD}. MINFNCG1, MINFNCG2, MINF
NCG3, MINFNCG4, MINFNCG5, and MINFNCG6
are MINFNCG with Beta = HS, Beta = HSm,
Beta = PR, Beta = FR, Beta = PRm, and Beta =
SD, respectively.

• NLSQERR is a global unconstrained Gauss-Newton
method with error oriented convergence criterion and
adaptive trust region strategy Deuflhard (2011), obtained
from

http://elib.zib.de/pub/elib/codelib/NewtonLib/index.html

The following options were used

iniscalx = 0; rescalx = 0; xthrsh = ones(n, 1);
xtol = 1.e − 50; ftol = 1.e − 50; kmax = nfmax;
printmon = 2; printsol = 1; fid = 1;
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numdif = 1;
lambda0 = eps;lambdamin = 1e − 50;
ftol = 1.e − 50.

• NMPNTR, non-monotoneprojectedNewton trust region
method, is a bound constrained solver Kimiaei (2016).
NMPNTR1,NMPNTR2,NMPNTR3, andNMPNTR4
are NMPNTR with Δ0 = 1, Δ0 = 10, Δ0 = 100, and
Δ0 = 500, respectively. According to our results,NMP-
NTR2 was the best.

• NATRN is a non-monotone trust region algorithmAmini
et al. (2016) using the full finite difference approxima-
tion. The subproblem was solved in the same way as
LMLS. NATRN1, NATRN2, NATRN3, and NATRN4
are NATRN with Δ0 = 1, Δ0 = 10, Δ0 = 100,
and Δ0 = 500, respectively. According to our results,
NATRN1 had the best performance.

• NATRLS is a non-monotone line search and trust region
algorithm Amini et al. (2016) using the full finite dif-
ference approximation. The subproblem was solved
in the same way as LMLS. NATRLS1, NATRLS2,
NATRLS3, and NATRLS4 are NATRLS with Δ0 = 1,
Δ0 = 10, Δ0 = 100, and Δ0 = 500, respectively.
According to our results, NATRLS1 had the best per-
formance.

• LSQNONLIN1, obtained from theMATLABOptimiza-
tion Toolbox at,

https://de.mathworks.com/help/optim/ug/lsqnonlin.html

is a nonlinear least squares solver with the following
options:

options = optimoptions(@lsqnonlin,‘
Algorithm’, ‘levenberg-marquardt’, ‘Fin-
iteDifferenceType’,‘forward’, ‘MaxIter’,
Inf,‘MaxFunEvals’, nfmax, ‘TolX’, 0,‘Specify
ObjectiveGradient’,‘false’).

• LSQNONLIN2, obtained from theMATLABOptimiza-
tion Toolbox at,

https://de.mathworks.com/help/optim/ug/lsqnonlin.html

is a nonlinear least squares solver with the following
options:

options = optimoptions(@lsqnonlin,‘
Algorithm’, ‘trust-region reflective’,
‘FiniteDifferenceType’,‘forward’,
‘MaxIter’, Inf,‘MaxFunEvals’, nfmax, ‘TolX’,
0,‘Specify
ObjectiveGradient’,‘false’).

• DOGLEG is Powell’s dogleg method for least squares
problems, which is the best algorithm from the toolbox
of immoptibox.zip Nielsen (2012), available at

http://www2.imm.dtu.dk/projects/immoptibox/

The following option was used

opts = [Δ0,tolg,tolx,tolr,maxeval]
= [Δ0,1e − 50,1e − 50,1e − 50,nfmax].

DOGLEG1,DOGLEG2,DOGLEG3, andDOGLEG4
are DOGLEG with Δ0 = 1, Δ0 = 10, Δ0 = 100, and
Δ0 = 500, respectively. The best version was DOG-
LEG1.

Unconstrained solvers:

• FMINUNC, obtained from the MATLAB Optimization
Toolbox at

https://ch.mathworks.com/help/optim/ug/fminunc.html,

is a standard quasi-Newton algorithm. We used FMIN-
UNC with

opts = optimoptions(@fminunc),‘Algori
thm’,‘quasi-newton’, ‘Display’, ‘Iter’, ‘Max
Iter’,Inf,‘MaxFunEvals’, nfmax, ‘TolX’, 0,
‘TolFun’,0,‘ObjectiveLimit’,-1e-50).

• FMINUNC1 is FMINUNC with the limited memory
quasi-Newton approximation byLiu andNocedal (1989).
It were added to FMINUNC by the present authors. The
option set for it was used the same as FMINUNC; only
the memory m = 10 was added to the option set.

3.2 Default for tuning parameters ofLMLS

The tuning parameters for our newmethod (LMLS) are cho-
sen as

mnm = 10; mrs = 10; γr = 10−30; γp = 5εm;
γs = √

εm; γt = 0.1; σ1 = 0.5; λ0 = 1;
σ2 = 1; γ init = 10−8; γm = 10−30; λ = 10−4;
Δ0 = 10; Δmin = 10−6; λ = 105.

The remaining tuning parametermsn is varied in the exper-
iment: LMLS1, LMLS2, LMLS3, and LMLS4 are LMLS
with msn = 3, msn = min(10, n), msn = min(30, n), and
msn = min(100, n), respectively.
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3.3 Test problems used, initial point, and stopping
tests

Test problems suggested byLukšan et al. (2018) are classified
in Table 1 according to whether they are overdetermined
(r > n) or not (r = n). A shifted point for these
problems is done like Kimiaei and Neumaier (2020) as
χi :=(−1)i−12/(2 + i) for all i = 1, . . . , n. This means that
the initial point is chosen by x0i = χi for all i = 1, . . . , n and
the initial function value is computed by f 0:= f (x0), while
the other function values are computed by f �:= f (x� + χ)

for all � ≥ 1.
We denote nf and msec as the number of function eval-

uations and time in milliseconds, respectively. nfmax and
secmax are the upper bounds for them, chosen as

nfmax ∈
⎧
⎨

⎩

{10n, 50n, 100n, 500n} if 1 ≤ n ≤ 100,
{10n, 50n, 100n} if 101 ≤ n ≤ 1000
{10n, 100n} if 1001 ≤ n ≤ 10000

and

secmax:=
{
300 if 1 ≤ n ≤ 100,
800 if 101 ≤ n ≤ 10000.

Denote by f 0 the function value of the starting point (com-
mon to all solvers), by f so the best point found by the solver
so, and by f opt the best point known to us. Then, if the target
accuracy satisfies

qso := ( f so − f opt)/( f 0 − f opt)

≤
{
10−8 if 1 ≤ n ≤ 100,
10−3 if 101 ≤ n ≤ 10000,

then the problem is solved by the solver so. Otherwise, the
problem is unsolved by it; either nfmax or secmax is
exceeded, or the solver fails.

3.4 The efficiency and robustness of a solver

For a given collection S of solvers, the strength of a solver
so ∈ S—relative to an ideal solver that matches on each
problem the best solver—is measured, for any given cost
measure cs by the number, eso defined by

eso:=

⎧
⎪⎨

⎪⎩

min
s∈S cs

cso
, if the solver so solves the problem,

0, otherwise,

called the efficiency of the solver so with respect to this cost
measure. Two cost measures nf and msec are used.

The robustness of a solver is how many test problems it
can solve. Efficiency and robustness are two adequate tools to

determine which solver is competitive. In fact, the robustness
of a solver is more important than its efficiency. We use two
different performance plots in terms of the robustness and
efficiency of solvers:

• The first performance plot is the data profile by Moré
and Wild (2009) for nf/(best nf) and msec/(best
msec) aswell; but it is the percentage of problems solved
within the number of function evaluations and time in
milliseconds.

• The second performance plot is the performance pro-
file by Dolan and Moré (2002) for nf/(best nf)
and msec/(best msec); the percentage of problems
solved within a factor τ of the best solvers.

All tables anddata/performance profiles are given inSects.
4.2–4.4. In Sects. 3.5-3.7, we summarize them as two new
performance plots.

3.5 Small scale: n ∈ [1, 100]
A comparison among LMLS1, LMLS2, LMLS3, LMLS4,
and solvers using quasi-Newton is shown in Subfigures (a)
and (b) of Fig. 1, so that

• LMLS4 using the full estimated Jacobian matrix is the
best in terms of the number of solved problems and the
nf efficiency;

• LMLS3, LMLS2, and LMLS1 are more efficient than
solvers using quasi-Newton approximation (FMINUNC,
FMINUNC1,MINFLBFGS1, andMINFLBFGSDL1)
in terms of the nf efficiency;

• FMINUNC and MINFLBFGSDL1 are comparable
with LMLS3—only for very large budget—in terms of
the number of solved problems but LMLS3, LMLS2,
and LMLS1 are more efficient than FMINUNC and
MINFLBFGSDL1 in terms of thenf efficiency not only
for very large budget but also for small up to large bud-
gets.

To determine whether our new non-monotone and adap-
tive radius strategies are effective or not,we compareLMLS4
with solvers using other non-monotone and adaptive radius
strategies, shown in Subfigures (c) and (d) of Fig. 1. All
solvers use the full Jacobian matrix and the trust region sub-
problems are solved by the same algorithm. As can be seen,
LMLS4 is much more efficient and robust than NATRLS1,
NMPGTR2, andNATRN1 in terms of the number of solved
problems and the nf efficiency.

WecompareLMLS4with four famous solversLSQNON-
LIN1, CoDoSol1, NLEQ1, and DOGLEG1 shown in
Subfigures (e) and (f) of Fig. 1. It is seen that LMLS4
and CoDoSol1 are the two best solvers in terms of the nf
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Table 1 A classification of test problems

Dimensions n 3 5 10 16 30 50 100 300 500 1000 5000 10,000

Total number of least squares problems (r ≥ n) 49 69 76 83 83 83 83 83 83 83 83 83

Number of square problems (r = n) 43 53 55 62 62 62 62 62 62 62 62 62

Number of least squares problems with r > n 6 16 21 21 21 21 21 21 21 21 21 21

efficiency while LMLS4 and DOGLEG1 are the two best
solvers in terms of the number of solved problems.

Another comparison is among LMLS3, LMLS2, and
LMLS1 using the Jacobian matrix in an adaptive subspace
basis indices set and LSQNONLIN1 and NLEQ1 using the
full Jacobian matrix. We conclude from Subfigures (g) and
(h) of Fig. 1 that

• LMLS3 is the best in terms of the number of solved
problems and the nf efficiency;

• LMLS2 is the second best solver in terms of the number
of solved problems and the nf efficiency for medium,
large, and very large budgets;

• LMLS1 with lowest subspace dimension is more effi-
cient than LSQNONLIN1 in terms of the number of
solved problems and the nf efficiency; even it is more
efficient than NLEQ1 for very large budget in terms of
the nf efficiency.

As a result,LMLS is competitive for small-scale problems
in comparison with the state-of-the-art solvers.

3.6 Medium scale: n ∈ [101, 1000]
In this subsection, we compare LMLS1, LMLS2, LMLS3,
and LMLS4 using the estimated Jacobian matrices in a sub-
space with random basis indices with FMINUNC using
standard BFGS approximations and FMINUNC1 using lim-
ited memory BFGS ones (Fig. 2).

From Subfigures (a) and (b) of Fig. 1, we conclude that

• LMLS4,LMLS3, andLMLS2 are the three best solvers
in terms of the nf efficiency, respectively;

• LMLS4 is the best solver in termsof the number of solved
problems; only FMINUNC is the best for large budget.

3.7 Large scale: n ∈ [1001, 10000]
In this subsection, we compare LMLS1, LMLS2, LMLS3,
LMLS4 using the estimated Jacobian matrices in a subspace
with random basis indices with FMINUNC1 using limited
memory BFGS approximations.

In terms of the nf efficiency and the number of solved
problems, Subfigures (a) and (b) of Fig. 3 result in the fact
that

• LMLS4,LMLS3, andLMLS2 are the three best solvers,
respectively;

• LMLS1 with lowest subspace dimension is more effi-
cient than FMINUNC1 for small budget while FMIN-
UNC1 is more efficient than LMLS1 for large budget.

4 Additional material for LMLS

4.1 Summarizing tables

In all tables, efficiencies are given as percentages, rounded
(towards zero) to integers. Larger efficiencies imply a better
average behavior, while a zero efficiency indicates failure.

#100 is the total number of problems for which the solver
so was best with respect to nf (eso = 1 = 100%). !100 is
the total number of problems solved for which the solver so
was better than all other solvers with respect to nf.

We denote the time in seconds without the setup time for
the objective function by sec. In tables, a sign

• n indicates that nf ≥ nfmax was reached.
• t indicates that sec ≥ secmax was reached.
• f indicates that the algorithm failed for other reasons.

Tmean is the mean of the time in seconds needed by a
solver to solve the test problems chosen from the list of test
problems P , ignoring the times for unsolved problems. It
can be a good measure when solvers have approximately the
same number of solved problems.
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Fig. 1 Performance plots for
small-scale problems. a–b: A
comparison of limited memory
solvers, c–d: A comparison
among LMLS in a full subspace
with random basis indices and
solvers using other
non-monotone and adaptive
radius techniques, e–f: A
comparison among LMLS in a
full subspace with random basis
indices and other famous
solvers, g–h: A comparison
among low-dimensional
LMLS1, LMLS2, LMLS3, and
NLEQ1 and LSQNONLIN1
using full estimated Jacobian
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Fig. 2 a–b: Performance plots for medium-scale problems
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Fig. 3 a–b: Performance plots for large-scale problems
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4.2 Tables and data/performance profiles for
1 ≤ n ≤ 100

This section contains Tables 2, 3, 4, 5 and Figs. 4, 5, 6, 7,
summaries of which were discussed in Sect 3.5.

Table 2 Results for small-scale and small budget

Stopping test: qso ≤ 1e-08, sec ≤ 300, nf ≤ 10*n
367 of 526 problems without bounds solved Mean efficiency in %
dim∈[1,100] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmtr4 304 204 15 52 222 0 0 53 46

CoDoSol1 codo1 300 197 30 56 219 0 7 52 40

NATRLS1 natrs1 284 63 8 67 242 0 0 40 30

DOGLEG1 dogleg1 280 70 11 98 246 0 0 38 22

NMPGTR2 nmpg2 254 172 8 55 272 0 0 43 31

LMLS3 lmtr3 252 156 4 53 274 0 0 42 35

NLEQ1 nleq1 201 42 30 77 145 0 180 33 16

LMLS2 lmtr2 184 91 7 75 342 0 0 29 22

NATRN1 natrn1 179 54 11 89 347 0 0 26 18

LMLS1 lmtr1 110 47 20 112 416 0 0 16 10

STRSCNE1 strs1 70 69 0 28 107 0 349 13 7

FMINUNC1 func1 69 2 0 123 455 0 2 6 4

FMINUNC func 58 2 0 139 468 0 0 5 4

MINFLBFGS1 lbfgs1 23 0 0 227 449 0 54 1 0

LSQNONLIN1 lsqn1 1 1 1 50 525 0 0 0 0

MINFLBFGSDL1 minlbfgs1 1 0 0 30 525 0 0 0 0

MINFNCG1 MINFNCG1 0 0 0 − 514 0 12 0 0

Table 3 Results for small-scale and medium budget

Stopping test: qso ≤ 1e-08, sec ≤ 300, nf ≤ 50*n
474 of 526 problems without bounds solved Mean efficiency in %
dim∈[1,100] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

DOGLEG1 dogleg1 419 80 17 148 107 0 0 55 30

LMLS4 lmtr4 416 228 17 108 110 0 0 66 59

CoDoSol1 codo1 398 226 52 90 107 0 21 65 54

NATRLS1 natrs1 364 79 21 81 162 0 0 51 39

LMLS3 lmtr3 359 177 8 124 167 0 0 55 46

NMPGTR2 nmpg2 343 191 22 79 183 0 0 53 40

LMLS2 lmtr2 282 111 16 197 244 0 0 40 29

NATRN1 natrn1 222 63 17 117 304 0 0 31 22

NLEQ1 nleq1 222 42 30 77 122 0 182 35 18

FMINUNC func 219 4 3 167 292 0 15 13 11

LMLS1 lmtr1 206 49 21 253 320 0 0 24 15

FMINUNC1 func1 179 8 7 177 345 0 2 13 10

MINFLBFGSDL1 minlbfgs1 168 0 0 286 358 0 0 5 5

MINFLBFGS1 lbfgs1 133 0 0 200 339 0 54 5 4

LSQNONLIN1 lsqn1 131 1 1 314 395 0 0 5 4

STRSCNE1 strs1 72 69 0 28 1 0 453 13 8

MINFNCG1 MINFNCG1 47 0 0 698 458 0 21 1 1
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Table 4 Results for small-scale and large budget

Stopping test: qso ≤ 1e-08, sec ≤ 300, nf ≤ 100*n
493 of 526 problems without bounds solved Mean efficiency in %
dim∈[1,100] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

DOGLEG1 dogleg1 434 82 19 167 92 0 0 56 31

LMLS4 lmtr4 424 229 17 113 102 0 0 67 59

CoDoSol1 codo1 408 227 53 103 88 0 30 66 54

NATRLS1 natrs1 375 87 27 104 151 0 0 53 39

LMLS3 lmtr3 374 177 9 150 152 0 0 56 48

NMPGTR2 nmpg2 365 196 25 103 160 0 1 54 40

FMINUNC func 313 6 4 351 170 0 43 16 14

LMLS2 lmtr2 306 106 12 257 220 0 0 41 31

MINFLBFGSDL1 minlbfgs1 272 2 2 453 244 0 10 9 8

LMLS1 lmtr1 231 53 24 437 295 0 0 25 17

MINFLBFGS1 lbfgs1 230 0 0 349 232 0 64 8 6

NATRN1 natrn1 225 65 19 121 301 0 0 32 22

NLEQ1 nleq1 223 43 30 79 121 0 182 35 17

FMINUNC1 func1 209 8 6 327 297 0 20 14 12

LSQNONLIN1 lsqn1 155 1 1 374 371 0 0 6 4

MINFNCG1 MINFNCG1 136 0 0 524 365 0 25 2 2

STRSCNE1 strs1 72 69 0 28 1 0 453 13 7

Table 5 Results for small-scale and very large budget

Stopping test: qso ≤ 1e-08, sec ≤ 300, nf ≤ 500*n
509 of 526 problems without bounds solved Mean efficiency in %
dim∈[1,100] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

DOGLEG1 dogleg1 444 79 18 220 82 0 0 57 31

LMLS4 lmtr4 437 229 18 159 89 0 0 68 58

CoDoSol1 codo1 422 226 54 172 61 0 43 67 55

FMINUNC func 411 8 7 761 20 0 95 19 17

NMPGTR2 nmpg2 407 194 25 378 110 1 8 56 42

LMLS3 lmtr3 393 178 9 343 133 0 0 56 47

MINFLBFGSDL1 minlbfgs1 385 6 6 723 69 0 72 11 12

NATRLS1 natrs1 384 89 31 143 142 0 0 54 41

LMLS2 lmtr2 353 107 14 998 173 0 0 42 31

MINFLBFGS1 lbfgs1 342 4 4 973 56 0 128 10 9

LMLS1 lmtr1 300 53 25 1302 226 0 0 27 17

MINFNCG1 MINFNCG1 283 0 0 990 194 0 49 3 4

FMINUNC1 func1 283 8 7 534 205 0 38 15 13

NATRN1 natrn1 230 63 17 178 296 0 0 32 22

NLEQ1 nleq1 224 42 30 82 120 0 182 35 18

LSQNONLIN1 lsqn1 209 1 1 690 316 1 0 6 5

STRSCNE1 strs1 72 69 0 29 1 0 453 13 6
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(b)(a)

(d)(c)

Fig. 4 a and b: Data profiles for nf/(best nf) and msec/(best
msec), respectively.ρ designates the fraction of problems solvedwithin
the number of function evaluations and time in milliseconds used by the
best solver. Problems solved by no solver are ignored. c–d: Performance

profiles for nf/(best nf) and msec/(best msec), respectively. ρ
designates the fraction of problems solvedwithin the number of function
evaluations and time in milliseconds used by the best solver. Problems
solved by no solver are ignored
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(b)(a)

(d)(c)

Fig. 5 Details as in Fig. 4
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(b)(a)

(d)(c)

Fig. 6 Details as in Fig. 4
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(b)(a)

(d)(c)

Fig. 7 Details as in Fig. 4
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4.3 Tables and data/performance profiles for
101 ≤ n ≤ 1000

This section contains Tables 6, 7, 8 and Figs. 8, 9, 10, sum-
maries of which were discussed in Sect 3.6.

Table 6 Results for
medium-scale and small budget

Stopping test: qso ≤ 0.001, sec ≤ 800, nf ≤ 10*n
154 of 249 problems without bounds solved Mean efficiency in %
dim∈[101,1000] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmls4 119 49 48 13738 129 1 0 37 37

FMINUNC1 func1 114 40 14 11271 133 2 0 29 35

LMLS3 lmtr3 110 30 28 15401 138 1 0 34 28

LMLS2 lmtr2 105 22 21 15006 143 1 0 31 20

LMLS1 lmtr1 97 15 15 18207 151 1 0 27 21

FMINUNC func 93 26 0 13702 154 2 0 22 24

Table 7 Results for
medium-scale and budget

Stopping test: qso ≤ 0.001, sec ≤ 800, nf ≤ 50*n
188 of 249 problems without bounds solved Mean efficiency in %
dim∈[101,1000] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmtr4 169 58 56 11582 78 2 0 50 46

LMLS3 lmtr3 168 48 47 12980 79 2 0 47 37

FMINUNC func 168 32 5 11064 78 3 0 36 42

FMINUNC1 func1 165 43 16 10503 81 3 0 39 50

LMLS2 lmtr2 164 16 15 15614 84 1 0 43 25

LMLS1 lmtr1 159 20 20 15399 88 2 0 38 28

Table 8 Results for
medium-scale and large budget

Stopping test: qso ≤ 0.001, sec ≤ 800, nf ≤ 100*n
198 of 249 problems without bounds solved Mean efficiency in %
dim∈[101,1000] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

FMINUNC func 189 44 18 14603 55 3 2 41 48

FMINUNC1 func1 178 46 20 12133 66 3 2 41 52

LMLS3 lmtr3 176 39 37 16832 71 2 0 48 36

LMLS4 lmtr4 174 53 51 18938 73 2 0 50 47

LMLS2 lmtr2 167 24 24 18182 81 1 0 42 24

LMLS1 lmtr1 165 20 20 28711 84 0 0 38 26
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(b)(a)

(d)(c)

Fig. 8 Details as in Fig. 4
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(b)(a)

(d)(c)

Fig. 9 Details as in Fig. 4
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Fig. 10 Details as in Fig. 4
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4.4 Tables and data/performance profiles for
1001 ≤ n ≤ 10000

This section contains Tables 9, 10 and Figs. 11, 12, sum-
maries of which were discussed in Sect 3.7.

Table 9 Results for large-scale and small budget

Stopping test: qso ≤ 0.001, sec ≤ 800, nf ≤ 10*n
132 of 166 problems without bounds solved Mean efficiency in %
dim∈[1001,10000] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

LMLS4 lmtr4 101 47 44 265873 47 17 1 48 45

LMLS3 lmtr3 97 22 19 242590 57 10 2 43 42

LMLS2 lmtr2 94 11 10 262404 60 8 4 43 41

LMLS1 lmtr1 86 22 21 302069 60 14 6 37 32

FMINUNC1 func1 81 36 35 197750 60 24 1 34 37

Table 10 Results for large-scale and budget

Stopping test: qso ≤ 0.001, sec ≤ 800, nf ≤ 100*n
147 of 166 problems without bounds solved Mean efficiency in %
dim∈[1001,10000] # of anomalies For cost measure
Solver Solved #100 !100 Tmean #n #t #f nf msec

LMLS3 lmtr3 128 32 29 313348 0 38 0 57 55

LMLS4 lmtr4 128 49 47 325880 0 38 0 60 55

LMLS2 lmtr2 120 17 15 306190 0 46 0 53 49

FMINUNC1 func1 104 37 36 236336 0 61 1 42 47

LMLS1 lmtr1 95 18 17 332592 0 71 0 39 33
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(b)(a)

(d)(c)

Fig. 11 Details as in Fig. 4
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(b)(a)

(d)(c)

Fig. 12 Details as in Fig. 4
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