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Abstract

. Syam Prasad Kuncham'

We define 2n + 1 and 2n fuzzy numbers, which generalize triangular and trapezoidal fuzzy numbers, respectively. Then, we
extend the fuzzy preference relation and relative preference relation to rank 2n + 1 and 2n fuzzy numbers. When the data
is representable in terms of 2n + 1 fuzzy number, we generalize the FMCDM (fuzzy multi-criteria decision making) model
constructed with TOPSIS and relative preference relation. Lastly, we give an example from telecommunications to present

the proposed FMCDM model and validate the results obtained.
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1 Introduction

Zadeh (1965) introduced the concept of fuzzy set, and it is
widely used to characterize vague or imprecise settings (con-
ditions). Fuzzy sets have applications in automata theory,
systems theory, decision theory, switching theory, pattern
recognition, image thresholding, etc. [Lalotra and Singh
(2020); Singh et al. (2019); Singh and Sharma (2019); Singh
et al. (2020)]. Fuzzy numbers generalize real numbers and
are very useful to represent data corresponding to uncer-
tain situations. There are several methods to rank or order
fuzzy numbers. Lee and Li (1988) utilized the concept of
probability measure to determine the order of fuzzy num-
bers by considering the mean and dispersion of alternatives.
Choobineh and Li (1993) proposed an indexing method to
order or rank the fuzzy numbers. Dias (1993) proposed a
computational approach to rank the alternatives using fuzzy
numbers. Fortemps and Roubens (1996) presented a method
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to compare fuzzy numbers using the area compensation pro-
cedure. Cheng (1998) proposed the distance method and
coefficient of variation (CV) index method to rank the fuzzy
numbers. Chu and Tsao (2002) proposed a method using
the area between centroid point and original point of the
fuzzy numbers to facilitate ranking. Wang and Lee (2008)
later revised this method. Lee (2005b) introduced the ’com-
parable’ property for fuzzy preference relation and showed
that only O (n) comparisons of fuzzy numbers are sufficient
if a fuzzy preference relation satisfies certain conditions.
Asady and Zendehnam (2007) proposed a ranking method
for the fuzzy numbers by obtaining the nearest point of sup-
port function with respect to fuzzy quantity. Wang (2015b)
proposed a fuzzy relation with membership function repre-
senting preference degree to compare two fuzzy numbers. A
relative preference relation was defined using fuzzy prefer-
ence relation to compare a set of fuzzy numbers. The relative
preference relation expresses preference degrees of several
fuzzy numbers over average and facilitates easy and quick
ranking of fuzzy numbers.

Decision-making methods often apply fuzzy sets in their
computations. Jain (1976) presented a decision method that
represented uncertain quantities as fuzzy sets and subse-
quently obtained an optimal alternative. Jain (1977) also
developed a procedure for decision making using fuzzy sets
by assigning quantitative numbers to qualitative terms. Wang
(2014, 2015a, 2020a, b) proposed various methods using rel-
ative preference relation to solve FMCDM problems. In the
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multi-granulation decision-theoretic rough set, Mandal and
Ranadive (2019) introduced the optimistic and pessimistic
fuzzy preference relation models.

In a multi-criteria decision-making problem with multiple
data points, few data points, referred to as fuzzy numbers,
are utilized to arrive at a decision. In this regard, different
fuzzy numbers, such as triangular, trapezoidal, pentagonal
and hexagonal fuzzy numbers, have been reported. These
fuzzy numbers consider only a few data points to arrive at a
decision. For example, the number of data points in triangu-
lar fuzzy numbers is 3, in trapezoidal fuzzy numbers it is 4,
and in hexagonal fuzzy numbers it is 6. However, using a few
data points to represent data leads to the loss of information.
To address this situation, we generalize fuzzy numbers that
encompass more data points to represent the data, thus mini-
mizing the loss of information. Practically, when the decision
problem is highly sensitive to the number of data points, it
is reasonable to choose a larger value of n. The flexibility in
implementing this idea is apparent in the case of data repre-
sentation by 2n 4 1 (or 2n) fuzzy numbers due to the choice
for n. Thus, we get a natural advancement to the existing
FMCDM methods.

In this paper, we define 2n and 2n + 1 fuzzy numbers.
Clearly, 2n+1 fuzzy numbers yield triangular and pentagonal
cases when n = 1, 2, and 2n fuzzy numbers coincide with
trapezoidal and hexagonal fuzzy numbers when n = 2, 3,
respectively. We extend the fuzzy preference relation and
relative preference relation given by Wang (2015b) to rank
2n and 2n + 1 fuzzy numbers. Then, we compare the results
obtained by fuzzy preference relation and relative preference
relation with Wang and Lee (2008) method. Wang (2014)
developed the FMCDM model with TOPSIS under fuzzy
environment and relative preference relation on fuzzy num-
bers. We present an extension to the FMCDM model when
the given data is representable in terms of 2n + 1 fuzzy num-
bers. We illustrate the suitability of the proposed method in
solving FMCDM problems using an example. Subsequently,
the proposed method results are validated and compared with
VIKOR, MOORA and ELECTRE methods.

The rest of the paper is organized as follows. In Sect. 2,
we present the basic definitions and related primary results.
In Sect. 3, we give the definition of 2n + 1 fuzzy number
and the extension of fuzzy preference and relative preference
relations on 2n + 1 fuzzy numbers. In Sect. 4, we define 2n
fuzzy number and the extension of fuzzy preference and rela-
tive preference relations on 2n fuzzy numbers. In Sect. 5, we
present the proposed FMCDM model along with a telecom-
munication example. In Sect. 6, we validate the proposed
method with popularly used multi-criteria decision-making
methods.
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2 Definitions and preliminaries

For the following definitions, we refer (Zadeh 1965; Zim-
mermann 1987, 1991).

Definition 2.1 A fuzzy subset A on the universe U is a set
defined by a membership function 4 representing a map-
ping s : U —> [0, 1].

Definition2.2 A, = {x | ua(x) > «} is called an a-cut of
the fuzzy set A.

Definition 2.3 Let X be a fuzzy number. Then, X% and XU
are, respectively, defined as

sup (2).

mx(2)=a

XL = inf (z) and XU =

ux(@)=a

Definition 2.4 (Lee 2005a,b; Epp 1990) A fuzzy preference
relation R is a fuzzy subset of R x R with membership
function g (A, B) representing preference degree of fuzzy
numbers A over B.

1. Risreciprocalifand only if ugr(A, B) = 1 —ug(B, A)
for all fuzzy numbers A and B.

2. R is transitive if and only if ugr(A, B) > % and
ur(B,C) > % = ur(A,C) > % for all fuzzy numbers
A, B and C.

3. R is afuzzy total ordering if and only if R is both recip-
rocal and transitive.

A is preferred to B if and only if ug(A, B) > % and A is
equal to B if and only if ug(A, B) = %

Definition 2.5 (Wang 2015b) Let > be a binary relation on
fuzzy numbers defined by A > B if and only if A is preferred
to B (Thatis, ug(A, B) > 1).

Wang revised the extended fuzzy preference relation
defined by Lee (2005b) as follows.

Definition 2.6 (Wang2015b) Let A and B be two fuzzy num-
bers, where A is an interval [a;, a,] and B is an interval
[b1, by ]. A fuzzy preference relation P is a subset of R x R
with membership function wp(A, B) representing prefer-
ence degree of A over B.

Define
1 L U
L[ [y A= BE +(A-B)Y
up(A, B) = = +1),
2( 7]
where

1
||T||=fo (Tt —1HE+ @t —1HY)daif 4 > 17
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1
=f(a+—Tv£+a*—Tv3
0

+2(t;7 — ;" )daif 1 <1,
T is an interval [tl+, 71, T~ is an interval [7,, ], tl+ =

;
max{ay, by}, ;7 = max{a,, b/}, t; = min{a;, by} and 1. =
min{ay, b, }.

Similarly, fuzzy preference relation on triangular and
trapezoidal fuzzy numbers have also been defined.

For the examples on decision-making problems, we refer
(Koppulaetal. 2019, 2020; Riaz et al. 2020; Chen and Huang
2021).

Definition 2.7 (Wang 2015b) Let S = {Xy, X2, ..., X,}
denote a set composed of n fuzzy numbers. A fuzzy number
X; = [xi1, xir] belongs to the set S, wherei = 1,2,...,n.
Assume X = % derived by extension principle is average
of the n fuzzy numbers in S. A relative preference relation
P* with membership function up+(X;, X) represents pref-

erence degree of X; over X in S.

We define
1 L \U
— 1 [iXi=Xt+&Xi - X
wp, (X, X) = - (=2 +1],
’ 2 I Tsl]
where

1
I Ts || = /0 (T = TOE+ (1 — 1) Dda i > 15

1
=/«ﬁ—wtﬂﬁ—ﬁﬁ
0

+2(t;, — t)do if <15

T," is an interval [t;;, 11, T, is an interval [t 1], t; =
max;{X;;}, 1, = max;{X;.}, t; = min;{Xy} and 1, =
min; { X, }.

Clearly, 0 < pup (X;,X) < 1, wherei = 1,2,...,n.
wp, (Xi, X) < % expresses that X is preferred to X;. On the
other hand, up, (X;, X) > % expresses that X; is preferred
to X.

Similarly, relative preference relation is defined on trian-
gular and trapezoidal fuzzy numbers.

3 Generalized 2n + 1 fuzzy number
3.1 Generalized linear 2n + 1 fuzzy number
Let {ay, az, a3, ..., azy+1} be real numbers such that a; <

ay < a3 < -+ < ay+1, n = 1,2,3,... and n is finite,
k > 2"~! Then, we denote

1/ x—a
P(X):=—( );
k \a —a;

a) =x =a
2n—2 2n—2

s ( ) T X — dy
x) = :
! k k Ap+1 — dn

ap <X = dp+1

2n—2r 2n—2r Qnin — X

+ ;
k k ap+2 — An+1
ap4+1 = X = dp42

On(x) := ! (—aZﬂH — );

k \ a1 — azn
Ao =X = ap41.

T(n,r)(x) =

Now, [P (x), Q1(x)] gives fuzzy membership function of the

1
generalized triangular fuzzy number (ay, az, az; —).

] k
That is,

1/ x—a
- ;oar =x=<a
k \ar —a

1 /a3 —x
- ;a2 = x =< as.
k \a3 —a>

flai,az,a3; x) =

If k = 1 in the above, we get a triangular fuzzy number.
Now,

flar,az,a3, ..., a241; X)
= [P(x), $2(x), S3(x), - -+, Sp—1(x), S$p(x), T(n,1) (%),
Tn+1,2(X), Tn12,3)(X), ..., Ten—2,n-1)(x), On(x)]...(1)

gives fuzzy membership function of the generalized fuzzy
n—1

number (ay, a», as, . . ——), wheren > 2andk >

=l
In particular, if k = 2"~! then (1) gives fuzzy membership
function of the fuzzy number (a1, a2, as, ..., ap+1; 1).
For example, substitute n = 2 in (1), then [P (x), S2(x),
T2,1)(x), O2(x)] gives fuzzy membership function of the

° a2n+l§

generalized pentagonal fuzzy number (a1, az, a3, as, as; ;).
That is,

f(a1, az, a3, as, as; x)
1 X —daj .
k\ay—ar )’
1 1 /x—a

1),

k k a3z — ap
1 1 (a4 —x

—y- (& ;

k  k\ag— a3

L (fas—x\
k\as—as)’

ar =x =a

ap =x = as

az = x < a4

a4 < x < as.
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1 Pentagonal fuzzy number

Generalized pentagonal
fuzzy number
1/2

a @ a, a, as X

Fig.1 Pentagonal and generalized pentagonal fuzzy number

If k = 2 in the above, we get a pentagonal fuzzy number
(Fig. 1).

Similarly, substituten = 3in (1) then [P (x), S2(x), S3(x),
T3,1)(x), Ta,2)(x), Q3(x)] gives fuzzy membership func-
tion of the generalized heptagonal fuzzy number (a1, az, a3,

as, as, ag, ary; ;)-
That is,

flai, az, a3, a4, as, as, a7; x)

1<x—a1>
- ;o ar<x<a
k \ar» —a
1+1 X —ap -
-+ - s ar <x<a
k k\as—a 2 3
2+2 X —aj -
-+ - ;a x<a
_ k  k\ag— a3 3= 4
- 2+2 as — X - -
-+ - s as <x<a
k k as — dq 4 5
1+1 ag — X - -
-+ - a5 <x<a
k  k \as—as 3 6
l<a7—x)
- ag < x < ay
k \a7 — ag

If kK = 4 in the above, we get a heptagonal fuzzy number.
3.2 Generalized nonlinear 2n + 1 fuzzy number
Let {a1, az, a3, ..., azy+1} be real numbers such that a; <

ay < az < -+ < ay41, myn = 1,2,3,... and m, n are
finite. Now, take k > 2"~1. Then, we denote

P () 1/ x—a \"
x) = — ;
k \a —a;

ar=x =a
X —ap

. ' 2n—2 211—2 m .
S (x) = + ,
ap+1 — dp

k k

ap =X =< dpy]
2n72r 2n72r Qpan — X
T(Zl,r) (x) == + < n

m
ap+2 — Ap+1 )

k k
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ap4+1 = X = ap42

m 1 [ ayyr —x \"
O x)=—-—"—)
k \aznt1 — azn
Aop =X < Aop41-

Then, [P™(x), O (x)] gives fuzzy membership function of
the generalized nonlinear triangular fuzzy number (a1, a3, as;

—). Now,
k) OW.

fMar, a2, a3, ..., a1 X)

= [P"(x), 83" (x), S5 (x), ..., Syt (%), S (%),
T(’Z,l)(x)’ T(’Z+1,2) (x), T(’,'11+2’3)(x), RN
Ton—2.n—1y(X¥), Q5 (0)]...(3)

gives fuzzy membership function of the generalized non-
n—1

., Qou+1; ——), where

linear fuzzy number (ai, az, az, .. k

n>2andk >2""1
In particular, if k = 2"~! then (3) gives fuzzy membership
function of the nonlinear fuzzy number (a1, a2, az, . .

D).

< A2n4-15

Note 3.3 If m = 1 in the fuzzy membership function of the
generalized nonlinear 2n 4 1 fuzzy number, then we get a
fuzzy membership function of the generalized linear 2n + 1
fuzzy number.

3.4 a-cut of a Generalized linear 2n + 1 fuzzy
number

Let {ay, az, a3, ..., azy+1} be real numbers such that a; <

ay <az <--- <amy+1, n=1,2,3,... and n is finite. Now,
take k > 2"~!. Then, we denote

E(a) :=ay + ka(az — ay);

M1
0, -

we k]
ok

Fy(a) :==a, + le_l (ant1 — an);

'2n—2 2n—l

S )

i R }

ak
G,n(a) == apq2 — <2nT2r — 1) (an+2 — an+1);

2n—2r 2n—2r+1
oe [ }

k-’ k
Hy(a) = axy41 — ka(az,1 — az);

601
o ,— .
k
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Then, [E(«), Hi ()] gives a-cut of the generalized triangu-

1
lar fuzzy number (ay, az, az; E)' That is,

h(ai, az, a3; )

1
ar +ka(ay —ay); «ace [0, E}

1
a3 —ka(az —ax); o€ |:O, E:| .

If £ = 1 in the above, we get an «-cut of a triangular fuzzy
number.
Now,

< A2p+15 o)
= [E((X), FQ(a)v F3(a)v R} Fn—l(a)’ Fl’l(a)v G(n,l)(a)7
Gur1,2(@), Gui2,3)(@), ..., Gan—2n-1) (), Hy(a)]...(5)

h(ai, az, a3, ..

gives «-cut of the generalized fuzzy number (ay, az,
n—1
as, ..., am41; T), where n > 2 and k > 2"~ 1,

For example, if n = 3 in (5) then [E(«), F2(®), F3(a),

Ga,1y(@), G (o), H3(a)] gives a-cut of the generalized
4

heptagonal fuzzy number (a1, a3, a3, as, as, ae, az; §). That

is,

h(ay, az, az, as, as, ag, az; o)

L

= AN N |~
Eal N NSRRI N I SO N I TRl

ay + ka(ax — ay);

Q
m
—
| I

ar + (ak — 1)(azs —a2); €

ak

a3+(7— 1) (a4 —a3); a¢€
ak

as — (7— 1) (as —aq); o€

ae — (ak — 1)(ag —as); «a €

a7 — ka(a7 — ag);

Q
m
—

L
| =
|

If k = 4 (That is k = 2" = 2371) in the
above, we get an «-cut of a heptagonal fuzzy number
(a1, az, a3, as, as, ag, a7).

Infimum and Supremum of «-cut of a 2n + 1 fuzzy num-
ber:

Let B be any fuzzy number and pp(x) is the fuzzy
membership function of B. Then BL = inf,,,(x)>¢(x) and
BY =sup,,, (1)=a ().

For example, if B = (ay, a2, a3; %) is a triangular fuzzy

number. Then, Blf = E(x) and Bg = Hi().

2n—1
Sl ——),

For a fuzzy number C = (ay, a2, as, .. X
Cgl[ = (E((X), Fz(a)s F3(Ol), Tt anl(a)’ Fn(a)) and
CJ = (Gun(@), Gur12@), Gui23)(@), ...,
Gom—1).n—1(@), Hy(a)).

3.5 Extension of fuzzy preference relation on 2n + 1
fuzzy numbers

We extend the fuzzy preference relation given by Wang
(2015b) to rank 2n+1 fuzzy numbers as follows.

Definition 3.6 Let X and X» be two fuzzy numbers, where
X1 =lar,az,...,am+1]and Xo = [by, b2, ..., bop+1]. An
extended fuzzy preference relation R is a subset of R x R with
membership function pg(X1, X2) representing preference
degree of X over X». Then,

nr(X1, X2)
2)171
1 N X1 — X)¥ X1 — X»h)¥
_1 /k <( 1 2] + (X4 2)U>da+1
2\ Jo N7
..... )
where

on—1

1T = /0 Lt - T} +(T" = TH)f)da;

. + —
if 14 =t,,
2)171

(TT =TH} + T =THY + 205, — 1)de;

0

if 4" <ty 4
TT is an interval [t1+, t;', R t;;lJr]]’ T~ is an interval
[ty 15 ... 15, 4] and 1 =max {a1, b1}, 15 =max {a2, b2},

coo 3 =max{azey 1, by}, f; =min {ay, b1}, 1; =min

{az, ba}, ... 1y, y=min {a2u41, bon1}-
2n—|

In(D),if fy © (TT=THY+ (T —T7)%)da > 0, then
ur(X1, X2) > % and if X1 = X», then up(X1, X3) = %
Lemma 3.7 The extended fuzzy preference relation R is

reciprocal. That is, ug(X1, X2) = 1 — ur (X2, X1) for all
2n + 1 fuzzy numbers X and X».

Lemma 3.8 The extended fuzzy preference relation R is tran-
sitive. Thatis, if g (X1, X2) > § and ug(X2, X3) > § then
nr(X1, X3) > % where X1, X» and X3 are 2n + 1 fuzzy
numbers.

From Lemmas 3.7 and 3.8, the extended fuzzy preference
relation R is a total ordering relation (Epp (1990) and Lee
(2005b)).

@ Springer
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Lemma 3.9 Let X1 and X be two 2n + 1 fuzzy numbers. By
the extended fuzzy preference relation R, X1 is preferred to
X ifand only if pr(X1, X2) > 5.

Lemma3.10 X| > Xjifandonlyifur(X1, X2) > %,where
> is a binary relation.

1
Result3.11 Let X;| = (al, ap, as; E) and X, = (b1, by, b3;
1
%) be two generalized triangular fuzzy numbers. Then,

JEX = X5 + X1 — x)¥1do
_ (a1 = b3) +2(ar — by) + (a3 — b1)
= o )

Now,
nr(X1, X2)

1 /i<(X1—Xz)i+(xl—xz)‘z,>da+1
2\Jo 171

_ 1 (611—b3)+2(a2—l?2)+(a3—171)Jrl
2 2k 1 T '

If K = 1 in the above, we get

1
/O [(X1 — X2)E + (X1 — X2)¥1da

_ (a1 — b3) +2(ax — by) + (a3 — by)
5 )

(a1 — b3) +2(az — by) + (a3 — by)

Then, g (X1, X2)=3(
+ 1) (Wang (2015b)).

20T

2
Lemma3.12 Let X; = (a1, a», a3, a4, as; z) and X, =

2
(b1, by, b3, by, bs; E) be two generalized pentagonal fuzzy

numbers. Then, ug (X1, X2) = 3{[[(a1 —bs) +2(a2 —bs) +
2(az — b3) +2(a4 — b2) + (a5 — b1/ k|| T D]+ 1}.

Proof Now,
X1 — Xo = ((a1 — bs), (a2 — by), (a3 — b3), (ag — b2), (a5 — b1)).

Then,
%
f (X1 — X2)Lda
0
_ /0 " (a1 — bs) + kar((ar — bs) — (a1 — bs)))da

2
+ﬁk ((a2 = b4) + (ka — 1)((a3 — b3) — (a2 — ba)))do
3

(a1 =bs5) | (a —b4) — (a1 —bs)
- k 2k
2(az —by)  3((az —b3) — (a2 — by)) (a3 — b3)
t  f 2k ok

@ Springer

Similarly,

%
f (X1 - X2)Vda
0
l’
= /Ok ((as — by) — ka((as — by) — (as — by))da)

2
+ﬁk ((ag — by) — (ka — 1)((ag — b2) — (a3 — b3))da)
13

_(as —b1) (as —b1) — (a4 —b2)  2(as —ba)
ok 2k k
_3((ag —by) — (a3 —b3)) (a3 — b3)
2k k '

Then,

; I )
(X1 — Xz)adol + (X1 — Xz)a do
0 0

1
= ﬁ[(al — bs) + 2(az — bs)
+2(a3 — b3) + 2(as — b2)
+(as — byl

Now,

1r(X1, X2)

1 /i((Xl—xz>z+<xl—xz>“u)da+l
2\Jo 17

1
= 5{[[(01 —bs) + 2(ap — by) + 2(az — b3) + 2(as — b2)
+(as —bp)]/Ck | T D]+ 1}

]

Note3.13 If k = 2 in Lemma 3.12, then ugr(X, X2) =
%{[[(al — bs) + 2(az — bs) + 2(a3 — b3) + 2(as — b2) +
(as =bD1/@A T D1+ 1}
Lemma3.14 LetX| = (a1, a2, ..., Gy, A1, Ant2s - - -, A2n,
(b1,ba, ..., by, byt ..., bop,
bant1; 2;;{_4) be two fuzzy numbers, where n > 3.

Then,

X 2n71
ax+1; 53—) and Xp =

ur(Xi, X2) = %{[[(al — bant1) + 2(az — bay)
+3[(a3 — ban—1) + 2(as — ban—2) + 4(as — bop—3)
+o 2" @ = ba )+ 2" @t — bas1)
+312" 7 (any2 = bn) + 2" (angs — ba-1)
+...+ 2(a2m—2 — ba) + (@201 — b3)] + 2(az2n — b2)
+(az+1 — b1/ Ck | T D1+ 1},
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where

1T lI= 1" = 15,,0) + 205 —13,) +3[(5
120t — 1, ) +AS =1, D+ +

+20N G — ) 326, - )

2 ) 2, — )+ (G — 1))

— )

-3 —
+2" (t;r - tn+2)]

+20t3, = 15) + (13 —tD1/2k - if (1 —135,,.4) > 0.
= ([0 = 13 ) + 207 —13,) +30(1] =13, )
21 = 13, 5) F A — 15, )+ 20— 1))
20— ) 32T, — )+ 2T )
o 20, —t)
F(th )+ 20t5, — 15) + (1, — 17)]1/2Kk)
215, — 1) i G =15, <0,

where t[”:max {ai, b1}, t;’:max {az,bg},...,t;;l_Irl

=max{az,+1, ban+1}, 1{ =min {ay, b1}, t, =min {ay, b2},...,
tz_,1+1=min {aon+1, bon+1}-

Proof Now, X1 — X5 = [(a1 —bany1), (a2 —b2y), ..., (an —
buy2), (@ns1—buy1), (@ng2—by), ..., (a2p—1—b3), (a2, —

by), (azny1 — b1)].
Consider

on—1

k
f (X1 — X)L + X1 — x2)Vda
0

1
_ /O L1 = banst) + kar((@2 — ba) — (@1 — by lder

2
+ ﬁk [(a2 — b2y) + (ka — 1)((a3 — b2,—1) — (a2 — bay))]da
I3

4
13 k
+ / L@ = b + (G = D((@s — bu2)
13
2/1—2

(a3 — by DM+ o+ /2 @ = basn)

k

ka

+(2n 3

— D((@n — bpy2) — (n—1 — buy3))]da

zn—l

/” ) [(an — bny2) + (2” 5 — D((an+1 — but1)

2nl

ki
—(an — byy2))ldo + /n ) [(@n+2 — bn) — (2,,% - 1)

on—2

(@42 = ) — @ns1 — bus1)lde + / s —ban)

k

ka

~(5y — D(@ng3 —

on bp—1) — (an+2 — by))]lda

i ko
+---+/2 [(a2n—1 — b3) — (7 — D((a2n—1 — b3)
B

2
(a2 — ba))da + / Lam — b2) — (ko — 1)
13

1
(a2 — b2) — (@1 — by)lda + fo a1 — by)
—by) — (azn — b2))]da
1
= %[(Gl — boyt1) + 2(ap — bay) + 3[(az —

—k(X((aszr]
bon—1)

+2(as — bag—2) + 4as — bay—3) + - + 2" (ay — byt2)]
+2" Nan41 — bug1) + 3[2" > (@ns2 — bn)

+2"ap43 — bu—1) + ... + 2(a2u—2 — bs)

+(azn—1 — b3)] + 2(azn — b2) + (azu+1 — b1)].

Then,
URr(X1, X2)
1 (X1 — X2)f + (X4 —Xz)‘,)‘/)
— d 1
) (/0 ( 170 ot
1
= 5{[[(01 — bouy1) + 2(az — bay) + 3[(az — ban—1)

+2(as — bon—2) +4(as — boy—3) + -+ 2" (ay —
+2" " Nans1 — bus1) + 312" (ang2 — by)
+2"Haps3 — buo1) + ...+ 2(a2m—2 — ba) + (@2n—1 — b3)]
+2(azn — b2) + (@zu41 — b/ k|| T D1+ 1)

bny2)]

and clearly, we get the value of || T || .

3.15 Extension of relative preference relation on
2n + 1 fuzzy numbers

Ranking n fuzzy numbers by fuzzy preference relation is
time-consuming due to pair-wise comparisons. To reduce
the time complexity, Wang (2015b) proposed relative pref-
erence relation. For example, to rank n fuzzy numbers by
a preference relation, we require nc, € O (n?) fuzzy pair-
wise comparisons. In contrast, it is sufficient to use relative
preference relation O (n) times to rank the fuzzy numbers.
We extend the relative preference relation given by Wang
(2015b) to rank 2n + 1 fuzzy numbers by having the time
complexity same as Wang’s method, i.e., the time complex-
ity is O(n) for ranking n fuzzy numbers. The method is as
follows:

Definition3.16 Let A = {X{, X3,..., X;y} be m fuzzy
numbers, where each X; = {x;1,x2,...,XiQu+1)},1 =
1,2,....mand X = % is the average of the m fuzzy

numbers of A. An extended relative preference relation R
with the fuzzy membership function pg, (X;, X) represents
the preference degree of X; over X in A. Now, we define

wr, (Xi, X)
et - -

_1 /k Xi = X)) + (X; — X), do+1] .
0 | 75 |

@ Springer
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3 - 1 _
where e 2" ) 2" (’;rm) ~lyn+1)
-3 - —4 0+ -
zn]:l +3[2" (tq(n”) — ) +2" (g3 ~ Lgn-1)
17y Il = /0 (T, = T,)f + (T,F = T,)Flda; e 20t )~ gy F (g 1y — 1)+ 20 0, — 1)
+ - et -
if [;1 > tq_(2n+l)’ F( ongry = 11/ 2k 3L () = 1,5,41) 2 0
+_ - £ - +_ -
el = g1 = 1y 0nr1)) T 200 = 15 0n) + 315 = 1,0,_1)
/o (T, =T + (T =T +20t55 = tyn-2) + 45 — g0, 3)
n—=3 ..+ - n—1,,+ —
20 g1y — Li)1des o R 2 g — )T 27 Wy ~ Yy )
3 4
+3[2n (tq(n+2) t ) + 2" (lq(n+3) q(n l))

if tq1 < tq(2n+l)’
+ + - .
where T is an interval [tql, q2""’tq(2n+])]’ Tq is an

interval [t q(2n+1)] and tq] = ml_ax{xi] 1,

(1]’ (12"”’

th= m,ax{xz'z}, cees tq+(2,,+1) = maX{xi(an)},

t¢;1 = mln{xll}’ 2= mln{th}

tq_(Zn—H) = IIliln{Xi(2n+1)}, i=1,2,...,m.

If e, (X, X) > % then X; is preferred to X and

ur,(Xi, X) < % then X is preferred to X;.

Lemma 3.17 The extended relative preference relation R, is
a total ordering relation.

Lemma3.18 Let X; and X; be two fuzzy numbers in A.
Then, X; is preferred to X; if and only if g, (X, X) >
mRr, (X, X).

Lemma3.19 X; > X, if and only if pg, (X;, X) >
1R, (X, X), where > is a binary relation as defined in Def-
inition 2.5.

Lemma3.20 Let A = {X1, X2, ..., X;,} be a set of fuzzy
numbers, where each X; = {x;1, xi2, x;3, ..., Xi@n+ 1)}, I =
1,2,...,mand X = (X1, X2, ... , X2n+1) be the average of
m fuzzy numbers. The extended relative preference relation
R, with membership function ppg, (X;, 7) represents prefer-
ence degree of X; over X in A. Then,

wr (Xi, X) = %{[[(xil — X2n+1) + 2(xi2 — X2n)
+3[(xi3 — X2n—1) + 2(xia — X2n—2) + 4(xi5s — X20-3)
o+ 2" (i — Xpg2)]1 427
32" 3 (i mr2) — Tn) + 2" it 3) — Fn1)
+-+ 2(xi@n-2) — X¥4) + (Xi@n—1) — X3)] + 2(xi2n — X2)
+&in+y —x1)1/Ck || T D1+ 1}

Y1) = Tnt1)

where
+ - + - -
Ty 1= [ = t0n41)) + 2000 = 15 00) + 3153 = 1,0,-1)
+ - + -
F2(14 = 1y 0n—2)) T 4t)s = 1,0,_3)

@ Springer

o2 Jn—2) ~ lga) T (tq(2n—l) 1,1+ 201, g2n — 1g2)
+(t;_(2n+1) - tq_l)]/(Zk)] + z(tq_(Zn-H) - t;_l)
if (1), —1

gontn) <0

where
+ + +
= m?‘-x{xil}7 lp = maX{xiz}, s lgonsn) = ml_ax{xi(Zn+])},

tq] = mm{x,l} t- 2= mln{xlz}

i=1,2,...,m

o lontny = Iniin{xi(Zn-&-l)}v

Here, we provide an example.
Example3.21 Let X; = (2,3,5,6,8; ) and X, = (1, 2.4,
7,9; %) be two pentagonal fuzzy numbers (K = 3).
Then,
Xl - X2 = (_77 _47 1a 43 7)'
Now,

t1+ =max{2,1} =2, f =min{2, 1} =1;

Similarly,
=3t =2
=5 1t =4
th =7, t; =6;
+ _ - _
=9, 17 =8

1
| T |= E(_6_6+2+ 10 + 8) 4+ 2(6) = 13.3333

Then,

—8+2+8+7

X, Xo) =
wr(X1, X2) 6(13.3333)

+ 1] =0.5125 > 1/2.

1{-=7
2

This implies X1 > X».
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1
I 7y lI= 8[(2_ 8)+23—-6)+25—-4)

40
207 =2) + O = DI +2(6) =

Now,

2-85+2B—-65)+2(5—-45+206-25+@8-1.5) "

V. () 1 ar, — X
x)=-—);
! k \ax, —ax—1

ay—1 = X < az.
Then, [P (x), R2(x), V2(x)] gives fuzzy membership func-
tion of the generalized trapezoidal fuzzy number (a1, az, a3,

1
; —). That is,
as k)

glay, az,a3,a4; x) =

— 1
H’R*(lex) =3
2[ 6(%)

1j| = 0.5063.

Similarly,
Ur, (X2, X) = 0.49038.

As pr, (X1, X) > g, (X2, X), we get X1 > Xo. We
compared the above result with Wang and Lee (2008)’s area
method.

By Wang and Lee (2008)’s method, we get x(X1) = 4.75
and x(X») = 4.6481. Therefore X; > X>.

4 Generalized 2n fuzzy number
4.1 Generalized linear 2n fuzzy number

Let {ay, a2, a3, ..., ax,} be real numbers such that a; <
a < a3 < -+ < ay,, n = 2,3,4,... and n is finite,
k > 2"—2. Now, we denote

1/ x—a
P(x):=—( );
k \a —a;

ar <x =ap

$.(0) 211—2 N 2n—2 X — dp_1
x) = ;
" k k a, — dp_1

ap—1 <X < ay
2n—2

Rn(x) = k ’

ap = X < dp+1
2n—(2r+1) 2n—(2r+1) Apys — X
+ ;
k k ap+42 — Ap41

ap4+1 = X = dp42

U(n,r) (x) ==

If k = 1 in the above, we get a trapezoidal fuzzy number.
Now,

glay,ax,a3,...,axy;x)
=[P(x), S2(x), S3(x), ..., Sn—1(x), Rn(x), Ugy, 1) (),
Un+1,2)), Un+2,3)(x)s -+ - »
Un—3,n—2)(x), Va(x)].....(2)

gives fuzzy membership function of the generalized fuzzy
n—2

number (ap, az, a3, ..., dy; T)’ where n > 3 and k >

22,

In particular, if k = 2"~ then (2) gives fuzzy membership
function of the fuzzy number (ay, a3, as, .. ., az;; 1), where
n > 3.

For example, substitute n = 3 in (2) then [P (x), S2(x),
R3(x), U, 1)(x), V3(x)] gives fuzzy membership function of
the %eneralized hexagonal fuzzy number (a1, a2, a3, aa, as,
ae; E)'

That is,

glai, az, as, as, as, ag; x)
L (x—a\.
z<a2—a1>’
1 1/ x—a
z+z<a3_a2>;
2.
Ea

1 1 (a5 —x
-+ - ;
k  k\as—ay

L (ag—x\
k \ag—as)’

ay =<x <ap

a <x <as

as = x = as

as < x < ag.

@ Springer
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Hexagonal

1 | fuzzy number

Generalized hexagonal
12 fuzzy number

v

a a, as ay as g

Fig.2 Hexagonal and generalized hexagonal fuzzy number

If £ = 2 in the above, we get a hexagonal fuzzy number
(Fig. 2).
Similarly, substitute n = 4 in (2) then

[P(x), $2(x), S3(x), Ra(x), Ua,1y(x), Ugs,2) (%), Va(x)]
gives fuzzy membership function of the generalized octago-

nal fuzzy number (ay, a2, a3, as, as, as, a7, as; ;).
That is,

glay, az, a3, as, as, ag, az, ag; x)

1/ x—a
- ; ap =x =a
k ay —daj

1 1<x—a2>
+ - ;
k \as —ap

a =<x =as

az < x < a4

4 <x<
= = ags <x<a
k 4 5
2+2 ag — X - -
-+ - ;a5 <x <a,
k  k \ag— as 5 6
1 1 a7 —x
-+ - ;a6 =X < ay
k k \ay—ag

a7 < x < ag.

If k = 4 in the above, we get an octagonal fuzzy number.

4.2 Generalized nonlinear 2n fuzzy number

Let {ay,a», a3, ..., ax,} be real numbers such that a; <
a < ay < -+ < az,, n = 2,3,4,... and n is finite,
m = 1,2, ... and m is finite. Now, take k > 2"2. Then,
we denote

@ Springer

Pm(x)'l x—ar)",
“k\ay—a; )

ay <x =a

2n—2 2n—2 —a._ m
it (x) : + (x o 1) ;

k k a, — an_1
ap—1 =X < ay
2n72
R,(x) : X )
ap = X = ap+1
Um () : 2n=@r+D) N o=@+l < ani2 — X )m.
(n,r) : _ ’
k k ap42 — Ap+41

ap+1 =X =< ap42

1 am —x \"
Vix): = | ——— ) ;
w () k (azn - azn—1>

azp—1 =X = a.

Now, [P™(x), Rz(x), V5" (x)] gives the fuzzy membership
function of the generalized nonlinear trapezoidal fuzzy num-
ber (a1, az, as, as; -).

k
Now,

[P™(x), S5 (x), 85" (x), ..., 8 (x),
Rn (-x)7 U(Z,l)(‘x)7 U(l’L+],2) U$+2’3)(-x)7 ) m(-x)
Ul ny (), VIO UL ) (),

gives fuzzy membership function of the generalized nonlin-
n—2

ear fuzzy number (ay, az, as, ..., ay; T), where n > 3

and k > 2"2,

In particular, if k = 2"~2 then (4) gives fuzzy member-
ship function of the nonlinear fuzzy number (ay, az, a3, . . .,
az,; 1), where n > 3.

Note 4.3 If m = 1 in the fuzzy membership function of the
generalized nonlinear 2n fuzzy number, then we get fuzzy
membership function of the generalized linear 2n fuzzy num-
ber.

4.4 a-cut of a generalized linear 2n fuzzy number

Let {ay, a», a3, ..., ax,} be real numbers such that a; <
a < az < --- < axy, n=1,2,3,... and n is finite. Now,
take k > 2"~2. We denote
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E(x) :=a; + ka(ar — a1);

601
o ,k

ak
Fu(a) :==a, + F — 1) (any1 — an);
'2n72 2n71
A ]

ak
I(n,r)(Ol) = dp42 — <m — 1> (an+2 — a,H_l);

_2n7(2r+1) 2n72r :|

S - 5
“ k k

Ju(a) = azy — ka(az, — az—1);

_ 1}
ael|0,-1.
|k

Now, [E (), J1(«)] gives a-cut of the generalized trape-

zoidal fuzzy number (a1, a2, a3z, as; E)' That is,

1
ay + ka(ar —ay); a e |:0, %:|

l(a1, az, a3, as; @) = {
as —ka(ag —az); o € [0, z] .

If £ = 1 in the above, we get an «-cut of a trapezoidal fuzzy
number (ay, az, asz, as; 1).
Now,

., Qop; @)
= [E(a)v FZ(OZ)’ F3((X), ER ] Fn—l(a)v I(n,l)(a)7
Ing1.2) (@), Ing2,3) (@), ..., Ton—3n—2)(@), Ju(@)]...(6)

l(ar, a2, a3, ..

gives «-cut of the generalized fuzzy number (ai, as,
2n—2
as,...,ay,; —), wheren > 3 and k > n=2,

For example, if n = 4 in (6) then

[E(a), Fa(@), F3(a), 14,1y (), I(5,2) (@), Ja(ar)]

gives a-cut of the generalized octagonal fuzzy number

(a1, a2, a3, a4, as, ae, az, as; %)-
That is,
l(a1, a2, a3, a4, as, ag, az, ag; a)

ay + ka(ar — ay); o€ |:O, %]
o+ @k — D@ —a),  ac|r o
_k k—
a3+<%—1>(a4—a3); o€ _z,l—r
B 2 Kk
a6—<%—1) (a6 —as); « € -2,4—1-
2 a
a; — (ak — 1)(a; —ags); «a¢€ l%
Lk K
1
ag — ka(ag — a7); a € [0, %] .

Ifk = 4 (Thatis, k = 2" = 2*2)inthe above, we get an -
cut of octagonal fuzzy number (a1, a>, a3, aa, as, ag, a7, as;
1).
Infimum and Supremum of «-cut of a 2»n fuzzy number:
1
Let B = (ay, az, as, as; —) be atrapezoidal fuzzy number

and pp(x) is fuzzy membership function of B.
Then,

BL = E(a)
and
BY = Ji(a).
2n—2

For a fuzzy number (ai, az, as, ..., am; T), Blf =
(E(), Fa(@), F3(@), ..., Fy_1(@) and BY = (I4,,1)(a),
Ini1,2)(@), Ina2,3)(@), ..., Ion—30—2)(a),
Jn(@)).

4.5 preference relation on 2n fuzzy numbers

We extend the fuzzy preference relation given by Wang
(2015Db) to rank 2n fuzzy numbers.

Definition 4.6 Let A and B be two 2n fuzzy numbers, where
A = (ai,ap,...,ar,) and B = (by,by,...,by,). An
extended fuzzy preference relation Ry, is a subset of R x R
with membership function g, (A, B) representing prefer-
ence degree of A over B. Then,

UR,, (A, B)
1 /Zkz ((A—B)g+(A—B)<;;)d(H1
2\Jo 7
..... (ID).

@ Springer
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where

n—2

1T = /0 (Tt =T 4 (T = T %)

. + —
if 1=,
2n72

/ T T (T T 4205 — 1)
0

if i <1,

T1 is an interval [tfr,t;r,...,tztl], T~ is an interval

[t .t,,..., 1,1 and tl+ = max{ay, b}, t2+ = max{ay, b},
] t;;l = max{aZ}’h b2n}, t]_ = min{al ’ bl }’ t2_ =
min{az, b2}, ..., t,, = min{az,, b2,}.

on—2
In(1D),if [y © (T =T+ (T+ — T7)%)da > 0, then
IRy, (A, B) > L andif A = B, then yug,, (A, B) = .

Lemma 4.7 The extended fuzzy preference relation Ry, is
reciprocal. Thatis, wg,, (A, B) =1 — ug,, (B, A) for all 2n
fuzzy numbers A and B.

Lemma 4.8 The extended fuzzy preference relation Ry, is

transitive. That is, if ug,, (A, B) > % and wg,, (B,C) >
% then wg,,(A,C) > % where A, B and C are 2n fuzzy

numbers.

From Lemmas 4.7 and 4.8, the extended fuzzy preference
relation Ry, is a total ordering relation (Epp (1990) and Lee
(2005Db).

Lemma 4.9 Let A and B be two 2n + 1 fuzzy numbers. By
extended fuzzy preference relation Ry,, A is preferred to B
if and only if ug,, (A, B) > %

Lemma4.10 A > B if and only if jug,, (A, B) > %, where
> is a binary relation.

1
Lemma4.11 Let A = (ai, az, as, ag; %) and B = (by, b,

1 1
b3, by; E) be two trapezoidal fuzzy numbers. Then, fo" [(A—

BL+(A-B)Ylda = S¢[(a1—bs)+(az—b3)+(a3—b2) +
L (A= B)Y +(A— B)¢

(as—b1)land ug,(A, B) = 5(f ( T 5
_1,(@1—by)+(ar—b3)+(a3—b2)+(as — b1)

da + D=5( WIT I +1).

where

1
IT = ﬁ[(rr — )+ =)+ - )+ -k
if =1
1
ﬁ[(tfr—t4’)+(t,j—t3’)+(z3+—z{)+(z4+—tf)]

20, —th if <

@ Springer

T+ isaninterval [1;", 25", 5", ], T~ is an interval [1;, 75 ,
3,1, ] and tl+ = max{ai, b1}, t2+ = max{ay, by}, t;r =
max{as, b3}, t; = max{as, ba}, t; = min{ar, b1}, t; =
min{ay, by}, t;7 = min{as, b3} and 7, = min{ay, bs}.
Lemma4.12 Let A = (ay, az, as, as, as, ag; %) and B =
(b1, by, bz, by, bs, bg; %) be two hexagonal fuzzy numbers.
Then,

; L U 1
/0 (A-B)y; +(A—-B),da = ﬂ[(al — be) + 2(ar — bs)
+(az — bs) + (as — b3) + 2(as — b2) + (ag — b1)]

and

1
URrs(A, B) = 5{[[(01 — be) +2(az — bs) + (a3 — by)
+(as — b3) +2(as — by) + (as — b1/ Qk | T D]+ 1}.

where

1 _ -
I 7 l1= gl = 1) +205 — 1)

+t — 1)

+f — ) +20d — )+ -] if =g

1 _ _ ~ _
=E[(tf—t6)+2(t2+—t5)+(t3+—t4)+(t4+—t3)

1205 — 1) + (1 — 1)1+ 205 — 1)
if t1+<t6_and

T+ is an interval [t1+’ t2+, t;', II, t5+, t;], T~ is an inter-
val [t ,ty 13,14 15 , 15 | and t1+=max {ai, b1}, t;=max
{az, by}, 1y =max{az, b3}, 1 =max{as, bs}, t5 =max {as, bs},
té':max {as, b}, t| =min{ai, b1}, t, =min{az, by}, t; =min
{az, b3}, t, =min{ay, ba}, t5 =min {as, bs}, tg =min {ag, bs}.
Lemma4.13 Let A = (ai,a2,...,0an, Gntl, ..., 02n—1,

.22 .
aZn, k ) Clnd B = (bls b27 REEE ] bna bn+la L] b2n—lv bzns
)
%) be two fuzzy numbers, where n > 3.

Then,

KRy, (A, B) = %{[((al —bop) +2(az — ban—1)
+3[(a3 — ban—2) + 2(as — bay—3) + 4(as — ban—a)
+o 2" Aot = ba2)] + 2" an = bay1)
+2" (@1 = by) + 312" Hang2 = bu1)
+2" (@43 — by—2) + -+ + 2(a2n—3 — ba)
+(azn—2 — b3)]
+2(azn—1 — b2) + (a2n — 01))/Ck || T ID] + 1},

where

I T lI= 16" —t5,) + 2t —t5, ) + 30t —15,_5)
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+2(t5 —15,_3)

A =, )+ 2 )+ 2

5 =) +2" 3@ — ) 32, — )
F2 T ) 20, — 1) + (1, —17)]

+2(t), =)+ (1), —t)1/2k if (1 —13,) =0

=[] —13) + 205 — 15, + 3115 —13,_5)

+20t — 15, 3) AT =t )+ 2N — )]

+2 3 - ) 2 — ) 3R, — )

F2I ) 2y — 1)+ (1, — 15)]

2065 — 1) + (&5, — 1) /2k] + 2(t5, — 1)

if  —1,)<0.

4.14 Extension of relative preference relation on 2n
fuzzy numbers

Definition 4.15 Let A = {X, X, ..., X,;} be a set of fuzzy
numbers, where each X; = {x;1, xj2, Xi3, ..., Xjon)}, i =
1,2,....,m. and X = (X1,%2,...,X2,) be the average
of m fuzzy numbers. The relative preference relation R,
with membership function wgs (Xi, X) represents prefer-

ence degree of X; over X in A.
Then,

frs, (Xi, X) = %{[((xu — X20)

+2(xi2 — X2n—1) + 3[(xi3 — X20-2)

+2(xi4 — X2n-3) + 4(xi5s — Xop—4) + -+ +

2" (Xin—t1) = Fng2)] + 2" (i — Xng1)
2" i1y = Xn) + 312" (Kia2) — Fa1)
2" (Xina3) — Xn—2) + - -+ 2(Xi@n—3) — X4)

+(Xi2n—2) — X3)]1 + 2(Xj2n—1) — X2)

+(xizn —X1))/ 2k || T 1D+ 1},

where

I Ty l1= 1ty = tg20) + 2055 = tgan1) + 305 = 10, )
F201.5 =t 0 _3) HAUSs — 100, ) -+
2y qn—1) ~ (;,+2))] +2"3 — s
+2n 3¢ )+3[2n —4(* o —

5
+2n (tq n+3)

fyn-1))
+ 2(tq(2n 3~ ty)
172) +(,,2n —1,)1/2k

qgn+1) —
q(n—2)) + ...
1t an 2y = 1)1+ 2010, 1) —
if (t;rl qzn) >0

= [((t]} = t3) + 207, — 1, ) + 31
F2(104 — 1, 3) T A5 — 1, )+

—4 -3 -
2" ( qn—1 " qn+2)] + 2 (t;;l - tqn+l)

- tq_2n72)

23— ) 3127 -
2T e ) A 20t — 1)

(1, o — 3)]+2(rq2n L= 1)+ (U, — 11))/2K]
+2(t;

q2n ql) lf(tql q2n) <0.

qnfl)

Example 4.16 Let

={0.12,0.2,0.24, 0.28, 0.3, 0.35, 0.4, 0.46; 1},
X, =1{0.1,0.15,0.25,0.27,0.32, 0.36, 0.38, 0.48; 1}
and X3 = {0.1,0.17,0.2,0.3,0.35,0.38,0.41,0.5; 1}

be octagonal fuzzy numbers.
Then, | T || of X and X is

é[(O.lZ —0.46) +2(0.2 — 0.38) 4+ 3(0.25 — 0.35)
+2(0.28 — 0.3) 4+ 2(0.32 — 0.27) + 3(0.36 — 0.24)
+2(0.4 —0.15) + (0.48 — 0.1)] +2(0.46 — 0.12)

=0.7175,

where

;7 = max{0.12,0.1} = 0.12;  #; = min{0.12,0.1} = 0.1
tf = max{0.2,0.15} = 0.2; #; =min{0.2,0.15} = 0.15
i = max{0.24,0.25} = 0.25; #; = min{0.24, 0.25} = 0.24
1§ = max{0.28,0.27} = 0.28; 7; = min{0.28, 0.27} = 0.27
1§ =max{0.3,0.32} = 0.32; #; =min{0.3,0.32} = 0.3
t& = max{0.35,0.36} = 0.36; 7, = min{0.35,0.36} = 0.35
t = max{0.4,0.38} =0.4 ;= min{0.4,0.38} = 0.38
t§ = max{0.46, 0.48} = 0.48 t; = min{0.46, 0.48} = 0.46.

Then,

1

iRy (X1 X2) = Z{1(0.12—0.48) +2(02 ~ 0.38)
+3(0.24 — 0.36) + 2(0.28 — 0.32) +2(0.3 — 0.27)
+3(0.35 — 0.25) + 2(0.4 — 0.15) + (0.46 — 0.1)]

1
/(8 x 0.7175)] + 1) = 0.5052 > -

Therefore X is preferred to X».

Similarly, /gy (X1, X3) = 0.4924 < 1.

This implies X3 is preferred to Xy and pgy (X2, X3) =
0.4885 < % This implies X3 is preferred to X». Therefore
X3 > X1 > X».

By extended relative preference relation,

= (0.1067,0.1733, 0.23, 0.2833, 0.3233, 0.3633,
0.3967, 0.48).
tl—max{012 0.1,0.1} =0.12

@ Springer
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t;; = min{0.12,0.1,0.1} = 0.1
tq+2 = max{0.2,0.15,0.17} = 0.2

t;, = min{0.2,0.15,0.17} = 0.15
Similarly,

zq+3 =025 1,;,=02

t[;: =0.3; ty =027

zq+5 =035 1,5=03

z;6 =0.38; tye =035

tq+7 =0.41; 17 =0.38

1;8 =0.5; tg =046

and

I T, = [[(0.12 — 0.46) + 2(0.2 — 0.38) + 3(0.25 — 0.35)
+2(0.3 — 0.3) 4 2(0.35 — 0.27) + 3(0.38 — 0.2)
+2(0.41 — 0.15) + (0.5 — 0.1)]/(2 * 4)]
+2(0.46 — 0.12) = 0.7175.

Now,

Why (X1, X) = %{[[(0.12 —0.48) +2(0.2 — 0.3967)

+3(0.24 — 0.3633)
+2(0.28 — 0.3233) +2(0.3 — 0.2833)

+3(0.35 — 0.23) + 2(0.4 — 0.1733)

+(0.46 — 0.1067)]/(8  0.7175)] + 1} = 0.4991.

Similarly, we get up (X2, X) = 0.4939 and Wy (X3, X) =
0.5070.

As M;S(X3, X) > MES(XI, X) > M”I}S(Xz, X), we get
X3 > X1 > X».

The above result is compared with Wang and Lee (2008)’s
method and according to this method the values are X (X 1) =
0.2954, X (X2) = 0.2853 and X (X3) = 0.2976.

Hence we get X3 > X1 > X».

5 Fuzzy multi-criteria decision-making
(FMCDM) model

In this section, we extend FMCDM model given by Wang
(2014) using the relative preference relation on 2n + 1 fuzzy
numbers.

In this algorithm, we consider the generalized 2n + 1
fuzzy numbers with k = 2"~! and we denote them as
(ay,az, ..., axy+1) instead of (ay, az, ..., azy+1; 1).

@ Springer

We take Ep, Es,..., E, as the experts who provide
their opinion on criteria C1, C3, ..., C; of the alternatives
Ay, Ag, ..., Ap.Let Biji=(bijit, bijn, bijiz, - - - bijion+1))
be the evaluation rating given by the expert E; for alternative
A; on criterion Cj, wherei =1,2,...,p,j =1,2,...,1,
[=1,2,...,r.

Then,

Bij = (bij1, bij2, bij3, ..., bijan+1)),

where

1 r

bij1 = - Zbijll
g
1 r

bijp =+ > bijn
=1

1 r
bijz = - ;bijB

1 « _
bijon+1) = - Zbiﬂ(znﬂ), i=12,...,p,
I=1
j=12,...,t,n=1,2,3,...and n is finite.

The normalized value of B;; is denoted by Ei ; and it is clas-

sified as follows.
If B;; belongs to cost criteria then

~ b b b b, by
Bj = ( J J J _ J .

bijon+1) bijan) bijon—1y  bij2 biji
where
b, = miin{bijl}, Vij

If B;; belongs to benefit criteria then

- bij1 bij> bij3 bijony bijen+1)
ij = b+ ’b+ sb+ ;~~»b+ 7b+ s
jen+) Zien+1) Picn+n jentl) Pt
where

blonsn = max{bijen+n} v J.

Let Wj[ = (wj“, Wi, .., wj'[(2n+1)) be the weight of the
criterion C; given by the expert E;, where



Generalization and ranking of fuzzy numbers by relative...

1115

Then,

Wi=Wwji, wj2,..., Wj2nt1)),

where

| r
wjl:;g wii1
=1
1 r
U)'2:—§ w2
J J
r
=1

1 .
Wjntl) = ijl(Zn-i-l)s j=12...,1
=1

The normalized values of i’ alternative on 7 criteria are pre-
sented as follows.

A_[Blla 129"-1§il]1 l:17299p

Then, we find ideal and anti-ideal solutions according to as
Wang et al. (2003).

The ideal solution is At = [B, B;r, ..., Bi"1, where
BJr = (¢ t(j—j(2n+1)) is the best rating on jth

qj 1 q/2""’. .
crlterlon for all normalized values, j =1,2,...,1.
The anti-ideal solution is A~ = [B;,B,,..., B/ ],
where Bj = (tqjl, lyjs s tqj(2n+1)) is the worst rating

on jth criterion for all normalized values, j = 1,2, ...,1.
Now, g, (Bf, B;j) indicates the relative preference
degree of AT over the alternative A; to the jth criterion,

i=12....p, j=12 ...t

Then,

MR*(B ,Bij) = {[[(tqjl l/(2n+1))+2(tqu bijan)

+3[(t l](2n 1))+2(th4 lj(2n 2))

+4(qu5 ijen—3) + ... +2" S(th,, — bijn+2)]
+2m it AT bijn+1)) + 312" _3(1(;(”2) — bijn)

2" gy — Dijn=) - 2000y — Bija)

+(tqj(2n—l) - ij3)] + 20;}(2”) - gijZ)
(S ary = DI/ @ x 2771 Ty D1+ 1}

and
~ o~ 1 ~ B ~ _
H’R*(Bija Bj ) = 5{[[(bijl - tqj(2n+l)) + Z(bijZ - tqj(Zn))

+3[(bij3 - t(;(gn,])) + 2(bij4— - tqij(znfz))
~ -~ 3~ _
+4(bij5 - tqj(2n73)) +--- 42" (bijn - tqj(n+2))]

Table 1 Data given by experts about various criteria with respect to
alternatives

Criteria Internet provider E; E> Ej E4
1 Al VG VG G A
Ao A G VG A
Az P A A G
Ay A G G A
€2 Ay A G A G
Ay VG A G G
Az G A P A
Ay A G A VG
c3 Aq P A G A
Ar G A VG G
A3 A G A G
Ay G G G A
cy Ay A G A A
As VG G G A
A3 G G A G
Ay A VG G A
cs Al 60 65 70 60
Ar 70 75 70 80
A3 90 100 80 95
Ay 65 60 70 65

2" Bijurty = tjngr) 312" Bijinr — 157,)
2" Bijusn) — tjor) T+ 2Gijan2) = 1774)
+(Zij(2n—1) — 1,31+ Z(Zij(2n) — 1)
+Bijensny — 11/ @ x 2771 Ty, D1+ 1)

indicates relative preference degree of alternative A; over A~
to the jth criterion, where

Lo+ - + -
I Tg; 1= S 1g50 = tgjney) + 2050 = 1gj0,)

+ - + -
33 = fgjan—1) +20gjs = gjon-2)

n—=3/.+ —
+4(th5 fyjn—3) T+ 2770, = 1y5,00)]
n—1 n-3 —
A2y ~ i) 312" W ) — L)
n—4 _
A2 ) — i) T 20 ) — 1)

Htan-n) — lg)] + 2(tq1<2n) ti2)
+
1y gy — g2 (151 = 150,41)) = 0.

1
+ - +
g1 = 1gjmeny) F 2igin = tgj2,) + 3100555 = 15 0-1)

+2(th4 fin—) T 45 =10, 3)
n=3,.+ — n—1,,+ _
T 20— )] 2T gy T lgjaan)

@ Springer
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Table2 Linguistic terms of feedback and corresponding fuzzy numbers

Linguistic terms Fuzzy numbers

Very poor (0,0, 10, 20, 30)
Poor (10, 20, 30, 40, 50)
Average (30, 40, 50, 60, 70)
Good (50, 60, 70, 80, 90)
Very Good (70, 80, 90, 100, 100)

Table3 Linguistic terms of weights of criteria and corresponding fuzzy
numbers

Linguistic terms Fuzzy numbers

Very Low 0,0,0.1,0.2,0.3)
Low (0.1,0.2,0.3,0.4,0.5)
Medium (0.3,0.4,0.5,0.6,0.7)
High (0.5,0.6,0.7,0.8,0.9)
Very High (0.7,0.8,0.9, 1,1)

Table 4 Linguistic terms of

, uis Ei E» Es E4
weights of criteria
¢t M H H VH
C, H L M M
C; M H VH H
Cy M H M H
Cs H M H M
302" ey~ i) 2T a3y~ i)

e 200 ) 1)

Hgian-1y ~ g1+ 2tgi0n ~ 1)

(i ns1) ~ gDV 2KT+ 200 1) = Tg0)
if (i =1 onin) <O,

Table 4 represents linguistic terms of weights of criteria
given by experts Tables 5, 6 and 7 provide related calcula-
tions.

where

+ b
i1 = miax{b,/l}
+ 7.
lin = mljax{b,]z}

tc;‘(znﬂ) = miax{bij(2n+1)}
and

@ Springer

Table 5 Fuzzy group decision matrix

Ay

A3

Ap

Aj

Criteria

(40, 50,60,70,80)

(30, 40,50,60,70)
(30, 40,50,60,70)

(40,50,60,70, 80)

(45, 55,65,75,82.5)
(50,60,70,80,87.5)

(55, 65,75,85,90)
(40, 50,60,70,80)
(30, 40,50,60,70)
(35, 45,55,65,75)

Cy

(45, 55,65,75,82.5)
(45, 55,65,75,85)

C

(50,60,70,80,87.5)

C3

(45, 55,65,75,82.5)
(65, 65,65,65,65)

(45, 55,65,75,85)

(50,60,70,80,87.5)

Cy

(91.25,91.25,91.25,91.25,91.25)

(73.75,73.75,73.75,73.75,73.75)

(63.75, 63.75,63.75,63.75,63.75)

Cs
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Table 7 Fuzzy weights of criteria
aas % Criteria Fuzzy weights
o A -
® ¥ =~ a
222383 Ci (0.5,0.6,0.7,0.8, 0.8750)
A
s = 228 C, (0.3,0.4,0.5,0.6,0.7)
T R
5338 C3 (05,0.6,0.7,0.8, 0.8750)
L X xS oS
33 & Cs (0.4,0.5,0.6,0.7,0.8)
g2 gl
S s Cs (0.4,0.5,0.6,0.7,0.8 )
R
v o 0 Lo
n A a R o
e L o @
S S o g5 <
T
R
Ty S
<|Secce< - e
1yt Zmim{bijl}
5 zg tg2 = min{bi)
52858
S T =c <
S s =g
€Sk E - e .
2; Sr" g & g tqj(2n+1) Zmim{bij(2n+1)}s i=12,...,p.
FR23%
n 28 ¥ o ~, ~
2> 2 S 2 D;" is derived by using [LR*(BJ- ,Bjj) and W;, j =
§ 5 E @ % 1,2,...,t and indicates the weighted preference degree of
S o s g S AT over the alternative A; and D, is derived by using
N N — 0 O 5 S— . . qs
a g 5 VZ: § 1R, (Bij, By) and W;, j = 1,2,....t and indicates
Il s s s S the weighted preference degree of A; over A~ for i =
1,2,...,p.
—~ Now,
3
~ 3
© S
= 5 + R+ B 2+ B
2 D" = (Wingr, (B]", Bi1)) + (Waug,(By, Bi2)) + - -
o = = =R ~ o~
DeggeS +(Wir, (B,", Bir))
S a3
g S S SR - == =~
EEEE and D = (Wi, (Bir, B))+ (Wapr, (Bio, By +-- -+
SZEcn (Wenr,(Bir, By), i=1,2,...,p.
Z 888 Then, we get D;" and D; as 2n + 1 fuzzy numbers and
- o O O
- are denoted by
S S S S
wn N N N
<lescscc<e Dt = (4t dF a* d
i =y, dy, - dip, ) a0
. D, :(dl.l, s l.(2"+1)),t:1,2,...,p.
o S
e TR Th
‘= IS %< en,
g o K 2o
(=) o
E o o~ X ﬁ 5+ _(E-l-
9] I =] = \“1>
z © o 2 g —+ —+
é SSF;:S dz,...,d2n+]) and
=y = S — ——
£ S o o X
- = x 2 _ g N
E : l,[\‘] g q —:\ d2,...,d2n+l),
ER I =P
A EESARS S S
g where
Z
® = + 1 <
28 + _ +
SlE| - « " d __Zdil
LA RN GG SIS )4

i=1
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Table 8 Ideal and anti-ideal
solutions of internet service
providers

AT

A-

Cy (0.6111,0.7222, 0.8333, 0.9444,

Cy (0.5714,0.6857, 0.8, 0.9143, 1)
C3 (0.5714,0.6857, 0.8, 0.9143, 1)
C4 (0.5714,0.6857, 0.8, 0.9143, 1)
Cs (1,1,1,1,1)

1) (0.3333, 0.4444, 0.5556, 0.6667, 0.7778)
(0.3429, 0.4571, 0.5714, 0.6857, 0.8)
(0.3429, 0.4571, 0.5714, 0.6857, 0.8)
(0.4, 0.5143, 0.6286, 0.7429, 0.8571)
(0.6986, 0.6986, 0.6986, 0.6986, 0.6986)

Table 9 Relative preference degree of ideal solution over internet

providers on criteria

nrs(GT.Gip) Al Ay A3 A4

Ci 0.5 0.6230 0.8095 0.6825
(0) 0.9072 0.5 0.7480 0.5630
C3 0.7480 0.5 0.6221 0.5590
Cy 0.6850 0.5 0.5590 0.5630
Cs 0.5 0.7250 1 0.5319

Table 10 Relative preference degree of internet service providers over

anti-ideal solution on criteria

nre(Gij, G7) A A As A

Cy 0.8095 0.6865 0.5 0.6270
Cy 0.6260 0.7480 0.5 0.6851
C3 0.5 0.7480 0.6260 0.6851
Cy 0.5 0.6850 0.6260 0.6260
Cs 1 0.7750 0.5 0.9681

P
d2 = ; Z dl-g

i=1

14
dy = — ZdiS
P

1 P
_ +
d2n+1 = ; z :di(2n+l)
i=1

and

1<
d :;Zdi_l

i=1

1
d, =;Zdi_2

i=1

__ 1<
d2n+l = ; Zdi(Zn—H)'

i=1
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Now, the relative closeness coefficient D; of the alternative
A; is defined as

D — 1R (D D) .
1 — [ — _+ ’
1R, (D7, D)+ ug, (D", D)

where g, (D], D) is the relative preference degree of D -
over D and R (DI.Jr , 5+) is the relative preference degree
of D" over D

Clearly, D;, i = 1,2, ..., pisin the interval [0, 1]. The
bigger the value D;, i = 1,2, ..., piscloser the ideal solu-
tion is. Alternatively, smaller the value D;, i = 1,2,...,p
is closer the anti-ideal solution is. Thus, the P alternatives
are ranked according to their relative closeness coefficients
Dy, Dy, ..., Dp.
Analysis of computational complexity
The computational complexity of the proposed algorithm is
O (mn), where m is the number of alternatives with n criteria.
Like in the other FMCDM methods, it is assumed that the
number of experts is a constant for the purpose of compu-
tational complexity. If m = O (n), then the algorithm takes
quadratic (0(n?)) time. In general, FMCDM methods have
O (mn) computational complexity. This coincides with the
complexity of the algorithm given in this paper.

Example 5.1 In real-world conditions, selection of an inter-
net service provider is often based on various criteria such
as Monthly cost (Cs) as Cost criteria and Volume of data
(C1), Speed of internet (C3), Subscription to OTT platforms
(C3), dependable customer service (C4) as benefit criteria.
If the available internet service providers (A1, A2, A3, As)
are assessed on this criterion by four different experts (E7,
E,, E3, E4) with each expert considering one of the benefit
criteria to be more important than others, then there will be a
dilemma in the selection as each service provider may have
at least one parameter in which they are superior to other
internet service providers. In such situations, we provide a
solution to arrive at a decision as follows.

Table 1 represents the consolidated information about the
performance of various internet service providers (A1, Az,
Az, A4) with respect to various selection criteria (Cy, Ca,
C3, Cy4, Cs) by various experts (E1, E», E3, E4) wherein the
feedback on benefit criteria is expressed as Very Good (VG),
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Good (G), Average (A), Poor (P) or Very Poor (VP). The
feedback on cost criteria, on the other hand, is expressed as
numerical values (for example, here it represents price of the
service).

Linguistic terms used for expressing the feedback on ben-
efit criteria are assigned with fuzzy numbers as shown in
Table 2.

Table 3 represents weights of criteria and their correspond-
ing fuzzy numbers.

Ideal and anti-ideal solutions of 4 internet service providers
are presented in Table 8. Subsequent calculations are shown
in Tables 9, 10, 11, 12, 13, 14, 15, 16.

From Table 17, the relative closeness coefficients of 4
internet service providers are A : 0.4993, A; : 0.5767, A3 :
0.3607 and A4 : 0.5624 and hence the rank order of internet
service providers is A > A4 > A1 > Ajz. This indicates
that the internet service provider A; is better compared to
other internet service providers.

6 Validation with existing methods

Wang (2014) proposed an algorithm to give decision in a
triangular FMCDM using relative preference relation along
with TOPSIS method. In the present study, we extended
Wang’s method to arrive at a decision in FMCDM problems
involving 2n+-1 fuzzy numbers. Similar extension is possible
for FMCDM problems involving 2n fuzzy numbers.

The suitability of the proposed method was verified by
comparing it with the popularly used multi-criteria decision-
making methods such as VIKOR, MOORA and ELECTRE.
Prior to the application of these methods, alternative values of
various criteria given by experts and weights of criteria from
the above example are converted to crisp values by centroid
defuzzification method.
1.VIKOR: Following table of values is obtained by applying
VIKOR method (Opricovic (1998, 2002)).

Aj Ar A3 Ay
S 1.5384 0.3488 2.3193 0.5928
R 0.6950 0.2182 0.6950 0.4504
Q 0.8019 0 1 0.3054

From the above table, rank order of the alternatives is
A2>A4>A1 >A3.
2. Multi-objective Optimization by Ratio analysis
(MOORA): By applying MOORA reference point method
( Brauers and Zavadskas (2006, 2010)), deviations from the
reference points and ranking of the alternatives are presented
in the following table.

@ Springer

Cy Cy C3 Cy Cs max. value Ranking
A O 0.0386 0.11 0.0682 0 0.11
Ay 0.0527 0 0 0 0.0404 0.0527

Az 0.1329 0.0793 0.0535 0.0211 0.1111 0.1329
A4 0.0775 0.0203 0.0253 0.0235 0.005 0.0775

N A=W

3. ELECTRE: By using ELECTRE method (Roy (1991)),
following global matrix is obtained.

Al Ay Az Ay

AL /— 0 0 0
Alo — 1 o0
Asl1 0 - o0
As N1 0 1 —

From the global matrix, it is clear that A > A3 > A; and
A4 > Az > A1 which can also be expressed as Ay > Agq >
Az > Aq.

The rank order of alternatives obtained from all three
methods indicates the proposed method’s suitability in
FMCDM problems. The proposed method involves less oper-
ational complexity, it is easy to compute, and it minimizes
the loss of information.

7 Conclusions

We have defined 2n 4+ 1 and 2n fuzzy numbers as gen-
eralizations of triangular and trapezoidal fuzzy numbers,
respectively. Fuzzy preference relation and relative prefer-
ence relation of Wang (2015b) are extended to rank 2n and
2n + 1 fuzzy numbers and the results are compared with
Wang and Lee (2008) method. Wang (2014)’s method was
extended to arrive at a decision in FMCDM problems when
the given data is in terms of 2n + 1 fuzzy numbers. An illus-
trative example was provided to explain the suitability of
the proposed method, and the results were validated using
VIKOR, MOORA and ELECTRE methods. The proposed
method can also be extended to 2n fuzzy numbers.

Table 13 Weighted preference degrees of ideal solution over internet
service providers and average

Weighted preference degrees

Df“ (1.3702, 1.7042, 2.0382, 2.3722, 2.6750)
D;r (1.2015, 1.4863, 1.7711, 2.0559, 2.3126)
D3+ (1.5639, 1.9377, 2.3116, 2.6854, 3.0234)
DI (1.2277, 1.5176, 1.8079, 2.0974, 2.3563)
Average D (1.3408, 1.6615, 1.9822, 2.3027, 2.5918)
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Table 14 Weighted preference degrees of internet service providers
over anti-ideal solution and average

Weighted preference degrees

Dy (1.4426, 1.7861, 2.1297, 2.4732, 2.7840)
Dy (1.5257, 1.8899, 2.2542, 2.6184, 2.9468)
Dy (1.1634, 1.4386, 1.7138, 1.9890, 2.2361)
Dy (1.4992, 1.8584, 2.2176, 2.5767, 2.9030)
Average D (14077, 1.7433, 2.0788, 2.4143, 2.7175)

Table 15 Relative preference

degrees u% (D;", DhH #es(DY, D) 05218
Wo(DF, DY) 04183
wo(DF, DY) 06277
1w (DF, DY) 0.4323
(Ti:'g’:zgs‘sui(‘*;f’v%l’_r)eference ure(D7, D7) 0.5203
wh(Dy, D) 0.5700
oDy, D) 03542
Dy, D) 0.5555
Table 17 Relative closeness
coefficients of internet service D 0.4993
providers D, 0.5767
Ds 0.3607
Dy 0.5624
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