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Abstract
In this paper, optimal saving models with two risk components are studied: the labor income risk and the interest rate risk.
These risks can be modeled probabilistically by random variables or possibilistically by fuzzy numbers. In mixed models, one
of the components is probabilistic and the other one is possibilistic. After the construction of two mixed models of optimal
saving, several notions of precautionary saving are defined. These measure the variation in optimal saving level when moving
from one model to another (usually by adding a risk component). The main results of the paper establish necessary and
sufficient conditions on the positivity of different precautionary savings. (This means that the presence of new risks generates
extra-saving.)

Keywords Mixed expected utility · Optimal saving · Labor income risk · Interest rate risk · Precautionary saving

1 Introduction

The saving is an important component of a consumer activity.
An agent (consumer) allocates a part of his wealth to cope
in future with risk losses. The saving activity is analyzed
usually by two-period models, denoted by 0 and 1, in which
risk appears in period 1. In period 0, the agent’s wealth y0
is divided between consumption and saving: a part s of y0
is invested in the financial market. The investment s will
generate in period 1 a return s(1+ r) (where r is the interest
rate for saving), which will mitigate the loss of risk. The
purpose of the agent is to find that level of s maximizing the
total utility of the model.

The first papers that investigated the effects of risk on
the optimal saving have stopped on two types of risk: the
labor income risk (Leland 1968; Sandmo 1970; Drèze and
Modigliani 1972) and the interest-rate risk (Sandmo 1970;
Rothschild and Stiglitz 1971). The notion of precautionary
saving has been introduced as a measure of the variation in
optimal saving when moving from a certain model to a risk
model. The positivity of precautionary saving signifies the
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increase in optimal saving level when a risk appears. The
mentioned authors have focused their research on finding
some necessary and sufficient conditions on the positivity of
optimal saving. In case of labor income risk, such a necessary
and sufficient condition is that consumer’s prudence (accord-
ing to Kimball 1990, 1992) is equivalent to the positivity of
the third derivative of the consumer’s utility function). For
models with interest-rate risk, the precautionary saving is
positive if and only if the relative prudence index (Kimball
1992) is higher than 2 (by a Rothschild and Stiglitz theorem
from Rothschild and Stiglitz 1971).

The labor income risk and the interest-rate risk appear
as separate risks also in Eeckhoudt and Schlesinger (2008)
where there are analyzed the effects of the n-th-order changes
on the optimal saving. The paper Magnani (2017) contains a
new proof of the Rothschild and Stiglitz theorem from Roth-
schild and Stiglitz (1971), as well as its new interpretation.

We will note that there are other economic themes that
are studied using saving models: among them are bequest
motives (see Jappelli and Pistaferri 2017, Section 12) and
smoothing consumption (Kimball andWeil 2009). The paper
Vergara and Bonilla (2021) investigates the precautionary
saving in amean-variancemodel (where the variance is taken
as the measure of uncertainty); then, the results are applied to
some decision problems under risk (including the economic
effects given by COVID-19 pandemic).
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Papers Baiardi et al. (2014), Li (2012), Gunning (2010)
and Vergara (2007) deal with saving models in which labor
income risk and interest rate risk appear together, setting nec-
essary and sufficient conditions for the presence of these risks
to generate extra-saving. The first saving model with back-
ground risk has been studied by Eeckhoudt et al. (2007).
Among the papers treating saving models with more param-
eters, we remember the works Courbage and Rey (2007),
Magnani and Menegatti (2015) and Nocetti (2016). A state
of the art dedicated to precautionary saving can be found in
the recent paper by Baiardi et al. (2019).

In all these papers, risk is modelled by random variables,
and the savingmodel construction is done in the frameworkof
Von Neumann–Morgenstern EU theory. Probabilistic uncer-
tainty modeling does not cover all the phenomena in which
uncertainty occurs (a typical situation is when information
is extracted from a set of insufficiently broad data). Sev-
eral papers from the last two decades treat the uncertainty
phenomenon by Zadeh’s possibility theory (Zadeh 1978).
According to Dubois et al. (2004), p. 277, “while probability
theory offers a quantitative model for randomness and inde-
cisiveness, possibility theory offers a qualitative model of
incomplete knowledge”. In probabilistic modeling, the risk
is represented by a possibility distribution (in particular, by
a fuzzy number), and the models are built in a possibilistic
EU theory (by Carlsson and Fullér 2011; Dubois and Prade
1988;Georgescu2012, 2009, 2011, etc.). In the studybypos-
sibilistic methods of the different themes of the risk theory
are used possible indicators attached to the fuzzy numbers:
possibilistic expected values, various notions of possibilis-
tic variance, possibilistic moments, etc. (Carlsson and Fullér
2011; Georgescu 2012).

Some possibilistic models for optimal saving have been
defined inLucia-Casademunt andGeorgescu (2013),Georgescu
(2014), Georgescu and Kinnunen (2016) and Georgescu
and Kinnunen (2020). In Lucia-Casademunt and Georgescu
(2013) we studied a model in which the labor income risk
is a fuzzy number, and in Georgescu and Kinnunen (2020)
a model in which the interest-rate risk is a fuzzy number. A
treatment of the case inwhich risk appears as a bidimensional
vector, in which both labor income risk and interest-rate risk
are fuzzy numbers can be found in Georgescu and Kinnunen
(2016).

This paper is concerned with two models of saving in
which risk is a mixed bidimensional vector: one component
is a random variable, the other is a fuzzy number. The model
construction is realized in a “mixed EU-theory”, in which
the main concept is the mixed expected utility introduced in
Georgescu (2011). The combined effect ofmixed risk leads to
new notions of optimal saving, measuring the optimal saving
variation from the certain model to each of the two mixed
models.

We will expose shortly the content of the paper.

Section 2 presents the possibilistic expected utility asso-
ciated with a weighting function, a fuzzy number and a
unidimensional utility function (by Georgescu 2012, 2011).
The two main possibilistic indicators associated with a fuzzy
number (the expected value and the variance) are recalled.
Section 3 contains the definition of mixed expected utility
(associated with a weighting function, a mixed vector and a
bidimensional utility function) and some of its properties (by
Georgescu 2012, Chapter 7 and Georgescu 2014).

In Sect. 4 there are recalled from Eeckhoudt et al. (2005),
Eeckhoudt and Schlesinger (2008), Lucia-Casademunt and
Georgescu (2013) and Georgescu and Kinnunen (2020) and
five optimal saving models (the certain model, two proba-
bilistic models and two more possibilistic models) together
with the first-order conditions.

Section 5 deals with the construction of the two mixed
optimal saving models. In the first model, the labor income
risk is a fuzzy number; in the second model the labor income
risk is a random variable and the interest-rate risk is a fuzzy
number. Their total utility functions are defined, their con-
cavity is proved and the first-order conditions are written.

In Sect. 6, the precautionary saving notions of the two
mixed models are defined and necessary and sufficient
conditions for the mixed risk to generate extra-saving are
established. These extra-saving conditions are expressed in
terms of the partial relative prudence index from Baiardi
et al. (2014) and two new indicators K1, K2. We prove some
approximation formulas for the computation of the indicators
K1, K2.

These four notions of precautionary saving are introduced
in Sect. 7. Theymeasure the variation in optimal savingwhen
moving from the single risk models from Sect. 4 to the two
mixed models from Sect. 5. The main results of the section
contain necessary and sufficient conditions for the positivity
of the new precautionary savings.

In Sect. 8, we prove that the optimal savings correspond-
ing to the two mixed models studied in this paper can be
calculated as the real solutions of some third-degree equa-
tions.

The sample percentile method of Vercher et al. (2007) is
used in Sect. 9 for obtaining the values of indicators K1 and
K2 starting from a dataset.

2 Possibilistic expected utility

If (�,K, P) is a probability space and X : � → R is a ran-
dom variable, then we will denote by M(X) the mean value
of X and by Var(X) its variance. Let u : R → R a con-
tinuous utility function, representing an agent (consumer).
Then, u(X) = u ◦ X is a random variable and its mean value
M(u(X)) is called the expected utility associated with X
and u. In the probabilistic risk modeling (Eeckhoudt et al.
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2005; Gollier 2004), two basic concepts exist: a utility func-
tion u (of an agent) and a random variable X representing
the risk. The treatment of different risk topics takes place
in the framework of Von Neumann–Morgenstern EU-theory,
whose fundamental notion is the (probabilistic) expected util-
ity M(u(X)).

The possibility risk theory (Georgescu 2012, 2011;
Georgescu and Kinnunen 2016) is developed in a framework
based on the following three entities:

• a weighting function f : [0, 1] → R ( f is a nonnegative
and increasing function that satisfies

∫ 1
0 f (γ )dγ = 1).

• a fuzzy number A whose level sets are [A]γ =
[a1(γ ), a2(γ )], γ ∈ [0, 1];

• a utility function of class C2.

Risk is modeled by a fuzzy number A and u represents the
agent (consumer). In general, the possibilistic risk can be
modeled by a possibility distribution. The choice of fuzzy
numbers to represent the possibilistic risk is due to the fact
that they can satisfactorily model many situations of uncer-
tainty (see Dubois and Prade 1988; Carlsson and Fullér
2011). We will also notice that the set of fuzzy numbers has
a rich algebraic structure (Dubois and Prade 1988), which
allows the development of a mathematical apparatus capable
of modeling the themes of risk theory.

In order to be able to develop a EU-theory in the possi-
bilistic context fixed by the three entities, we need a concept
of possibilistic expected utility.

Definition 2.1 (Georgescu 2012, 2011) The possibilistic
expectedutility E f (u(A)) associatedwith the triple ( f , A, u)

is defined by:

E f (u(A)) = 1

2

∫ 1

0
[u(a1(γ )) + u(a2(γ ))] f (γ )dγ (2.1)

For some particular forms of the utility function u from
(2.1), we could reach the main indicators associated with the
fuzzy number A.

When in (2.1) we take u = 1R (the identity of R), we
obtain the possibilistic expected value:

E f (A) = 1

2

∫ 1

0
[a1(γ ) + a2(γ )] f (γ )dγ (2.2)

For u(x) = (x − E f (A))2, one obtains the possibilistic
variance

Var f (A) = 1

2

∫ 1

0
[(a1(γ ) − E f (A))2 + (a2(γ ) − E f (A))2]

f (γ )dγ (2.3)

In the particular case of the weighting function f (γ ) =
2γ , γ ∈ [0, 1], the notions of possibilistic expected utility
and possibilistic variance have been introduced by Carlsson
and Fullér in paper Carlsson and Fullér (2001).

We will notice that in Georgescu (2009) was defined
another notion of possibilistic expected utility: it corresponds
to the same possibilistic expected value, but to a different
possibilistic variance.

Remark 2.2 The support of the fuzzynumber A is supp(A) =
{x ∈ R|A(x) > 0}. If supp(A) ⊆ (0,∞), then E f (A) > 0.
For any fuzzy number A whose support is not a point set, we
have Var f (A) > 0.

Proposition 2.3 (Georgescu 2012, 2011) For a, b ∈ R, g :
R → R, h : R → R two utility functions and u = ag + bh.
Then E f (u(A)) = aE f (g(A)) + bE f (h(A)).

The linearity property of Proposition 2.3 allows the proof
of an approximation formula for E f (u(A)), analogous to the
Arrow–Pratt approximation formula from the possibility risk
theory (Eeckhoudt et al. 2005, p. 11).

Proposition 2.4 (Georgescu 2012, 2011) For any fuzzy num-
ber A and for any utility function u (of classC2), the following
approximation formula holds:

E f (u(A)) ≈ u(E f (A)) + 1

2
u′′(E f (A))Var f (A) (2.4)

3 Mixed expected utility

Mixed vectors describe situations with several risk param-
eters: some of them are fuzzy numbers, others are random
variables. In particular, a mixed bidimensional vector has the
form (A, X) or (X , A), where A is a fuzzy number and X
a random variable. Such mixed bidimensional vectors will
appear in the saving models from Sects. 5–7: a component of
the mixed vector will be the labor income risk and the other
component will be the interest rate risk. We fix a mixed vec-
tor (A, X). Assume that the level sets of the fuzzy number A
are [A]γ = [a1(γ ), a2(γ )], γ ∈ [0, 1]. Let f : [0, 1] → R
be a weighting function and u : R2 → R a bidimensional
utility function of class C2.

Definition 3.1 (Georgescu 2012, 2011) The mixed expected
utility E f (u(A, X)) associated with the triple ( f , (A, X), u)

is defined by

E f (u(A, X)) = 1

2

∫ 1

0
[M(u(a1(γ ), X))

+M(u(a2(γ ), X))] f (γ )dγ (3.1)
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in which for any i = 1, 2 and γ ∈ [0, 1], M(u(ai (γ ), X))

is the mean value associated with the random variable
u(ai (γ ), X).

Analogously, one defines the mixed expected utility
E f (u(X , A)) associated with f , the mixed vector (X , A)

and the utility function u.

Proposition 3.2 (Georgescu 2012, 2011) Let g, h be two
bidimensional utility functions, a, b ∈ R and u = ag + bh.
Then, E f (u(A, X)) = aE f (g(A, X)) + bE f (h(A, X)).

If u is a bidimensional utility function of class C2, then
we denote as usual by ui , ui j the first and the second partial
derivatives of u.

The linearity property from Proposition 3.2 and the
second-order Taylor approximation applied to the utility
function u are used in proving the approximation formula
of the mixed expected utility E f (u(X , A)) contained in the
following result:

Proposition 3.3 (Georgescu 2012, 2011) Let (A, X) be a
mixed vector and u : R2 → R a bidimensional utility func-
tion of class C2. Then, the following approximation formula
holds:

E f (u(A, X)) ≈ u(E f (A), M(X))

+1

2
u11(E f (A), M(X))Var f (A)

+1

2
u22(E f (A), M(X))Var(X)

The formula from the previous proposition approximates
E f (u(A, X)) according to the probabilistic indicatorsM(X),
Var(X) and the possibilistic indicators E f (A), Var f (A). It
will be used in the following sections to find some approxi-
mation formulas of the total utility functions corresponding
to the mixed saving models.

4 Probabilistic and possibilistic models of
optimal saving

In this section, there are presented five optimal saving mod-
els. To each model, one associates an optimization problem
whose solution represents the saving level for which the total
utility of the model is maximum. We will start by defining
the certain model (without risk), which will be then trans-
formed into models with one of the two types or risk: labor
income risk and interest-rate risk. These will be mathemati-
cally described by random variables or fuzzy numbers.

Certain model (Eeckhoudt et al. 2005, p. 96 or Georgescu
2009)We consider a two-period consumptionmodel: the two
periods will be denoted by 0 and 1. The model is defined by
the following entities:

• the consumer has the same utility function u(x) for both
periods1;

• in both periods 0 and 1 there are the sure incomes y0 and
y1, respectively;

• r is the interest rate for saving;
• R = 1 + r > 0 is the return of saving (the gross rate of
interest, in the terminology of Eeckhoudt and Schlesinger
2008);

• s > 0 is the level of saving.

As usual, wewill assume that the utility function is of classC2
and u′ > 0, u′′ < 0. The total utility function of consumption
will be:

U (s) = u(y0 − s) + u(y1 + sR) (4.1)

The function U is strictly concave. The consumer wishes
to determine that value s∗ of s maximizing the total utility
U (s):

max
s

U (s) = U (s∗) (4.2)

The first-order condition associated with (4.2) will be:

− u′(y0 − s) + Ru′(y1 + Rs) = 0 (4.3)

To obtain saving models with risk, instead of parameters
y1 and R we will consider random variables or fuzzy num-
bers. We fix a weighting function f : [0, 1] → R.

Probabilistic model with labor income risk (Eeckhoudt
et al. 2005, pp. 95–98 or Eeckhoudt and Schlesinger 2008)

In period 1, instead of y1 we will have a labor income risk
represented by a random variable ỹ with M(ỹ) = y1. The
total utility function will be:

V1(s) = u(y0 − s) + M[u(ỹ + Rs)] (4.4)

The solution of the optimal problem max
s

V1(s) will be

denoted s∗
1 , and the first-order condition is written

− u′(y0 − s) + RM[u′(ỹ + Rs)] = 0 (4.5)

Probabilistic model with interest-rate risk
(Eeckhoudt et al. 2005, p. 98–99orEeckhoudt andSchlesinger
2008)

In period 1, instead of r we have an interest-rate risk rep-
resented by a random variable r̃ with the property M(r̃) = r .
Thus, the gross rate of interest will be the random variable

1 The treatment of the case when the utility functions are distinct is
done similarly.
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Table 1 Four models with risk No. Labor income Interest rate Total utility function Optimal saving

1 ỹ R V1(s) s∗
1

2 y1 R̃ V2(s) s∗
2

3 A R V3(s) s∗
3

4 y1 B V4(s) s∗
4

R̃ = 1+ r̃ ; therefore, M(R̃) = 1+ M(r̃) = 1+ r = R. The
total utility function will be:

V2(s) = u(y0 − s) + M[u(y1 + s R̃)] (4.6)

The solution of the optimization problem max
s

V2(s) will

be denoted s∗
2 , and the first-order condition is written:

− u′(y0 − s) + M[R̃u′(y1 + s R̃)] = 0 (4.7)

Possibilisticmodelwith labor income risk (Lucia-Casademunt
and Georgescu 2013)

In period 1, instead of y1 we will have a labor income risk
represented by a fuzzy number A with E f (A) = y1. The
total utility function will be:

V3(s) = u(y0 − s) + E f [u(A + Rs)] (4.8)

V3 is a strictly concave function (Lucia-Casademunt and
Georgescu 2013). We denote by s∗

3 the solution of the prob-
lem max

s
V3(s). The first-order condition has the following

form:

− u′(y0 − s) + RE f [u′(A + Rs)] = 0 (4.9)

Possibilistic model with interest-rate risk (Georgescu and
Kinnunen 2020)

In period 1, instead of y1 we will have a return of saving
represented by a fuzzy number B with E f (B) = R. The total
utility function will be:

V4(s) = u(y0 − s) + E f [u(y1 + sB)] (4.10)

V4 is a strictly concave function (Georgescu andKinnunen
2020).We denote by s∗

4 the solution of the optimization prob-
lem max

s
V4(s). We consider the function

m(s, y, x) = u(y + sx) (4.11)

By Georgescu and Kinnunen (2020), the first-order con-
dition associated with the problem max

s
V4(s) has the form:

− u′(y0 − s) + E f

[
∂m(s, y, B)

∂s

]

= 0 (4.12)

Table 2 Models with two types of risk

No. Labor income risk Interest rate risk

1 Probabilistic Probabilistic

2 Possibilistic Possibilistic

3 Possibilistic Probabilistic

4 Probabilistic Possibilistic

where E f [ ∂m(s,y,B)
∂s ] is the possibilistic expected utility asso-

ciated with f , the fuzzy number B and a utility function
∂m(s,y,B)

∂s .
We summarize the above information on the four models

with risk in Table 1.
In defining the total utility functions of the possibilistic

saving models and the first-order conditions associated with
them the possibilistic expected utilities have been used in the
sense of Definition 2.1.

The four models from Table 1 will be denoted (ỹ, R),
(y1, R̃), (A, R) and (y1, B).

Remark 4.1 Throughout this paper, we will make the fol-
lowing assumptions on the fuzzy numbers A, B and on the
random variables ỹ, R̃:

(H) supp(A), supp(B), supp(ỹ) = {ω ∈ �|ỹ(ω) > 0}
and supp(R̃) = {ω ∈ �|R̃(ω) > 0} are subsets of (0,∞).

By (H), it follows that E f (A) > 0,E f (B) > 0, M(ỹ) >

0, M(R̃) > 0, which agrees with y1 > 0, R > 0, E f (A) =
M(ỹ) = y1 and E f (B) = M(R̃) = R.

5 Mixedmodels of optimal saving

In this section, we will consider optimal saving models in
which labor income risk and interest rate risk are jointly
present. According to the type of modeling of these (proba-
bilistic or possibilistic) risks, four situations are distinguished
as follows:

The models of type 1 have been studied in Baiardi et al.
(2014) and models of type 2 in Georgescu and Kinnunen
(2016).Wewill expose next the constructionofmixedmodels
of types 3 and 4. The total utility functions of the two mixed
saving models will be defined using the mixed expected util-
ities in the sense of Definition 3.1.
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Models of type 3 These optimal saving models are char-
acterized by the fact that the labor income risk is a fuzzy
number A with E f (A) = y1 and the return of saving is a
random variable R̃ with M(R̃) = R.

The total utility function of the model will be:

V5(s) = u(y0 − s) + E f [u(A + s R̃)] (5.1)

in which E f [u(A+s R̃)] is the mixed expected utility associ-
ated with f , the mixed vector (A, R̃) and the bidimensional
utility function g(y, x) = u(y + sx), in which s is a param-
eter. We denote by [A]γ = [a1(γ ), a2(γ )] the level sets of
the fuzzy number A. By (5.1), the total utility V5(s) will be
written:

V5(s) = u(y0 − s) + 1

2

∫ 1

0
[M(u(a1(γ ) + s R̃))

+M(u(a2(γ ) + s R̃))] f (γ )dγ

By derivation, one obtains

V ′
5(s) = −u′(y0 − s) + 1

2

∫ 1

0
[M(R̃u′(a1(γ ) + s R̃))

+M(R̃u′(a2(γ ) + s R̃))] f (γ )dγ

We consider the function

w(y, x, s) = xu′(y + sx) (5.2)

Then, by Definition 3.1 the above expression of V ′
5(s)will

be written concisely:

V ′
5(s) = −u′(y0 − s) + E f [w(A, R̃, s)] (5.3)

Proposition 5.1 V5 is a strictly concave function.

Proof We derive V ′
5(s):

V ′′
5 (s) = u′′(y0 − s) + 1

2

∫ 1

0
[M((R̃)2u′′(a1(γ ) + s R̃))

+M((R̃)2u′′(a2(γ ) + s R̃))] f (γ )dγ

Since u′′ < 0 by hypothesis, it follows V ′′
5 (s) < 0 for any

s. 
�
We denote by s∗

5 the solution of the optimization problem:

max
s

V5(s) (5.4)

The value s∗
5 is the optimal saving level in the presence

of the mixed risk (A, R̃). By (5.3), the first-order condition
s∗
5 = 0 is written:

− u′(y0 − s) + E f [w(A, R̃, s)] = 0 (5.5)

Models of type 4. In these optimal savingmodels, the labor
income risk is a random variable ỹ with M(ỹ) = y1 and the
return of saving is a fuzzy number B with E f (B) = R.

The total utility function V6(s) of this model is:

V6(s) = u(y0 − s) + E f [u(ỹ + sB)] (5.6)

in which E f [u(ỹ+sB)] is the mixed expected utility associ-
ated with the weighting function f , the mixed vector (ỹ, B)

and the utility function g(y, x) = u(y + sx).
Assume that the level sets of the fuzzy number B are

[B]γ = [b1(γ ), b2(γ )], γ ∈ [0, 1]. By (3.1), the definition
(5.6) of V6(s) can be written:

V6(s) = u(y0 − s) + 1

2

∫ 1

0
[M(u(ỹ + sb1(γ )))

+M(u(ỹ + sb2(γ )))] f (γ )dγ

from where, by derivation, one obtains:

V ′
6(s) = −u′(y0 − s) + 1

2

∫ 1

0
[b1(γ )M(u′(ỹ + sb1(γ )))

+b2(γ )M(u′(ỹ + sb2(γ )))] f (γ )dγ

Then, by (3.1), one obtains:

V ′
6(s) = −u′(y0 − s) + E f [w(ỹ, B, s)] (5.7)

where w is the function defined in (5.2).

Proposition 5.2 V6 is a strictly concave function.

Proof Analogously to the proof of Proposition 5.1, it is
proved that V ′′(s) < 0 for any s. 
�

Wedenote by s∗
6 the solution of the following optimization

problem:

max
s

V6(s) (5.8)

By (5.7), the first-order condition associated with (5.8) is
written

− u′(y0 − s) + E f [w(ỹ, B, s)] = 0 (5.9)

Remark 5.3 ByPropositions 5.1 and5.2, the total utility func-
tions V5 and V6 are strictly concave; thus, the derivatives V ′

5
and V ′

6 are strictly decreasing. The optimal savings s∗
5 and

s∗
6 are solutions of the first-order conditions V ′

5(s) = 0 and
V ′
6(s) = 0. Accordingly, when these solutions exist, they are

unique.

For the convenience of writing, the model of type 3 will
be symbolized by the mixed vector (A, R̃), and the model of
type 4 by (ỹ, B).
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6 From certain model to mixedmodels

Traditionally, the precautionary saving measures the varia-
tion in optimal saving when the certain model is transformed
into an optimal saving model in which a certain type of risk
is present. By Baiardi et al. (2019), an important part of the
results from the literature dedicated to the saving models
contains necessary and sufficient conditions (either only nec-
essary or only sufficient) for the presence of a certain type of
risk to generate extra-saving. The main results of the section
belong to this research stream, necessary and sufficient con-
ditions being established for the extra-saving in case of the
two mixed models defined in Sect. 5.

In this section, we will define two new notions of precau-
tionary saving. They indicate how the optimal saving level
increases or decreases when moving from the certain model
(4.2) to each of the two mixed models (A, R̃) and (ỹ, B)

defined in the previous section.
We will keep all the notations from Sects. 4 and 5. We fix

a weighting function f : [0, 1] → R.
We define now the two notions of precautionary saving:

• s∗
5 − s∗: the variation in optimal saving when moving
from the certain model to the mixed model (A, R̃);

• s∗
6 − s∗: the variation in optimal saving when moving
from the certain model to the mixed model (ỹ, B).

We intend in the following to find necessary and sufficient
conditions for the positivity of those two precautionary sav-
ings. We recall from Baiardi et al. (2014) the partial relative
prudence index of the utility function u:

PRP(y, x) = −x
u′′′(y + x)

u′′(y + x)
, x > 0 (6.1)

Also, similar to Baiardi et al. (2014) (18) we introduce the
following new indicators:

K1 = 2
(s∗)2Var(R̃)

Var f (A) + (s∗)2Var(R̃)
for the model(A, R̃)

(6.2)

K2 = 2
(s∗)2Var f (B)

Var(ỹ) + (s∗)2Var f (B)
for the model(ỹ, B)

(6.3)

The indicator K1 depends on the possibilistic variance
Var f (A), the probabilistic variance Var(R̃) and the level
of optimal saving s∗ for the certain model; similarly, K2

depends on Var f (B), Var(ỹ) and s∗.

The indicators K1 and K2 can be written as:

K1 = 2

1 + Var f (A)

(s∗)2Var(R̃)

; K2 = 2

1 + Var(ỹ)
(s∗)2Var f (B)

Then, the following equivalences follow:

• K1 ≤ 2 iff s∗ ≤ Var f (A)

Var(R̃)
and K2 ≤ 2 iff s∗ ≤ Var(ỹ)

Var(B)
;

• K1 = 2 iff s∗ = Var f (A)

Var(R̃)
and K2 = 2 iff s∗ = Var(ỹ)

Var f (B)
.

• For the rest of the section, we will assume that supp(A)

and supp(B) are not point sets; thus, by Remark 2.2, we
will have Var f (A) > 0 and Var f (B) > 0. Then from
(6.2) and (6.3), it follows K1 > 0 and K2 > 0.

Theorem 6.1 s∗
5−s∗ > 0 if andonly if K1 < PRP(y1, s∗R).

Proof We consider the following bidimensional function:

v(y, x) = w(y, x, s∗) = xu′(y + s∗x) (6.4)

By (5.3), we will have

V ′
5(s

∗) = −u′(y0 − s∗) + E f [w(A, R̃, s∗)]
= −u′(y0 − s∗) + E f [v(A, R̃)]

But, according to the first-order condition (4.3) we have
u′(y0 − s∗) = Ru′(y1 + s∗R); thus, V ′

5(s
∗) can be written

V ′
5(s

∗) = −Ru′(y1 + s∗R) + E f [v(A, R̃)] (6.5)

By applying the approximation formula from Proposition
3.3, it follows

E f [v(A, R̃)] ≈ v(E f (A), M(R̃))

+1

2
v11(E f (A), M(R̃))Var f (A)

+1

2
v22(E f (A), M(R̃))Var(R̃)

Since E f (A) = y1 and M(R̃) = R, the previous formula
is written:

E f [v(A, R̃)] ≈ v(y1, R) + 1

2
v11(y1, R)Var f (A)

+1

2
v22(y1, R)Var(R̃) (6.6)
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We notice that

v1(y, x) = xu′′(y + s∗x); v11(y, x) = xu′′′(y + s∗x);
v2(y, x) = ∂

∂x
[xu′(y + s∗x)]

= u′(y + s∗x) + s∗xu′′(y + s∗x)

v22(y, x) = ∂

∂x
[u′(y + s∗x) + s∗xu′′(y + s∗x)]

= s∗u′′(y + s∗x) + s∗[u′′(y + s∗x) + xu′′′(y + s∗x)]
= 2s∗u′′(y + s∗x) + (s∗)2xu′′′(y + s∗x)

Replacing v11(y1, R) and v22(y1, R) in (6.6) with the val-
ues given by the above computations, one obtains:

E f [v(A, R̃)] ≈ v(y1, R) + Var f (A)

2
Ru′′′(y1 + s∗R)

+Var(R̃)

2
s∗[2u′′(y1 + s∗R) + s∗Ru′′′(y1 + s∗R)]

We notice that by (6.4) we get v(y1, R) = Ru′(y1 +
s∗R). Then, taking into account the above approximation
of E f [v(A, R̃)] one obtains

V ′
5(s

∗) = −u′(y0 − s∗) + E f [v(A, R)] ≈
≈ −Ru′(y1 + s∗R) + Ru′(y1 + s∗R)

+Var f (A)

2
Ru′′′(y1 + s∗R)

+Var(R̃)

2
s∗[2u′′(y1 + s∗R) + s∗Ru′′′(y1 + s∗R)]

from where it follows

V ′
5(s

∗) ≈ Var f (A)

2
Ru′′′(y1 + s∗R)

+Var(R̃)

2
s∗[2u′′(y1 + s∗R) + s∗Ru′′′(y1 + s∗R)]

By Proposition 5.1, V ′
5(s) is a strictly decreasing function,

thus s∗
5 > s∗ iff 0 = V ′

5(s
∗
5 ) < V ′

5(s
∗). Taking into account

the last approximation of V ′
5(s

∗), it follows that s∗
5 > s∗ iff

the following inequality holds:

Var f (A)Ru′′′(y1 + s∗R) + Var(R̃)s∗[2u′′(y1 + s∗R)

+s∗Ru′′′(y1 + s∗R)] > 0.

This inequality can be written:

Ru′′′(y1 + s∗R)[Var f (A) + (s∗)2Var(R̃)]
+2s∗u′′′(y1 + s∗R)Var(R̃) > 0.

Since u′′(y0 + s∗R) < 0 and Var f (A)+ (s∗)2Var(R̃) >

0, the last inequality is equivalent with:

Rs∗u′′′(y1 + s∗R)

u′′(y1 + s∗R)
+ 2

(s∗)2Var(R̃)

Var f (A) + (s∗)2Var(R̃)
< 0.

(6.7)

Taking into account (6.1), (6.2) and (6.7), it follows
that s∗

5 > s∗ if and only if −PRP(y1, s∗R) + K1 < 0,
from where the equivalence in the statement of theorem is
obtained. 
�
Theorem 6.2 s∗

6 > s∗ iff K2 < PRP(y1, s∗R)

Proof In this proof, we will also use the function v(y, x) =
xu′(y + s∗x) defined by (6.4). According to (5.7)

V ′
6(s

∗) = −u′(y0 − s∗) + E f [w(ỹ, B, s∗)]
= −u′(y0 − s∗) + E f [v(ỹ, B)]

fromwhere, using the first-order condition (4.3),wewill have

V ′
6(s

∗) = −Ru′(y1 + s∗) + E f [v(ỹ, B)] (6.8)

By applying Proposition 3.3, we can apply the approxi-
mation formula:

E f [v(ỹ, B)] ≈ v(M(ỹ), E f (B)) + 1

2
v11(M(ỹ),

E f (B))Var(ỹ)

+1

2
v22(M(ỹ), E f (B))Var f (B)

Since M(ỹ) = y1 and E f (B) = R, the approximation
formula becomes:

E f [v(ỹ, B)] ≈ v(y1, R) + 1

2
v11(y1, R)Var(ỹ)

+1

2
v22(y1, R)Var f (B) (6.9)

Using the expressions of v11(y, x) and v22(y, x) from the
proof of Theorem 6.1, formula (6.9) gets the form:

E f [v(ỹ, B)] ≈ v(y1, R) + Var(ỹ)

2
Ru′′′(y1 + s∗R)

+Var f (B)

2
s∗[2u′′(y1 + s∗R) + s∗Ru′′′(y1 + s∗R)]

Replacing in (6.8) E f [v(ỹ, R)]with its approximate value
from above, it follows

V ′
6(s

∗) ≈ Var(ỹ)

2
Ru′′′(y1 + s∗R)

+Var f (B)

2
s∗[2u′′(y1 + s∗R) + s∗Ru′′′(y1 + s∗R)]
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Using arguments similar to the ones from the proof of
Theorem 6.1, one obtains the following equivalences:

s∗
6 > s∗ iff V ′

6(s
∗) > 0

iff
Rs∗u′′′(y1 + s∗R)

u′′(y1 + s∗R)
+ 2

(s∗)2Var f (B)

Var(ỹ) + (s∗)2Var f (B)
< 0

iff − PRP(y1, s
∗R) + K2 < 0


�

Remark 6.3 Theorems 6.1 and 6.2 establish necessary and
sufficient conditions for the presence of mixed risk (A, R̃)

(resp. (ỹ, B)) to generate extra-saving.

Example 6.4 Assume that the consumer’s utility function u
is CRRA-type ( Eeckhoudt et al. 2005, p.21): for all w > 0,
u(w) is defined by:

u(w) =
{

w1−γ

1−γ
γ ≥ 0, γ �= 1

ln(w) γ = 1
(6.10)

Wecompute thepartial relative prudence index PRP(y, x)
associated with u.

(a) Case γ ≥ 0, γ �= 1 One notices that

u′(x) = 1

xγ
; u′′(x) = −γ

1

xγ+1 ; u′′′(x)

= γ (γ + 1)
1

xγ+2

from where it follows

PRP(y, x) = (γ + 1)
x

y + x
(6.11)

(b) Case γ = 1. An analogous computation leads to

PRP(y, x) = 2
x

y + x
(6.12)

We will compute the indicators K1, K2 under the following
hypotheses:

• the weighting function f has the form f (t) = 2t , for
t ∈ [0, 1];

• the random variables ỹ and R̃ follow uniform distribu-
tions on the interval [c, d], where 0 < c < d;

• the fuzzy numbers A and B are defined by a1(t) =
b1(t) = c and a2(t) = b2(t) = d, for any t ∈ [0, 1].

By a simple calculation, we find the following possibilistic
and probabilistic variances:

Var f (A) = Var f (B) = (c − d)2

4
;

Var(ỹ) = Var(R̃) = (c − d)2

12

Replacing those variances in formulas (6.2) and (6.3), one
obtains

K1 = 2
(s∗)2

3 + (s∗)2
; K2 = 2

(s∗)2

1 + 3(s∗)2
(6.13)

Taking into account (6.11)–(6.13) by applying Theorems
6.1 and 6.2, the necessary and sufficient conditions on extra-
saving get the form of the following equivalence:

• Case (a):

s∗
5 − s∗ > 0 iff

2s∗

3 + (s∗)2
<

(γ + 1)R

y1 + s∗R
;

s∗
6 − s∗ > 0 iff

2s∗

1 + 3(s∗)2
<

(γ + 1)R

y1 + s∗R
;

• Case (b):

s∗
5 − s∗ > 0 iff s∗ < 3

R

y1
;

s∗
6 − s∗ > 0 iff 2R(s∗)2 − y1s

∗ + R > 0.

The extra-savings from Theorems 6.1 and 6.2 are formu-
lated according to the indicators K1, K2 and RPR(y1, s∗R),
which in their turn depend on s∗, the optimal saving for the
certain model (4.2). By the first-order condition (4.3), we
have the following equation in s∗:

− u′(y0 − s∗) + Ru′(y1 + s∗R) = 0 (6.14)

Finding the exact solution of Eq. (6.14) is difficult; there-
fore, we search for an approximate value of s∗. Considering
the Taylor approximation

u′(y0 − s∗) ≈ u′(y0) − s∗u′′(y0); u′(y1 + s∗R) ≈ u′(y1)
+s∗Ru′′(y1)

and replacing in (6.14), one obtains the following approxi-
mation formula for s∗:

s∗ ≈ u′(y0) − Ru′(y1)
u′′(y0) + R2u′′(y1)

(6.15)
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Replacing s∗ in (6.2) and (6.3) with its approximate value
from (6.15), it follows

K1 = 2

[
u′(y0) − Ru′(y1)
u′′(y0) + R2u′′(y1)

]2

Var(R̃)

Var f (A) +
[

u′(y0)−Ru′(y1)
u′′(y0)+R2u′′(y1)

]2
Var(R̃)

(6.16)

K2 = 2

[
u′(y0) − Ru′(y1)
u′′(y0) + R2u′′(y1)

]2

Var(B)

Var f (ỹ) +
[

u′(y0)−Ru′(y1)
u′′(y0)+R2u′′(y1)

]2
Var f (B)

(6.17)

Also, by (6.1) and (6.13) one can compute an approximate
value of the partial relative prudence index:

PRP(y1, s
∗R) = −Rs∗ u′′′(y1 + s∗R)

u′′(y1 + s∗R)

≈ R
u′(y0) − Ru′(y1)
u′′(y0) + R2u′′(y1)

u′′′(y1 + R u′(y0)−Ru′(y1)
u′′(y0)+R2u′′(y1) )

u′′(y1 + R u′(y0)−Ru′(y1)
u′′(y0)+R2u′′(y1) )

(6.18)

Using the approximate values of K1, K2 and PRP(y1, s∗R)

from (6.16)–(6.18), we can verify the extra-saving conditions
from Theorems 6.1 and 6.2 in different concrete cases.

Example 6.5 Let c, d ∈ R with 0 < c < d. We will analyze
the mixed saving model (5.4) under the following hypothe-
ses:

• the weighting function is f (γ ) = 2γ , γ ∈ [0, 1];
• The utility function of the consumer is u(x) = −e−x ,

x ∈ R;
• the labor income risk is the fuzzy number A defined by
a1(γ ) = c, a2(γ ) = d for any γ ∈ [0, 1];

• the return of saving is the random variable R̃ which fol-
lows the uniform distribution on the interval [c, d];

• y0 = y1 (we recall that y0 is the sure income from period
0, y1 = E f (A) and R = M(R̃))

A simple calculation shows that

E f (A) = M(R̃) = c + d

2
; Var f (A) = (c − d)2

4
;

Var(R̃) = (c − d)2

12
(6.19)

One notices that u′(x) = u′′′(x) = e−x and u′′(x) = −e−x .
Applying (6.15), one obtains the following approximate

value of the optimal saving s∗:

s∗ ≈ u′(y0) − Ru′(y1)
u′′(y0) + R2u′′(y1)

= e−y0 − Re−y1

−e−y0 − R2e−y1

= R − 1

R2 + 1
(6.20)

Exactly as in Example 6.4, by using the two variances

from (6.19) one reaches K1 = 2 (s∗)2
3+(s∗)2 . Replacing s∗ in

this expression of K1 with its approximate value (6.20), it
follows:

K1 = 2
3

(s∗)2 + 1
= 2

3( R
2+1
R−1 )2 + 1

= 2(R − 1)2

3(R2 + 1)2 + (R − 1)2
(6.21)

For the utility functionu(x) = −e−x ,wehave PRP(y, x)
= x , and thus, using (6.18), one obtains

PRP(y1, s
∗R) = Rs∗ ≈ R(R − 1)

R2 + 1
(6.22)

Taking into account (6.21) and (6.22), the equivalence of
Theorem 6.1 becomes:

s∗
5 − s∗ > 0 iff

2(R − 1)2

3(R2 + 1)2 + (R − 1)2
<

R(R − 1)

R2 + 1

iff 2(R − 1)2(R2 + 1) < R(R − 1)[3(R2 + 1)2 + (R − 1)2]

If R > 1, then

s∗
5 − s∗ > 0

iff 2(R − 1)(R2 + 1) < R[3(R2 + 1)2 + (R − 1)2]

and if R < 1 then

s∗
5 − s∗ > 0

iff 2(R − 1)(R2 + 1) > R[3(R2 + 1)2 + (R − 1)2].

7 Generalized precautionary saving

Usually the precautionary saving shows the change in opti-
mal saving when moving from a certain model to a model
with risk. The notion of precautionary saving can be extended
in the following way: if s̃1, s̃2 are the optimal saving levels
for M1, M2 then s̃1 − s̃2 is the precautionary saving corre-
sponding to moving from M1 to M2. Of course the notion of
precautionary saving thus defined has a meaning when the
model M2 is obtained from M1 by adding one or more risk
parameters. Such a notion has been studied in Courbage and

123



Mixed models for optimal saving... 4405

Rey (2007) and Magnani and Menegatti (2015) for proba-
bilistic models and in Georgescu (2014) and Georgescu and
Kinnunen (2016) for possibilistic models.

In this section,wewill consider four notions of precaution-
ary saving (in generalized sense) which reflect the changes
in optimal saving in the framework of the mixed models in
Sect. 5. We will notice that the mixed models (A, R̃) and
(ỹ, B) from Sect. 5 can be obtained from models with a sin-
gle type of risk (ỹ, R), (y1, R̃), (A, R) and (y1, B) fromSect.
4 by adding another type of risk, according to the following
routes:

(y1, R̃) → (A, R̃); (A, R) → (A, R̃);
(y1, B) → (ỹ, B); (ỹ, R) → (ỹ, B).

The changes in optimal saving generated by these trans-
formations will be measured by the following precautionary
savings:

• s∗
5 − s∗

2 : on the route (y1, R̃) → (A, R̃);
• s∗

5 − s∗
3 : on the route (A, R) → (A, R̃);

• s∗
6 − s∗

4 : on the route (y1, B) → (ỹ, B);
• s∗

5 − s∗
1 : on the route (ỹ, R) → (ỹ, B).

For instance, s∗
5 − s∗

2 indicated the change in optimal saving
when moving from the model (y1, R̃) to the mixed model
(A, R̃), transforming the certain value y1 into the fuzzy num-
ber A.

We will establish next necessary and sufficient conditions
for the four transformations from above to generate extra-
saving. We fix a weighting function f : [0, 1] → R, and we
keep the notations from the previous sections.

Theorem 7.1 s∗
5 − s∗

2 > 0 if and only if u′′′(y1 + s∗
2 R) > 0.

Proof By Proposition 5.1, V ′
5(s) is a strictly decreasing func-

tion, thus

s∗
5 − s∗

2 > 0 iff V ′
5(s

∗
5 ) < V ′

5(s
∗
2 ) (7.1)

Intending to find an approximation of V ′
5(s

∗
5 ), we will

apply first (5.3):

V ′
5(s

∗
2 ) = −u′(y0 − s∗

2 ) + E f [w(A, R̃, s∗
2 )] (7.2)

where w(y, x, s) = xu′(y + sx), by (5.2). Introducing the
bidimensional function

g(y, x) = w(y, x, s∗
2 ) = xu′(y + s∗

2 x) (7.3)

and taking into account the first-order condition (4.7), for-
mula (7.2) becomes

V ′
5(s

∗
2 ) = −M[g(y1, R̃)] + E f [g(A, R̃)] (7.4)

We are looking for approximations of the two terms from
(7.4). Exactly as in (6.6) (with g instead of v), the following
approximation holds:

E f [g(A, R̃)] ≈ g(y1, R) + 1

2
g11(y1, R)Var f (A)

+1

2
g22(y1, R)Var(R̃) (7.5)

Considering the following function

h(x) = w(y1, x, s
∗
2 ) = g(y1, x) = xu′(y1 + s∗

2 x) (7.6)

one will have M[g(y1, R̃)] = E f [h(R̃)] and

h′′(x) = 2s∗
2u

′′(y1 + s∗
2 x) + (s∗

2 )
2xu′′′(y1 + s∗

2 x) (7.7)

For the probabilistic expected utility M[h(R̃)], one will
use the known approximation (by Eeckhoudt et al. 2005 and
Gollier 2004):

M[h(R̃)] ≈ h(M(R̃))

+h′′(M(R̃))

2
Var(R̃) = h(R) + h′′(R)

2
Var(R̃) (7.8)

Exactly as in the proof of Theorem 6.1 (with g instead of
v), one will have

g11(y1, R) = Ru′′′(y1 + s∗
2 R) (7.9)

g22(y1, R) = 2s∗
2u

′′(y1 + s∗
2 R) + (s∗

2 )
2Ru′′′(y1 + s∗

2 R)

(7.10)

From (7.7) and (7.10), it follows h′′(R) = g22(y1, R).
Also, h(R) = g(y1, R); thus, by (7.4), (7.5) and (7.6), V ′

5(s
∗
2 )

can be approximated as such:

V ′
5(s

∗
2 ) ≈ 1

2
g11(y1, R)Var f (A) (7.11)

Taking into account that Var f (A) > 0, from (7.1) and
(7.11) it follows that s∗

5 > s∗
2 iff g11(y1, R) > 0. Consid-

ering further (7.9) and R > 0 the following equivalence is
obtained: s∗

5 − s∗
2 > 0 iff u′′′(y1 + s∗

2 R) > 0. 
�
Theorem 7.2 s∗

5 − s∗
3 > 0 iff P RP(y1, s∗

3 R) > 2

Proof As in the proof of Theorem 7.1, the following equiv-
alence holds:

s∗
5 > s∗

3 > 0 iff V ′
5(s

∗
3 ) > 0 (7.12)

Introducing the function

h(y, x) = w(y, x, s∗
3 ) (7.13)
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it follows

V ′
5(s

∗
3 ) = −u′(y0 − s∗

3 ) + E f [w(A, R̃, s∗
3 )]

= −u′(y1 − s∗
3 ) + E f [k(A, R̃)]

Taking into account thefirst-order condition (4.9),wehave
u′(y0 − s∗

3 ) = E f [Ru′(A + Rs∗
3 )] thus

V ′
5(s

∗
3 ) = −E f [Ru′(A + Rs∗

3 )] + E f [k(A, R̃)] (7.14)

Applying Proposition 3.3, we approximate E f [k(A, R̃)]:

E f [k(A, R̃)] ≈ k(y1, R) + 1

2
k11(y1, R)Var f (A)

+1

2
k22(y1, R)Var(R̃) (7.15)

We consider the following function:

l(y) = w(y, R, s∗
3 ) = k(y, R) = Ru′(y + s∗

3 R) (7.16)

As in the proof of Proposition 7.1, one has

l(y1) = h(y1, R) = Ru′(y1 + s∗
3 R) (7.17)

k11(y1, R) = l ′′(y1) = Ru′′′(y1 + s∗
3 R) (7.18)

k12(y1, R) = s∗
3 [2u′′(y1 + s∗

3 R) + s∗
3 Ru

′′′(y1 + s∗
3 R)]

(7.19)

Noticing that E f [Ru′(A+ Rs∗
3 )] = E f [l(A)] and apply-

ing Proposition 2.4, one obtains the approximation:

E f [Ru′(A + Rs∗
3 )] ≈ l(y1) + l ′′(y1)

2
Var f (A) (7.20)

From formulas (7.14) and (7.15) and (7.17)–(7.20), it fol-
lows

V ′
5(s

∗
3 ) ≈ 1

2
k22(y1, R)Var(R̃)

= Var(R̃)

2
s∗
3 [2u′′(y1 + s∗

3 R) + s∗
3 Ru

′′′(y1 + s∗
3 R)]

Taking into account the previous relation and (7.12), the
following equivalence holds:

s∗
5 > s∗

3 iff 2u′′(y1 + s∗
3 R) + s∗

3 Ru
′′′(y1 + s∗

3 R) > 0

(7.21)

Since u′′(y1 + s∗
3 R) < 0 from (7.21), it follows immedi-

ately that s∗
5 > s∗

3 iff PRP(y1, s∗
3 R) > 2. 
�

Analogously to Theorem 7.1 and 7.2, the following results
can be proved:

Theorem 7.3 s∗
6 − s∗

4 > 0 if and only if u′′′(y1 + s∗
4 R) > 0.

Theorem 7.4 s∗
5 − s∗

1 > 0 if and only if P RP(y1, s∗
1 R) > 2.

Theorems7.1 and7.3 belong to the researchdirection from
papers Leland (1968), Sandmo (1970), Drèze andModigliani
(1972), Courbage and Rey (2007) and Lucia-Casademunt
and Georgescu (2013): the generation of extra-saving by
adding a (probabilistic or possibilistic) labor income risk is
characterized by a condition of prudence of the consumer (by
Kimball 1990). The other two results (Theorem 7.2 and 7.4)
will be registered in the research stream fromSandmo (1970),
Rothschild and Stiglitz (1971), Eeckhoudt et al. (2005) and
Magnani (2017): the generation of extra-saving by adding a
(probabilistic or possibilistic) interest-rate risk holds if and
only if the (partial) relative prudence index is greater than 2.

Example 7.5 We analyze the conditions of extra-saving from
the four theorems of the sections under the hypothesis from
Example 6.4. Firstwe notice that u′′′(x) = γ (γ +1) 1

xγ+2 > 0
for any x > 0; thus, the prudence conditions of the consumer
from Theorems 7.1 and 7.3 are fulfilled. Accordingly, s∗

5 −
s∗
2 > 0 and s∗

6 − s∗
4 > 0; in both cases, the presence of a

(probabilistic and possibilistic) labor income risk generates
extra-saving.

From (6.12) and (6.13), the following formula of the par-
tial relative prudence index is deduced:

PRP(y1, s
∗
3 R) =

⎧
⎨

⎩

(γ+1)s∗3 R
y1+s∗3 R

if γ �= 0, γ �= 1

2
s∗3 R

y1+s∗3 R
if γ = 1

Then, by applying Theorem 7.2 the following necessary
and sufficient conditions of extra-saving will be obtained:

• for γ > 1: s∗
5 − s∗

3 > 0 iff
(γ+1)s∗3 R
y1+s∗3 R

> 2 iff s∗
3 >

2y1
(γ−1)R ;

• for γ < 1: s∗
5 − s∗

3 > 0 iff
(γ+1)s∗3 R
y1+s∗3 R

> 2 iff s∗
3 <

2y1
(γ−1)R ;

• for γ = 1: s∗
5 − s∗

3 > 0 iff 2
s∗3 R

y1+s∗3 R
> 2 iff s∗

3 >
y1
R ;

The necessary and sufficient conditions of extra-saving from
Theorem 7.4 are treated similarly.

8 Approximation of optimal saving

This section is concernedwith the computation of the optimal
savings s∗

5 and s∗
6 corresponding to the mixed models (5.4)

and (5.8). According to the first-order conditions (5.5) and
(5.9), s∗

5 and s∗
6 verify the following equations:

−u′(y0 − s∗
5 ) + E f [w(A, R̃, s∗

5 )] = 0 (8.1)

−u′(y0 − s∗
6 ) + E f [w(A, R̃, s∗

6 )] = 0 (8.2)
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where w(y, x, s) = xu′(y + sx). Since finding the exact
solution of their equations is difficult, we will present in this
section a way to obtain their approximate solutions.

We will assume that the utility function u is of class C4.
One will deal first with Eq. (8.1). We introduce the following
notations:

C0 = −u′(y0) + R[u′(y1) + 1

2
Var f (A)u′′′(y1)] (8.3)

C1 = u′′(y0) + (R2 + Var(R̃))u′′(y1) + R2

2
Var f (A)uiv(y1)

(8.4)

C2 = 3R

2
Var(R̃)u′′′(y1) (8.5)

C3 = R2

2
Var(R̃)uiv(y1) (8.6)

Theorem 8.1 An approximate value of the optimal saving s∗
5

can be computed as a solution of the third-order equation in
z:

C3z
3 + C2z

2 + C1z + C0 = 0 (8.7)

Proof Introducing the following function

θ(y, x) = w(y, x, s∗
5 ) = xu′(y + s∗

5 x) (8.8)

Eq. (8.1) gets the form:

− u′(y0 − s∗
5 ) + E f [θ(A, R̃)] = 0 (8.9)

We apply Proposition 3.3 for the mixed vector (A, R̃) and
for the bidimensional utility function θ(y, x) of class C2:

E f [θ(A, R̃)] ≈ θ(E f (A), M(R̃)) + 1

2
θ11(E f (A),

M(R̃))Var f (A) + 1

2
θ22(E f (A), M(R̃))Var(X)

Since by the construction of the mixed saving model (5.4)
we have E f (A) = y1 and M(R̃) = R, the previous formula
becomes:

E f [θ(A, R̃)] ≈ θ(y1, R) + 1

2
θ11(y1, R)Var f (A)

+1

2
θ22(y1, R)Var(R̃) (8.10)

By a reasoning analogous to the one from the proof of
Theorem 6.1 (with θ(y, x) instead of v(y, x) and with s∗

5
instead of s∗), formula (8.10) will become:

E f [θ(A, R̃)] ≈ Ru′(y1 + s∗5 R) + Var f (A)

2
Ru′′(y1 + s∗5 R)

+Var(R̃)

2
s∗5 [2u′′(y1 + s∗5 R) + s∗5u′′′(y1 + s∗5 R)]

(8.11)

Since u is of class C4, one can consider the first-order
Taylor approximation:

u′(y0 − s∗
5 ) ≈ u′(y0) − s∗

5u
′′(y0);

u′(y1 + s∗
5 R) ≈ u′(y1) + s∗

5 Ru
′′(y1);

u′′(y1 + s∗
5 R) ≈ u′′(y1) + s∗

5 Ru
′′′(y1);

u′′′(y1 + s∗
5 R) ≈ u′′′(y1) + s∗

5 Ru
iv(y1).

Taking into account these approximations and formula
(8.11), Eq. (8.9) becomes:

−u′(y0) + s∗
5u

′′(y0) + R[u′(y1) + s∗
5 Ru

′′(y1)]
+Var f (A)

2
R[u′′′(y1) + s∗

5 Ru
iv(y1)]

+Var(R̃)

2
s∗
5 [2(u′′(y1) + s∗

5 Ru
′′′(y1)

+s∗
5 R(u′′′(y1) + s∗

5 Ru
iv(y1))] ≈ 0

Ordering by the powers of s∗
5 , one obtains

R2

2
Var(R̃)uiv(y1)(s

∗
5 )

3 + 3R

2
Var(R̃)u′′′(y1)(s∗

5 )
2

+[u′′(y0) + (R2 + Var(R̃))u′′(y1)

+ R2

2
Var f (A)uiv]s∗

5

−u′(y0) + R[u′(y1) + 1

2
Var f (A)u′′′(y1)] ≈ 0.

The coefficients of this equation are exactlyC0,C1,C2 and
C3 from formulas (8.3)–(8.6); thus, s∗

5 has as approximate
solution Eq. (8.7). 
�

Remark 8.2 According to the previous theorem, an approx-
imate value of the optimal saving s∗

5 is determined as a
solution of the third-order equation (8.7). From Remark 5.3,
one knows that s∗

5 is the unique solution of (8.1) (when it
exists). Accordingly, the third-order equation (8.7) should
have a unique real solution. This is done when the discrimi-
nant of this equation:

δ = 18C3C2C1C0 − 4C3
2C0 + C2

2C
2
1 − 4C3C

3
1 − 27C2

3C
2
0

is strictly negative. The solution s∗
5 of Eq. (8.7) will be

obtained applying the Cardano formulas to solve third–order
algebraic equations.
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To determine an approximate solution of Eq. (8.2), one
will proceed similarly.

D0 = −u′(y0) + R[u′(y1) + 1

2
Var(ỹ)u′′′(y1)] (8.12)

D1 = u′′(y0) + (R2 + Var f (B))u′′(y1) + R2

2
Var(ỹ)uiv(y0)

(8.13)

D2 = 3R

2
Var(R̃)u′′′(y1) (8.14)

D3 = R2

2
Var(R̃)uiv(y1) (8.15)

Theorem 8.3 An approximate value of the optimal saving s∗
6

will be the solution of the third-degree equation in z:

D3z
3 + D2z

2 + D1z + D0 = 0 (8.16)

Proof By a reasoning similar to the one in the proof of The-
orem 8.1, replacing the mixed vector (A, R̃) by the mixed
vector (ỹ, B). 
�
Example 8.4 Let c, d ∈ R such that 0 < c < d. We consider
the saving model (5.4) under the hypothesis of Example 6.5;
(a) the weighting function is f (γ ) = 2γ , γ ∈ [0, 1]; (b) the
utility function is u(x) = −e−x , for all x ∈ R; (c) the labor
income risk is the fuzzy number A defined by a1(γ ) = c
and a2(γ ) = d, for all γ ∈ [0, 1]; (d) the return of saving
is the uniform distribution R̃ on the interval [c, d]; (e) y0 =
y1 = E f (A) = E f (R̃) = R = c+d

2 . One notices that
u′(x) = u′′′(x) = e−x and u′′(x) = uiv(x) = −e−x for any
x ∈ R.

We compute the coefficientsC0,C1,C2,C3 with formulas
(8.3)–(8.6):

C0 = e−y0

[

−1 + R + R

2
Var f (A)

]

;

C1 = −e−y0

[

1 + R2 + Var(R̃) + R2

2
Var f (A)

]

;

C2 = e−y0 3R

2
Var(R̃);

C3 = −e−y0 R
2

2
Var(R̃).

Replacing in Eq. (8.7) C0, C1, C2 and C3 with the above
values, one obtains the third–order equation:

− R2

2
Var(R̃)z3 + 3R

2
Var(R̃)z2

−[1 + R2 + Var(R̃) + R2

2
Var f (A)]z − 1 + R

+ R

2
Var f (A) = 0 (8.15)

Let’s take the numerical example c = 4, d = 6. Then,
by (6,17) one has R = M(R̃) = c+d

2 = 5, Var f (A) =
(c−d)2

4 = 1 and Var(R̃) = (c−d)2

12 = 1
3 . The coefficients of

Eq. (8.15) will be:

− R2

2
Var(R̃) = −25

6
3R

2
Var(R̃) = 5

2

−
[

1 + R2 + Var(R̃) + R2

2
Var f (A)

]

= −233

6

−1 + R + R

2
Var f (A) = 13

2

With these values, Eq. (8.15) becomes

−25

6
z3 + 5

2
z2 − 233

6
z + 13

2
= 0

By means of Cubic Equation Calculator, the above equa-
tion has the following solutions:

z1 = 0.16869898557375712, z2 = 0.21565050721312146

+i ∗ 3.0332713058887566 and z3

= 0.21565050721312146

−i ∗ 3.0332713058887566.

In conclusion, the optimal saving s∗
5 can be approximated by

the unique real solution: z1 = 0.16869898557375712.

9 From data to optimal saving

Consider a mixed model of optimal saving (A, R̃), in which
the fuzzy number A represents the labor income risk, and
the random variable R̃ is the return of saving. Recall that
R̃ = r̃ + 1, where r̃ is the random variable that models the
interest rate for saving. For this mixed model, we have the
initial data:

• the sure income from period 0 is y0 = 100;
• the labor income risk A and interest rate for saving r̃ are
known by the data in the table below:

y1 12 13 16 17 10 13 18 15 12 14 12

r̃ 0.1 0.3 0.5 0.2 0.2 0.4 0.6 0.1 0.4 0.2 0.2
R̃ 1.1 1.3 1.5 1.2 1.2 1.4 1.6 1.1 1.4 1.2 1.2
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• the consumer utility functions of the model: u(x) =
v(x) = ln(x);

• The weighting function has the form f (γ ) = 2γ , for any
γ ∈ [0, 1].

We intend that based on these data to determine the value of
the indicator K1, by using the approximation formula (6.16):

K1 = 2[ u′(y0) − Ru′(y1)
u′′(y0) + R2u′′(y1)

]2 Var(R̃)

Var f (A) + [ u′(y0)−Ru′(y1)
u′′(y0)+R2u′′(y1) ]2Var(R̃)

.

In order to obtain the indicator K1, we need to compute
the values of all entities that appear in the right member of
the above formula.

R will be the mean of values of R̃ from the third line of the
previous table and Var(R̃) will be the statistical variance of
this sequence of data. By using Excel, we obtain R = 1.29
and Var(R̃) = 0.026.

For obtaining Var f (A), we will apply the sample per-
centile method of Vercher et al. (2007), so that from the
string of values on the first line of the table to determine
the trapezoidal fuzzy number A.

By the method of Vercher et al. (2007), we associate
with a data set z1, . . . , zn a trapezoidal fuzzy number
A = (a, b, α, β). Firstly we compute the percentiles
P5, P40, P60, P95 associated with z1, . . . , zn , and then, we
consider the trapezoidal fuzzy number A = (a, b, α, β),
defined by a = P40, a = P60, α = P40 − P5 and
β = P95 − P60.

Starting from the values on the first line of the table and
applying the above formulas, using a calculation in Excel we
find P5 = 11, P40 = 13, P60 = 14 and P95 = 17.5. Thus,
the fuzzy trapezoidal number associated with this data set is
A = (a, b, α, β) = (13, 14, 2, 3.5). This fuzzy number will
represent the labor income risk.

WeknowfromExample 3.3.9 ofGeorgescu (2012) that the
possibilistic expected value of the trapezoidal fuzzy number
A = (a, b, α, β) has the form

E f (A) = a + b

2
+ β − α

2
.

Thus applying this formula for A = (13, 14, 2, 3.5), we
get E f (A) = 13.75. According to the construction of the
mixed model (A, R̃), we have y1 = E f (A) (see Sect. 5), so
in our case we have y1 = 13.75.

Recall from Example 3.4.9 of Georgescu (2012) the form
of the possibilistic variance of the trapezoidal fuzzy number
A = (a, b, α, β):

Var f (A) = (b − a)2

4
+ (b − a)(α + β)

6
+ α2 + β2 + αβ

18

By applying this formula to the trapezoidal fuzzy number
A = (13, 14, 2, 3.5), we obtain Var f (A) = 2.45.

We remark that u(x) = ln(x), u′(x) = 1
x and u"(x) =

− 1
x2
, and therefore, we get

u′(y0) = u′(100) = 1

100
= 0.01, u"(y0) = u"(100)

= − 1

102
= −0.0001

u′(y1) = u′(13.75) = 1

13.75
= 0.072; u"(y1) = u"(13.75)

= − 1

13.752
= −0.0052

Weobtained the numerical values of all entities that appear
in the expression in the right member of the approximation
formula (6.16), so, by a straightforward computation, we get
K1 = 9.41.

Now we want to see whether for our mixed model the
optimal saving level increases or decreases. In order to obtain
this result, we need to verify the criterion offered by Theorem
6.1: s∗

5 − s∗ > 0 iff K1 < PRP(y1, s∗R).
Remember from (6.1) that PRP(y, x) = PRP(y1, s∗R)

= s∗R u′′′(y1+s∗R)
u′′(y1+s∗R)

.
An approximate value of s∗ is obtained by using formula

(6.15):

s∗ = u′(y0) − Ru′(y1)
u′′(y0) − R2u′′(y1)

= u′(100) − Ru′(13.75)
u′′(100) − R2u′′(13.75)

Applying this formula for y0 = 100, y1 = E f (A) =
13.75 and R = 1.29 we get s∗ = 9.4158, therefore
PRP(y1, s∗R) = 629.747.

We see that K1 < PRP(y1, s∗R) so the presence of pos-
sibilistic risk represented by the trapezoidal fuzzy number
A = (13, 14, 2, 3.5) generates the extra-saving.

In an analogous way from the start data, we can deter-
mine K2 and then we can check the extra-saving criterion in
Theorem 6.2.

10 Concluding remarks

In the two saving models from the paper, the risk acts on
the optimal saving level as a bidimensional mixed vector:
if a component (labor income risk) is a random variable,
then the other component (interest-rate risk) is a fuzzy num-
ber. To study the changes of the optimal saving produced
by these risk combinations, several notions of precautionary
saving are defined. The main results from the paper consist
in proving some necessary and sufficient conditions on these
precautionary savings when:
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(a) moving from the certain model to each of the two mixed
models;

(b) moving from a single risk model to a mixed model.

The mentioned conditions are expressed according to the
partial relative prudence index (Baiardi et al. 2014) and two
new indicators K1, K2 (analogous to the indicator K from
Baiardi et al. 2014). In the expressions of K1, K2, we find the
variances of the components of the mixed model, reflecting
the way the combinations of the two risks (a probabilistic
one, and a possibilistic one) affect the optimal saving level.

K1 and K2 are analogous to K , an indicator used in Mag-
nani (2017) andMagnani andMenegatti (2015) as a threshold
level for partial relative prudence index in the framework of
probabilistic saving models with labor income risk and inter-
est rate risk. In the mentioned works, it is studied the effect
that the changes in the covariance between labor income risk
and interest rate risk have on the values of K . A similar prob-
lem cannot be formulated in the case of mixed models in this
paper because no connection is assumed between the compo-
nents of a mixed vector of the form (A, R̃) or (ỹ, B). We do
not know a notion of "covariance" between a randomvariable
and a fuzzy number that reflects a relationship of interdepen-
dence between the uncertainty phenomena they shape. Such
a notion could lead to new classes of mixed saving models
and to the study of a problem of the type above.

In Gunning (2010), Vergara (2007), the effect on the opti-
mal saving level of the four types of risk (labor income risk,
wealth risk, asset risk and capital risk), all modeled by ran-
dom variables, is analyzed. One asks the problem of studying
saving models in which all these four types of risk are repre-
sented by fuzzy numbers, as well asmodels in whichwe have
mixed risks obtained from the four risks mentioned above.

In Kaluszka and Krzeszowiec (2017), the Jensen-type
operators were introduced, a notion that generalizes the
expected utility operators from Chapter 5 of Georgescu
(2012). With each Jensen-type operator, one associates an
abstract EU-theory. In such a general framework, inKaluszka
and Krzeszowiec (2017) was obtained an Arrow–Pratt-type
theorem, which generalizes both the Arrow–Pratt theorem
from the classic theory of risk aversion (see, e.g., Eeckhoudt
et al. 2005; Gollier 2004), and the possibilistic version of this
result (see Georgescu 2012, 2009, 2011, 2014; Georgescu
and Kinnunen 2016).

The paper Kaluszka and Krzeszowiec (2017) contains a
great variety of Jensen-type operators. One of them offers
another way to define a notion of mixed expected utility (see
Ex. 10 of Kaluszka and Krzeszowiec (2017)). Then an inter-
esting problem would be the study of some optimal saving
models in the framework of EU-theory associated with a
Jensen-type operator, or at least of optimal saving models
corresponding to the operator of Example 10 of Kaluszka
and Krzeszowiec (2017).

A series of works published lately have dealt with saving
models in which there are multiple distributions of future
incomes (cf. Osaki and Schlesinger 2013). These models
have studied how an ambiguous attitude of the consumer
influences the saving decisions. A question that arises is
whether a relationship can be established between the ambi-
guity in these probabilistic savingmodels and the uncertainty
of the fuzzy type. Can we define saving models in which an
ambiguous attitude of the consumer is expressed through a
multiple possibilistic distribution?
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