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Abstract: The creep parameters of rockfill materials obtained from engineering analogy method or indoor 

tests often cannot accurately reflect the long-term deformation of high Concrete Faced Rockfill Dams 

(CFRDs). This paper introduces an optimized inversion method based on Multi-population Genetic Algorithm 

improved BP Neural Network and Response Surface Method (MPGA-BPNN RSM). The parameters used for 

inversion are determined by parameter sensitivity analysis based on the statistical orthogonal test method. 

MPGA-BPNN RSM, validated by Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) 

and squared correlation coefficient (R2), etc., completely reflects the response between the creep parameters 

and the settlement calculation values obtained by Finite Element Method (FEM). MPGA optimized the 

objective function to obtain the optimal creep parameters. The results show that the settlement values of 

Xujixia CFRD calculated by FEM using the inversion parameters has great consistency with the monitored 

values both in size and in distribution, suggesting that the model parameters obtained by the introduced creep 

parameter inversion method are feasible and effective. The introduced method can improve the inversion 

efficiency and the prediction accuracy in FEM applications. 
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1. Introduction 

High Concrete Faced Rockfill Dams (CFRDs) has become one of the most popular dams in water 

conservancy projects due to the advantages of strong terrain capability, low cost, convenient construction, and 

short construction circle (Sukkarak et al. 2017; Xu et al. 2012). Accurately predicting the deformation caused 

by the creep effect of the rockfill by FEM can effectively reduce the void and cracking of the concrete panel 

(Zhang et al. 2015; Zhou et al. 2016). The creep parameters determined by engineering analogy (Huang et al. 

2015) and indoor test with size effect (Shao et al. 2020; Zhou et al. 2019) often fail to reflect the actual long-

term deformation characteristics of the target dam. Therefore, it is necessary for the inversion of model 

parameters based on the monitoring data. 

The optimized inversion method with RSM aims to transform the parameter inversion problem into an 

objective function optimization problem, and then establish the mapping relationship between the parameters 

used for inversion and the FEM calculation values (called RSM, mainly including polynomial RSM and neural 

network RSM) to replace the iteration process in the FEM, the overall cost of the inversion analysis process 

can be greatly reduced (Guo et al. 2016; Yao et al. 2019; Yin et al. 2011). BPNN, as a kind of ANN, is an 

information processing mathematical model with a structure similar to the synaptic connections of human 

brain. In parameter inversion, if there are a sufficient number of combinations of parameter samples, the BPNN 

is able to predict the mapping result of any unknown parameter combination. Therefore, BPNN RSM can 

compensate for the limitations of low-order polynomial response surfaces in nonlinear finite element problems 

(Li et al. 2019; Ren and Bai 2011). Many researchers (Liu et al. 2020b; Togan 2013; Uzlu et al. 2014) have 

pointed out that the BPNN is sensitive to the initial weights and deviations, poor global search capability, and 

easy to fall into the local minimum. When predicting the results of parameter combinations using the trained 

BPNN, there is usually a significant discrepancy from the expected result. MPGA can solve the premature 

convergence problem of GA by co-evolving multiple populations with different control parameters, including 

the both global search and local search capabilities (Choubey and Kharat 2013; Pandey et al. 2014). Wang et 

al. (2017) predicted the deformation by MPGA-BPNN and various types of measured data (such as water 

level, temperature, aging, etc.). Yong et al. (2020) used MPGA-BPNN to classify the common faults of 

planetary gearbox. Zhang et al. (2021) used MPGA-BPNN to optimize the initial localization algorithm (ILA) 

by error correction. 

MPGA-BPNN cited beforehand accomplished the purposes of machine learning and optimization 

algorithm. The further combination of MPGA-BPNN and FEM for parameter inversion is an unclear but 

worthy subject in the engineering field. This paper validates the rationality and accuracy of MPGA-BPNN 



RSM and uses it for parameter inversion based on the optimized inversion method. For the example of the 

Xujixia CFRD, section (2) briefly introduces the monitoring system and creep model for rockfill materials. 

Section (3) obtains the sensitive parameters for displacement by Analysis of Variance (ANOVA) based on 

orthogonal test, which can further reduce the inversion cost. Section (4) introduces the specific implementation 

process of parameter inversion based on MPGA-BPNN RSM and MPGA optimization theory in detail. First, 

an objective function for dynamic inversion is determined. Second, three types of test samples are determined 

to reduce sample defects and train MPGA-BPNN to obtain the response surface. RMSE, MAPE, R2, etc. are 

used to completely validate the rationality of the combination of MPGA-BPNN and FEM. Third, the optimal 

creep calculation parameters are obtained by MPGA optimization, and the rationality and accuracy of the 

process are verified in the Xujixia CFRD. Section (5) and (6) are discussions of some future research and 

conclusions, improving the efficiency and accuracy of parameter inversion. 

2. Engineering case study: the Xujixia CFRD 

2.1 Displacement monitoring system 

In order to perform parameter inversion, the monitoring data must be processed and analyzed first. 5 sets 

of hydraulic overflow settlement gauges (a total of 35 gauges) are used to monitor the internal settlement of 

Xujixia CFRD at five altitudes of 3392, 3395, 3425, 3430, and 3433m at three observation sections of D0 + 

083.8, D0+ 163.8, and D0 + 223.8m, as shown in Table 1, Fig. 1. The parameters of the primary rockfill 

material mainly affect the settlement deformation of the primary rockfill, while the parameters of the 

secondary rockfill material mainly affect the settlement deformation of the secondary rockfill (Chi and Zhu 

2016). Therefore, the settlement measured at the primary rockfill zone was used to invert the parameters of 

the primary rockfill material first. After determining the parameters of the primary rockfill material, the 

settlement measured at the secondary rockfill zone was then used to invert the parameters of the secondary 

rockfill material. In addition, in order to avoid the influence of different dam materials, the monitored values 

at the monitoring points in the central area of the primary and secondary rockfill were taken as the actually 

measured values (as shown in Fig. 1, red circles refer to the selected monitoring points in the primary rockfill 

zone and blue circles refer to the selected monitoring points in the secondary rockfill zone). Fig. 2 shows the 

3D FEM model of the Xujixia CFRD. Due to space limitation, we would only elaborate the parameter 

inversion of the primary rockfill zone. 

Table 1. Arrangement of hydraulic overflow settlement gauges 

Section Altitude/m Numbers of 

monitoring 

points 

Device number (from 

upstream to 

downstream) 

Select monitoring 

points (primary 

rockfill zone) 

Select monitoring 

points (secondary 

rockfill zone) 

Left of the dam 

D0+83.8m 

3433 5 CS1-1-01~CS1-1-05 CS1-1-02 CS1-1-04 

Left of the dam 3425 6 CS1-2-01~CS1-2-06 CS1-2-02、CS1-2-03 CS1-2-05 



D0+163.8m 3392 9 CS1-3-01~CS1-3-09 CS1-3-02、CS1-3-03 CS1-3-07 

Left of the dam 

D0+223.8m 

3430 6 CS1-4-01~CS1-4-06 CS1-4-02、CS1-4-03 CS1-4-05 

3395 9 CS1-5-01~CS1-5-09 CS1-5-02 CS1-5-07 

Fig. 1. A typical cross-section of the Xujixia CFRD 

Fig. 2. Schematic diagram of the Xujixia CFRD 3D FEM model 

2.2 Creep model for rockfill materials 

Based on the dam prototype monitoring data, Shen (Shen and Zhao 1998) proposed a three-parameter 

model of rockfill creep based on the hysteresis deformation theory. The exponential curve of creep 

characteristic of rockfill is expressed as：𝜀(𝑡) = 𝜀𝑓(1 − 𝑒𝑥𝑝−𝑎𝑡)（1）

where 𝜀(𝑡) is time-dependent creep strain, 𝜀𝑓 is the final creep deformation when t→∞, a is the ratio 

of initial creep deformation when t=0, and exp is the base of natural logarithm. 

Assuming the creep deformation of the rockfill is related to the confining pressure and stress level, the 

total creep deformation of the rockfill can be divided into volume creep 𝜀𝑣𝑓 depending on the confining 

pressure and shear creep 𝜀𝑠𝑓  depending on the stress level. According to the rockfill and clay creep 

deformation test results, Shen determined that the soil volumetric creep deformation and shear creep 

deformation could be simulated as: 



𝜀𝑣𝑓 = 𝑏 𝜎3𝑃𝑎（2）𝜀𝑠𝑓 = 𝑑 𝐷1−𝐷（3）

The creep deformation of the rockfill is closely related to the stress state of the rockfill. In the three-

parameter creep model, 𝜀𝑣𝑓 and 𝜀𝑠𝑓 are respectively assumed to relate to the confining pressure and the 

stress level only, and the final volumetric creep was assumed to have a linear relationship with the confining 

pressure. However, a large number of experiments have proven that 𝜀𝑣𝑓 is also related to the shear stress, and 

the volume creep has a non-linear relationship with the confining pressure. In order to overcome the 

shortcomings of the three-parameter creep model, Li et al. (2004) proposed an improved seven-parameter 

creep model based on the three-parameter creep model, in which the final equations of volume creep and shear 

creep were revised as follows: 𝜀𝑣𝑓 = 𝑏 (𝜎3𝑃𝑎)𝑚1
+ 𝑐 ( 𝑞𝑃𝑎)𝑚2

（4）𝜀𝑠𝑓 = 𝑑 ( 𝐷1−𝐷)𝑚3
（5）

The improved model can fully reflect the deformation characteristics of particle crushing and slippage of 

the rockfill under complex confining pressures, and the final creep value is related to the confining pressure, 

stress level and shear stress. This model contains 7 parameters a, b, c, d, m1, m2 and m3. In this paper, the basis 

for the creep parameters of the primary and secondary rockfill material was determined by comparing the 

same project (Wen et al. 2017; Yao et al. 2019; Zhou et al. 2011). Then, the range of the parameters were also 

determined by changing each parameter value within a reasonable range. Table 2 shows the range of the 

primary and secondary rockfill creep parameters. Subsequently, orthogonal test was performed on the creep 

parameters in order to analyze the parameter sensitivity to the dam displacement. 

Table 2. Range of the creep parameters of the primary and secondary rockfill material 

Material a b c d m1 m2 m3

Primary 

rockfill 

Basis 0.006 0.0004 0.0002 0.0035 0.76 0.63 0.54 

Range 0.004-0.008 0.0002-0.0006 0.0001-0.0003 0.002-0.005 0.6-0.92 0.5-0.76 0.43-0.65 

Secondary 

rockfill 

Basis 0.006 0.0004 0.00038 0.004 0.66 0.56 0.6 

Range 0.004-0.008 0.0002-0.0006 0.00022-0.00054 0.0022-0.0058 0.5-0.82 0.42-0.7 0.44-0.76 

3. Sensitivity analysis of creep model parameters based on the orthogonal test 

3.1 Design of the orthogonal test table 

The orthogonal test design is a highly efficient, fast and economical test design method based on 

orthogonality (Hu and Zhang 2019; Yang et al. 2020), which aims to select some uniformly dispersed, neat 

and comparable representative points from the overall test for the testing purpose. According to this, we 

obtained the orthogonal test table based on the sensitivity analysis of the creep model parameters in the 

following steps: 



1) Select test indicators: For the displacements of the dam in all the three directions, creep has a greater 

impact on settlement and horizontal displacement (Sukkarak et al. 2017). Therefore, the settlement 

and horizontal displacement of the monitoring points were chosen as the test indicators for parameter 

sensitivity analysis.  

2) Determine the test factors and levels: The seven parameters (a, b, c, d, m1, m2 and m3) were taken as 

the test factors. Each factor was regulated up and down within a reasonable range in order to obtain 

the corresponding three test levels, as shown in Table 3. 

3) Design the orthogonal test table: The core of the orthogonal test method is to use the orthogonal test 

table as the basic tool for analysis. The orthogonal test table is represented by 𝐿𝑀(𝑄𝐹), where L is 

the code of the orthogonal table; M is the total number of tests; Q is the level number of factors; F

the number of columns in the orthogonal table. According to the test factors and levels determined 

above, 𝐿18(2 × 37) was chosen as the orthogonal test table in the present study, in which the first 

column was set as an empty column. After assigning the test factors into the test table, the orthogonal 

test table for the parameter sensitivity analysis was obtained, as shown in Table 4. In this table, the 

combination of factor levels corresponding to each row refers to one type of test plan. Then, FEM 

calculation was carried out according to the test designed in the orthogonal table, and literature(Zhou 

et al. 2020) shows the specific FEM calculation process. 

Table 3, The orthogonal test factor levels for the creep model parameters of the primary rockfill material 

Table 4, The orthogonal test table for the creep parameters of the primary rockfill material-𝐿18(2 × 37)

Factor level a b c d m1 m2 m3

1 0.0042 0.00028 0.00014 0.00252 0.608 0.504 0.432 

2 0.0042 0.0004 0.0002 0.0036 0.76 0.63 0.54 

3 0.0042 0.00052 0.00026 0.00468 0.912 0.756 0.648 

Test number 
factor 

1 a b c d m1 m2 m3

1 1 0.0042 0.00028 0.00014 0.00252 0.608 0.504 0.432 

2 1 0.0042 0.0004 0.0002 0.0036 0.76 0.63 0.54 

3 1 0.0042 0.00052 0.00026 0.00468 0.912 0.756 0.648 

4 1 0.006 0.00028 0.00014 0.0036 0.76 0.756 0.648 

5 1 0.006 0.0004 0.0002 0.00468 0.912 0.504 0.432 

6 1 0.006 0.00052 0.00026 0.00252 0.608 0.63 0.54 

7 1 0.0078 0.00028 0.0002 0.00252 0.912 0.63 0.648 

8 1 0.0078 0.0004 0.00026 0.0036 0.608 0.756 0.432 

9 1 0.0078 0.00052 0.00014 0.00468 0.76 0.504 0.54 

10 2 0.0042 0.00028 0.00026 0.00468 0.76 0.63 0.432 

11 2 0.0042 0.0004 0.00014 0.00252 0.912 0.756 0.54 

12 2 0.0042 0.00052 0.0002 0.0036 0.608 0.504 0.648 

13 2 0.006 0.00028 0.0002 0.00468 0.608 0.756 0.54 

14 2 0.006 0.0004 0.00026 0.00252 0.76 0.504 0.648 

15 2 0.006 0.00052 0.00014 0.0036 0.912 0.63 0.432 



3.2 Analysis of orthogonal test results 

According to the FEM calculation results for all tests, variance analysis was performed on the design of 

the orthogonal test table (Li et al. 2020; Sun et al. 2016). Further, according to the comparison result of the 

variance square sum and the error square sum of each factor, F test was performed. Based on the quantitative 

results of the influence of various factors on the test indicators, we could judge whether the effect of each 

factor is significant. The process of variance analysis consists of the following three steps: 

（1） Calculate the total dispersion square sum 𝑆𝑇, the dispersion square sum of each factor 𝑆𝐴，and the 

dispersion square sum of tests error 𝑆𝐸 through the following equations respectively: 𝑆𝑇 = ∑ (𝑌𝑖 − 𝑌)2𝑀𝑖=1 （6）𝑆𝐴 =
𝑀𝑄 ∑ (𝐼𝑖𝐴 − 𝑌)2𝑄𝐴𝑖=1 （7）𝑆𝐸 = 𝑆𝑇 − ∑ 𝑆𝐴𝐹𝐴=1 （8）

Where, vector 𝑌 = (𝑌1, 𝑌2, ⋯ ,𝑌𝑀) is the FEM calculation result of test M; 𝑌 is the average value of 

the calculation results of the tests; 𝑀/𝑄 is the number of tests for each level of factor A; 𝐼𝑖𝐴 is the 

average value of 𝑀/𝑄 times of calculations at the i-th level of factor A. 

（2） To compare the dispersion degree of each factor, calculate the average dispersion square sums of the 

factor 𝑆 𝐴 and the average dispersion square sums for the test error 𝑆 𝐸 through the following equation 

respectively: 𝑆 𝐴 = 𝑆𝐴/𝑓𝐴（9）𝑆 𝐸 = 𝑆𝐸/𝑓𝐸（10）

Where 𝑓𝐴 and 𝑓𝐸  represent the degree of freedom of factor A and the total errors, respectively. 

（3） Calculate the statistics 𝐹𝐴 of the influence degree for the factor A on the test indicators through the 

following equation:  𝐹𝐴 =
𝑆 𝐴𝑆 𝐸 =

𝑆𝐴/𝑓𝐴𝑆𝐸/𝑓𝐸（11）

Setting the significance level as 0.05, the sensitivity of a certain factor to the test indicators can be tested 

by comparing the value of 𝐹0.05 in the F distribution table with the calculated value of 𝐹𝐴, or by comparing 

the significance 𝑃𝐴 of the target factor with 0.05. 𝐹𝐴 > 𝐹0.05 or 𝑃𝐴 < 0.05 indicates that the target factor 

has high sensitivity to the test indicator with a statistically significant effect. 

By performing variance calculation and analysis on the designed orthogonal test table through Eq. (6-11), 

the sensitivity analysis result of each factor to the horizontal displacement U1 and settlement U2 of the dam 

were obtained, as shown in Table 5 and 6 respectively. According to the judgment criterion 𝐹𝐴 > 𝐹0.05(2,3) =

16 2 0.0078 0.00028 0.00026 0.0036 0.912 0.504 0.54 

17 2 0.0078 0.0004 0.00014 0.00468 0.608 0.63 0.648 

18 2 0.0078 0.00052 0.0002 0.00252 0.76 0.756 0.432 



9.55  or 𝑃𝐴 < 0.05 , it can be concluded that: at the monitoring point CS1-3-02, factors b and d have a 

significant impact on the test indicator U1 and factors a, b, c, d, m1, m3 have a significant impact on the test 

indicator U2; at the monitoring point CS1-3-03, factors b, d, m2 have a significant impact on the indicator U1, 

and factors a, b, c, d, m1 have a significant impact on the test indicator U2. Although the factors m2 have a 

little impact on the test indicator U2, considering that m2 is sensitive to the horizontal displacement. Overall, 

all the seven parameters (a, b, c, d, m1, m2 and m3) were chosen for parameter inversion. ANOVA based on 

orthogonal test determined the sensitive parameters, which can theoretically further reduce the cost of 

inversion (although not reflected in this case). 

Table 5, The sensitivity analysis of each parameter to the nodal displacement-U1 

Factors 
CS1-3-02 CS1-3-03 𝑆𝐴 𝑓 𝑆 𝐴 𝐹 𝑃 𝑆𝐴 𝑓 𝑆 𝐴 𝐹 𝑃

a 1.546 2 0.773 1.14 0.428  1.072 2 0.536 1.313 0.389 

b 45.358 2 22.679 33.461 0.009  24.727 2 12.364 30.263 0.01 

c 9.237 2 4.619 6.814 0.077  6.839 2 3.42 8.37 0.059 

d 219.818 2 109.909 162.161 0.001  143.836 2 71.918 176.038 0.001 𝑚1 10.033 2 5.016 7.401 0.069  7.107 2 3.553 8.698 0.056 𝑚2 10.362 2 5.181 7.644 0.066  8.598 2 4.299 10.522 0.044 𝑚3 9.106 2 4.553 6.718 0.078  0.946 2 0.473 1.158 0.424 

Error 2.033 3 0.678  1.226 3 0.409 

Table 6, The sensitivity analysis of each parameter to the nodal displacement-U2 

Factors 
CS1-3-02 CS1-3-03 𝑆𝐴 𝑓 𝑆 𝐴 𝐹 𝑃 𝑆𝐴 𝑓 𝑆 𝐴 𝐹 𝑃

a 70.356 2 35.178 32.87 0.009  115.016 2 57.508 25.636 0.013 

b 122.412 2 61.206 57.19 0.004  156.058 2 78.029 34.783 0.008 

c 32.02 2 16.01 14.96 0.028  44.357 2 22.179 9.887 0.048 

d 129.735 2 64.868 60.612 0.004  218.388 2 109.194 48.676 0.005 𝑚1 49.271 2 24.636 23.019 0.015  75.137 2 37.568 16.747 0.024 𝑚2 14.896 2 7.448 6.959 0.075  25.727 2 12.863 5.734 0.094 𝑚3 35.48 2 17.74 16.576 0.024  36.064 2 18.032 8.038 0.062 

Error 3.211 3 1.07  6.73 3 2.243 

4. Parameter inversion 

4.1 Objective function 

In this paper, we established the mathematical expression of the objective function through the following 

equation by considering the disturbance of external factors and influence of internal factors on the monitoring 

data and the expected minimum value: 



⎩⎪⎨
⎪⎧𝑚𝑖𝑛 𝐹 (𝑋) = ∑ 𝑊𝑖(𝑢) [∑ 𝑊𝑖𝑗(𝑣) ( 𝑈𝑖𝑗(𝑋)𝑈𝑖𝑗𝑟𝑒𝑎𝑙 − 1)2𝑏𝑗=1 ]𝑎𝑖=1𝑠𝑡. 𝐾(𝑋){𝑈} = {𝑅}𝑥𝑑𝑚𝑖𝑛 ≤ 𝑥𝑑 ≤ 𝑥𝑑𝑚𝑎𝑥(𝑑 = 1,2, … , 𝐷)

（12）

Where, 𝐹(𝑋) is the objective function; 𝑋 = {𝑥1, 𝑥2, ⋯ 𝑥𝑑 ⋯ , 𝑥𝐷} are the parameters used for inversion; 

D is the number of parameters used for inversion (D=7); a is the number of inversion periods; u is the number 

of external environmental factors affecting the target monitoring point (upstream slope disturbance, dam crest 

disturbance, downstream slope disturbance, etc.); 𝑊𝑖(𝑢)
 is the weight of the external environmental factor u

in the i-th time period: ∑ 𝑊𝑖(𝑢)𝑎𝑖=1 = 100 , 𝑊𝑖(𝑢)
=

1𝑢 (𝑊𝑖(1)
+ 𝑊𝑖(2) +⋯+𝑊𝑖(𝑢)) ; b is the number of 

monitoring points; v is the number of internal environmental factors affecting the target monitoring point (the 

altitude of the monitoring point, the cross-section of the monitoring point, the relative position of the 

monitoring point to other materials, etc.); 𝑊𝑖𝑗(𝑣)
 is the weight of the internal factor v in the i-th time period: ∑ ∑ 𝑊𝑖𝑗(𝑣)𝑏𝑗=1𝑎𝑖=1 = 100, 𝑊𝑖𝑗(𝑣)

=
1𝑣 (𝑊𝑖𝑗(1)

+ 𝑊𝑖𝑗(2) +⋯+𝑊𝑖𝑗(𝑣)); 𝑈𝑖𝑗(𝑋)
 is the FEM creep increment value of 

the parameter set X corresponding to the monitoring point j in the i-th time period; 𝑈𝑖𝑗𝑟𝑒𝑎𝑙 is the monitoring 

creep increment value of the monitoring point j in the i-th time period; 𝑥𝑑𝑚𝑖𝑛, 𝑥𝑑𝑚𝑎𝑥(𝑑 = 1,2, … , 𝐷) are the 

lower limit and upper limit of each parameter 𝑥𝑑. Considering the time periods of the existing monitoring 

data, i.e., the second pre-settlement period after the completion of the CFRD (the first five months) plus the 

second-phase slab construction period (the last three months), the value of a was calculated as a = 8. In this 

paper, for external factors, we only considered the impact of the upstream slope slab five-month construction 

disturbance, i.e., u=1, 𝑊1(1)
= 𝑊2(1)

= 𝑊3(1)
= 𝑊4(1)

= 𝑊5(1)
= 2𝑊6(1)

= 2𝑊7(1)
= 2𝑊8(1)

 . For internal 

factors, we only considered the impact of the relative position of the monitoring point to other materials. 

Paragraph 2.1 shows that the selected monitoring points effectively avoid the influence of different dam 

materials. The weights of internal factors were determined based on equal weight, i.e., v=1, 𝑊𝑖𝑗(1)
= 100/(𝑖 ∗𝑗) = 100/64, 𝑖 = 𝑗 = 1, 2, ··· , 8.𝐾(𝑋) is the stiffness matrix; {𝑈} is the nodal displacement array; {𝑅} is the equivalent nodal load array. 

The calculated creep incremental value 𝑈𝑖𝑗(𝑋)
 can be obtained by the FEM calculation. In this paper, the FEM 

calculation process described above, i.e., 𝐾(𝑋){𝑈} = {𝑅} , was replaced by the BPNN. We establish the 

mapping relationship between the creep parameters and the creep settlement by considering the input creep 

parameters in the FEM calculation as the input neurons of the BPNN and considering the creep settlement of 

the selected monitoring points in the FEM calculation results as the output neurons of the BPNN. While 

establishing the mapping relationship between the creep parameters of the primary rockfill material and the 

creep settlement at the monitoring points, a total of 64 BPNNs were established (the time period a = 8; the 

number of monitoring points b = 8). Each BPNN is expressed as 𝑛𝑒𝑡𝑖𝑗. Then, the creep increment can be 

calculated by generalizing BPNN as follows: 



𝑈𝑖𝑗(𝑋)
=sim(𝑛𝑒𝑡𝑖𝑗, 𝑋)  (13) 

4.2 The MPGA-BPNN RSM 

A typical BPNN is composed of the input layer, the hidden layer, the output layer, the weights and 

deviations, and the transfer function. Fig. 3 illustrates the two-step calculation procedure of each neuron of 

the BPNN. 

Firstly, the initial results of the network are obtained by the forward calculation of randomly assigned 

weights and deviations. The calculation between the input and output layer of the BPNN can be expressed as 

below (Liu et al. 2020a)：𝑌 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡 ∑ 𝑤ℎ𝑦𝐻ℎ=1 [𝑓ℎ𝑖𝑑𝑑𝑒𝑛(∑ 𝑤𝑥ℎ𝑋𝑥 + 𝑏ℎ𝑋𝑥=1 ) + 𝑏𝑦]（14）

Where, X and H are the number of neurons in the input layer and hidden layer respectively; 𝑏ℎ and 𝑏𝑦
are the deviations of the hidden layer and output layer respectively; 𝑓ℎ𝑖𝑑𝑑𝑒𝑛 and 𝑓𝑜𝑢𝑡𝑝𝑢𝑡 are the transfer 

function of the hidden layer and output layer respectively; 𝑤𝑥ℎ represents the weights between the input layer 

and hidden layer; 𝑤ℎ𝑦 represents the weights between the hidden layer and output layer. 

Then, the calculated output value is compared with the actual output to find the difference between the 

two, which is referred to as the network output error. Based on the back-propagation learning algorithm, the 

weights and deviations of the BPNN are constantly revised by minimizing the error, until the network output 

error is less than the allowable error. The equation for calculating the network output error is as follows: 𝐸 =
1𝑁∑ (𝑌 𝑛 − 𝑌𝑛)2𝑁𝑛=1 （15）

Where, 𝑌 𝑛 and 𝑌𝑛 represent the predicted output result obtained through network training and the actual 

result, respectively. 

Fig. 3. Diagram of the neuron calculation procedure 

4.2.1 Determination of the input layer, hidden layer and output layer 

In the BPNN, each of the input layer, hidden layer and output layer has a different number of neurons. It 

has been found that the BPNN would have a better approximation effect with a smaller number of output 

neurons . Since the approximation effect of the BPNN directly affects the inversion result, the network 



described in this paper has only one output neuron, as shown in Fig. 4. In order to simulate the mapping 

relationship between the parameters and the settlement of multiple monitoring points and multiple time 

sequences in the FEM calculation, we adopted a multi-network system. All networks have the same input 

neurons, which are the parameters. The output neuron of each network is the settlement of one monitoring 

point in a certain period of time. The number of neurons in the hidden layer was determined by the following 

equation: 𝐻ℎ𝑖𝑑𝑑𝑒𝑛 = √𝐻𝑖𝑛𝑝𝑢𝑡 + 𝐻𝑜𝑢𝑡𝑝𝑢𝑡 + ℎ𝑟𝑎𝑛（16）

Where, 𝐻ℎ𝑖𝑑𝑑𝑒𝑛 is the number of neurons in the hidden layer; 𝐻𝑖𝑛𝑝𝑢𝑡 is the number of neurons in the 

input layer; 𝐻𝑜𝑢𝑡𝑝𝑢𝑡 is the number of neurons in the output layer; ℎ𝑟𝑎𝑛 is a random number in the range of 

1-15 (the value is determined by trial and error for deriving the optimal BPNN). On such basis, it was found 

that the best topology structure of the BPNN was 7-15-1, as shown in Fig. 4. At the same time, in order to 

allow the training network to converge as fast as possible, the sample data of the input layer and output layer 

was normalized to the range of [0.2 -0.8]: 𝑦 = (0.8 − 0.2)
𝑥−𝑥𝑚𝑖𝑛𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛 + 0.2（17）

Where, y is the normalized data; x is the original sample data; 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and 

minimum value of the original sample data, respectively. 

Fig. 4. Topological structure of the BPNN 

4.2.2 Determination of the transfer function and back-propagation learning algorithm 

The widely used TanSig function and Purelin function were chosen as the transfer function for the hidden 

layer and the output layer respectively, as shown in Eq. (18) and (19). The output value of the TanSig function 

is in the range of [-1,1]. The TanSig function makes the BPNN nonlinear, which imposes a significant impact 

on the prediction accuracy. The Purelin function allows expanding the output result of BPNN. The back-

propagation learning algorithm uses the Trainlm training algorithm, which is believed to be more robust than 

the Gauss-Newton method and have a higher convergence rate than the ordinary gradient descent method. 𝑡𝑎𝑛 𝑠 𝑖𝑔(𝑥) =
21+𝑒𝑥𝑝(−2𝑥)

− 1（18）𝑝𝑢𝑟𝑙𝑖𝑛(𝑥) = 𝑥（19）



4.2.3 Update of weights and deviations 

The training algorithm of the BPNN makes it prone to fall into local minimum, and often cannot obtain 

the global optimal weights and deviations. The SGA is featured with the advantages of strong robustness and 

global search capability. By combining SGA with the BPNN, it is possible to derive better weights and 

deviations. Below shows the calculation process of the SGA: 

（1） Perform individual binary coding on the potential solution of the problem to establish the mapping 

relationship between the phenotype and genotype, and then initialize the individual population 

randomly and perform decoding;

（2） Evaluate the fitness of each individual, and then calculate the fitness value of each individual with 

the fitness function;

（3） Perform genetic operations, including selection operation, crossover operation, and mutation 

operation, and then generate new populations. 

However, due to the premature convergence problem of the SGA, a certain number of networks that do 

not meet expectations would be generated during a large amount of network training. In this paper, the 

parameter inversion of the primary rockfill material alone requires 64 networks to establish the mapping 

relationship between the creep parameters and the settlement. If there is any network involving the local 

minimum and premature convergence problem, the parameter inversion would not lead to satisfactory results. 

In our case, we applied MPGA to optimize the weights and the deviations of the BPNN. On the basis of SGA, 

the MPGA introduces the following concepts in order to overcome the premature convergence problem: 

（1） MPGA introduces multiple populations for simultaneous optimization and search. Different 

populations are assigned with different control parameters in order to achieve different search purposes;

（2） The immigration operator can exchange information between various populations to realize the co-

evolution of multiple populations. Thus, the acquisition of the optimal solution is the comprehensive 

result of the co-evolution of multiple populations;

（3） The artificial selection operator saves the optimal individuals in the evolutionary generations of various 

populations to ensure that the optimal individuals produced by various populations in the evolution 

process are not destroyed or lost, and serve as the basis for algorithm convergence. 

Fig. 5 shows the schematic diagram of the algorithmic structure of MPGA-BPNN. The evolution 

mechanisms of population 1-N are all SGA. To sum up, Table 7 presents the structural parameter configuration 

of the MPGA-BPNN for building all the RSMs with the maximum efficiency. 

Table 7. The structural parameter configuration of MPGA-BPNN 

classification structure parameter 

BPNN Topological structure of the BPNN (input layer, hidden layer, output layer) 7-15-1 

Range of normalization for the input and output layer [0.2-0.8] 

The transfer function of the hidden layer TanSig 

The transfer function of the output layer Purelin 

Training algorithm Trainlm 



Training times 1500 

Training target 0.001 

Learning rate 0.1 

MPGA  Number of populations 10 

Population size 100 

The minimum number of retaining generations of the optimal value 10 

Number of binary digits of a single variable 10 

Crossover probability 0.7-0.9 

Mutation probability 0.001-0.05 

Generation gap 0.9 

Fig. 5. The schematic diagram of the algorithm structure of MPGA-BPNN 

4.2.4 Comparison of performance among BPNN RSM and MPGA-BP RSM 

As mentioned earlier, while performing parameter inversion of the primary rockfill material, we need to 

create 64 NN RSM to establish the mapping relationship between the parameters and the settlement. For each 

NN RSM, we applied some currently popular methods to generate samples according to the value ranges of 

the parameters for minimizing the defects of insufficient samples. Specifically, there are 400 groups of training 

samples, including 18 groups of uniform test design 𝑈18(37) , 68 groups of orthogonal test design 𝐿18(2 × 37) and 𝐿50(57), and 314 groups of randomized test design. The test samples are composed of 100 

groups of randomized test design. The sample parameters were taken as the input group to carry out FEM 

calculation so as to obtain the settlement as the corresponding output group. Further, the training and testing 

samples of the normalized data for each input and output group were generated. Then, by training the generated 

samples, the NN RSM was established. 



In order to validate the performance of the NN RSM, we chose the Root Mean Square Error (RMSE), 

Mean Absolute Percentage Error (MAPE), and squared correlation coefficient (R2) as the quantitative 

indicators, which can be calculated according to Eq. (20-22) as below. Besides, by comparing the calculated 

values obtained by the FEM with the predicted values obtained by the trained NN RSM using the same 

parameter sample. In terms of the four indicators above, we could judge the accuracy and robustness of the 

established BPNN RSM and MPGA-BPNN RSM. 𝑅𝑀𝑆𝐸 = √1𝑁∑ (𝑌 𝑛 − 𝑌𝑛)2𝑁𝑛=1 （20）𝑀𝐴𝑃𝐸 =
1𝑁∑ |𝑌 𝑛−𝑌𝑌 | × 100%𝑁𝑛=1 （21）𝑅2 = 1 − ∑ (𝑌 𝑛−𝑌𝑛)2𝑁𝑛=1∑ (𝑌 𝑛−𝑌𝑛)2𝑁𝑛=1 （22）

Where, 𝑌 𝑛 is the predicted values obtained by the NN RSM for the n-th time; 𝑌𝑛 is the calculated values 

obtained by the FEM. 

Figs. 6-8, to evaluate the global accuracy, present the training and testing results of RMSE, MAPE and 

R2 based on the BPNN RSM and MPGA-BPNN RSM respectively. In addition, Table 8 presents the average 

and range of the training and testing results of RMSE, MAPE and R2 respectively. Fig. 9, to evaluate the case 

accuracy, shows the comparison graph and the error graph between the calculated values obtained by the FEM 

and the predicted values obtained by the trained NN RSM using the same parameter sample. 

Table 8. The indicators of the NN RSM 

NN RSM RMSE MAPE R2

Average Range  Average Range  Average Range 

BPNN RSM 

Training 0.0224 0.0115-0.03149  4.0780 2.6966-7.7923  0.8204 0.4300-0.9751 

Testing 0.0201 0.0100-0.03015  3.9443 2.6030-7.4673  0.8446 0.5147-0.9662 

Average 0.0213  4.0112  0.8325 

MPGA-BPNN RSM 

Training 0.0159 0.0081-0.0246  2.6461 1.6350-3.3135  0.9484 0.8306-0.9737 

Testing 0.0147 0.0063-0.0224  2.8297 1.6628-3.6266  0.9470 0.9266-0.9659 

Average 0.0153  2.7379  0.9477 



Fig. 6. Comparison of the training and testing RMSE between the BPNN RSM and MPGA-BPNN RSM 

Fig. 7. Comparison of the training and testing MAPE between the BPNN RSM and MPGA-BPNN RSM 

Fig. 8. Comparison of the training and testing R2 between the BPNN RSM and MPGA-BPNN RSM 



Fig. 9. Comparison between the calculated values of the FEM and the predicted values of the NN RSM 

From the results above, we can draw the following conclusions: 

（1）As shown in Table 8, compared with the BPNN RSM, the RMSE and MAPE of the MPGA-BPNN 

RSM are 0.0153 and 0.0213 respectively, which are significantly reduced. The R2 of the MPGA-BPNN 

RSM is around 0.95 both during the training and testing processes, which is about 13.84% higher than that 

of the BPNN RSM. The results above indicate that the BPNN RSM has a good prediction ability, but the 

predicted values obtained by the MPGA-BPNN RSM show a higher consistency with the calculated values 

of the FEM, suggesting a higher accuracy. 

（2）As can be seen from Figs. 6-9 and Table 8, compared with the BPNN RSM, the calculated values of 

RMSE, MAPE and R2 of the 64 NN RSMs established by MPGA-BPNN fall into a smaller fluctuation 



range, suggesting that MPGA-BPNN can better find the optimal weights and deviations globally and has 

stronger robustness. 

（3）As can be seen from Fig. 9, based on the same parameters, the predicted values obtained by the 

MPGA-BPNN RSM show lower anomaly and are closer to the calculated values than that obtained by the 

BPNN RSM. Meanwhile, the accuracy and robustness of MPGA-BPNN are better than that of BPNN. 

In summary, the MPGA-BPNN RSM can derive more accurate results, indicating that MPGA has solved 

the defects of poor global search ability and easy to fall into local minimum in BPNN. For the same set of 

parameters, the responses of MPGA-BPNN RSM show little abnormality, which shows that it can ensure both 

the efficiency and accuracy of the inversion when applied in the optimized inversion method. Therefore, it is 

a feasible strategy to retain the best performance MPGA-BPNN RSM and use it to parameter inversion based 

on the optimized inversion method. 

4.3 Application of the MPGA algorithm for parameter inversion 

It can be seen from the objective function that the parameter inversion problem can be transformed into a 

function optimization problem. The MPGA algorithm is able to overcome the premature convergence problem 

of SGA. On the basis of the monitored settlement data and the trained MPGA-BPNN RSM, we used MPGA 

to optimize the objective function. The parameters of MPGA were as follows: number of populations: 15; 

population size: 50; generation gap: 0.9; crossover probability: 0.7-0.9; mutation probability: 0.001-0.05; the 

minimum number of retaining generations of the optimal value: 10. Table 9 shows the optimal creep 

parameters of the primary and secondary rockfill material respectively obtained through inversion analysis. 

Subsequently, we performed the FEM calculation on the Xujixia CFRD using the creep parameters 

obtained from parameter inversion and the Duncan E-B parameters obtained from indoor tests, as shown in 

table 9. Fig. 10 and 11 show the comparison between the calculated values and the monitored values of the 

primary and secondary rockfill material zone. Table 10 shows the relative error between the calculated values 

and the monitored values. The average standard deviations between the calculated values and the monitored 

values at the primary and secondary rockfill monitoring points are 1.82 and 2.32 respectively, and the average 

relative errors are 13.82% and 12.00% respectively. The results above indicate that the settlement values 

calculated using the parameters obtained by parameter inversion have great consistency with the monitored 

values both in size and in distribution. Therefore, the inversion results can well reflect the creep deformation 

characteristics of the rockfill material and can be used for fem prediction.  

The method introduced in this paper has been well applied in Xujixia CFRD. The combination of MPGA-

BPNN and FEM and used to the optimized inversion method can greatly improve the efficiency and accuracy 

of inversion. According to the process of this method, if a reasonable objective function is constructed, it can 

be used in other geotechnical engineering FEM calculations. 



Table 9. The parameters of the primary and secondary rockfill 

Material Creep parameters  Duncan E-B parameters 

a b c d m1 m2 m3 𝜙0 △ 𝜙 𝑅𝑓 𝐾 𝑛 𝐾𝑏 𝑚
Primary 

rockfill 

0.0057 0.00059 0.00023 0.0298 0.637 0.652 0.631  53 10 0.86 1040 0.35 500 0.10 

secondary 

rockfill 

0.0064 0.00051 0.00043 0.0233 0.630 0.533 0.539  45 8 0.80 920 0.27 350 0.02 𝜙0 = internal friction angle when the confining pressure is one atmosphere △ 𝜙 = internal friction angle that changes with pressure 𝑅𝑓 = failure ratio 𝐾 = tangent modulus coefficient 𝑛 = tangent modulus index 𝐾𝑏 = volume Modulus coefficient 𝑚 = bulk modulus index 

Table 10. The relative error between the calculated value and the monitored value at each monitoring point 

of the primary and secondary rockfill 

Number of monitoring point 

in primary rockfill area 

standard 

deviation 

relative error (%) Number of monitoring point 

in secondary rockfill area 

standard 

deviation 

relative error (%) 

CS1-1-02 1.51 10.69 CS1-1-04 1.26 9.26 

CS1-2-02 2.16 11.82 CS1-2-05 4.07 13.59 

CS1-2-03 1.93 6.38 CS1-3-07 1.20 7.35 

CS1-3-02 0.93 19.57 CS1-4-05 2.93 12.48 

CS1-3-03 1.10 17.26 CS1-5-07 2.12 17.34 

CS1-4-02 2.96 12.85 

CS1-4-03 3.16 12.85 

CS1-5-02 0.84 13.56 

Average 1.82 13.82 Average 2.32 12.00 

Fig. 10. Comparison between the calculated value and monitored value at the primary rockfill monitoring 

point 



Fig. 11. Comparison between the calculated value and monitored value at the secondary rockfill monitoring 

point 

5. Discussions 

In this paper, we established the mathematical expression of the objective function by considering the 

disturbance of external factors and influence of internal factors on the monitoring data and the expected 

minimum value. How to reasonably assign weights to these factors has an important effect on obtaining the 

correct creep parameters. In our study, we only roughly considered the influence of the upstream slope faced 

construction disturbance. The weights of different internal and external factors would directly affect the 

optimization results. Therefore, future research needs to further address how to properly determine the weights 

of various internal and external factors. 

6. Conclusions 

This paper introduced an optimized inversion method for creep parameters with MPGA-BPNN RSM. 

ANOVA based on orthogonal test determined the sensitive parameters used for inversion, which can 

theoretically further reduce the inversion cost. MPGA-BPNN RSM established the relationship between creep 

parameters and FEM settlement increment, which can improve the accuracy of inversion. MPGA was utilized 

to optimize the objective function to obtain the optimal creep parameters. The main conclusions are: 

(1) Compared with the BPNN RSM in terms of RMSE, MAPE, R2, etc., 1) The RMSE and MAPE of the 

MPGA-BPNN RSM are 0.0153 and 0.0213 respectively, suggesting a significant reduction; 2) The R2 of the 

MPGA-BPNN RSM is around 0.95, which is about 13.84% higher than that of the BPNN RSM; 3) For the 

same parameter combination, the predicted values of the MPGA-BPNN RSM show a better consistency with 

the calculated values. The results show that MPGA-BPNN RSM has stronger robustness and accuracy, and is 



rational for parameter inversion.  

(2) By comparing the FEM calculation values using the optimal creep parameters with the monitored 

values, it is found that the average standard deviation of the primary and secondary rockfill of the Xujixia 

CFRD are 1.82 and 2.32 respectively, and the average relative errors are 13.82% and 12.00% respectively, 

indicating that the settlement calculated by the parameter inversion method introduced in this paper is greatly 

consistent with the monitored data both in size and in distribution.  

The parameter inversion method introduced in this paper has been well applied on Xujixia CFRD, which 

can improve the efficiency and accuracy of parameter inversion, and can provide a reference for similar 

geotechnical engineering FEM calculation. 
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