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Abstract—The detection of watermarks can be achieved by statistical approaches. How to select robust modeling object, appropriate 

statistical model, and decision rules is one of the major issues in statistical image watermark detection. In this paper, we propose a 

new image watermark detector in robust fast radial harmonic Fourier moments (FRHFMs) magnitudes domain, wherein the Beta 

exponential distribution model and locally most powerful (LMP) decision rule are used. We first investigate the statistical modeling of 

the robust FRHFMs magnitudes by the Beta exponential distribution. It is shown that the Beta exponential distribution model fits the 

empirical data more accurately than the formerly employed statistical distributions, such as the Cauchy, Weibull, BKF and 

Exponential, do. Motivated by the statistical modeling results, we design a blind image watermark detector in FRHFMs magnitudes 

domain by using Beta exponential distribution and LMP test. Also, we utilize the Beta-exponential model to derive the closed-form 

expressions for the watermark detector. We provide comparative experimental results to alternative approaches to demonstrate the 

advantages of the proposed image watermark detector.  

Index Terms—Image watermarking, Beta-exponential distribution, FRHFMs domain magnitudes, locally most powerful test.  

1. INTRODUCTION

With the rapid development of multimedia and Internet technologies, digital data can be easily acquired, represented, 

manipulated and distributed without any quality degradation. As a result, intellectual property right protection has become a major 

issue worldwide. Owing to its effectiveness and practicality, digital watermarking is one promising solution for copyright 

protection and integrity authentication in an open network environment. Digital watermarking technology can be used in many 

applications such as source tracking, secret communication, broadcast monitoring, billing security and so on. Two basic 

approaches regarding digital image watermarking include watermark decoding [1][2][3] and watermark detection [4][5][6][7]. 

In watermark decoding, the problem to be solved is the extraction of watermark information. While in watermark detection, we 

need to determine if particular watermark information exists in the given data using a binary decision criterion. This paper 

mainly studies the copyright protection of images, so watermark detection based on a binary decision criterion is sufficient to 

declare legal ownership. Watermark detection algorithms can be divided into two major categories base on whether the original 

signal is provided: non-blind detection [8] and blind detection [9][10]. When watermark carrier signals obey Gaussian 

distribution, the correlation-based detection method is optimal. However, research results have shown that digital signals in both 

the frequency and spatial domains do not obey Gaussian distribution [5]. Hence, the detection method considering statistical 

properties of the carrier image coefficients can improve the correctness of watermark detection.    

Image watermark algorithms based on statistical model need to solve three basic problems, they are also important indicators 

to measure the pros and cons of a watermarking scheme, namely robustness, imperceptibility and capacity. Meanwhile, there is a 
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mutually restrictive relationship between the three. Robustness is a core requirement of robust watermarking systems, and it is 

also a significant sign for judging the resistance of watermarking algorithms. The better a robust watermarking algorithm, the 

stronger its ability to resist attacks. It is a popular method to evaluate the robustness of detector by using receiver operating 

characteristic curve. The aim of this work is to enhance the balance between robustness and invisibility while making sure the 

watermark capacity. Invisibility means that the signal containing the watermark is not different from the original signal visually, 

and the peak signal-to-noise ratio (PSNR) is the most frequently used method to test imperceptibility in image watermarking. 

Capacity indicates the quantity of watermarking data that can be hidden. Hence, to maintain the robustness and invisibility of 

watermark signals in the relational database, we choose the multiplicative embedding method [11][7][12]] to achieve the 

embedded watermark. 

According to different embedding domains, the image watermark is mainly separated into two categories: spatial [13] and 

frequency [1-6][14-16]. The spatial watermarking algorithm indicates that watermark data is directly inserted into the pixels of 

the original image. The operation of this method is simple, but the watermark is not robust enough to resist common signal 

attacks. In the frequency-domain watermark algorithms, watermarking is embedded by altering the image transform domain 

coefficients. Compared with spatial domain watermark embedding schemes, its robustness is improved to a certain extent. The 

most widely used transform domains include wavelet transform [6][7][10], non-subsampled shearlet transform (NSST) [17], 

non-subsampled contourlet transform (NSCT) [18-19], discrete cosine transform (DCT) [20], contourlet transform 

[5][16][12][21], discrete shearlet transform (DST) [9] and dual tree complex wavelet transform (DTCWT) [14][22]. In recent 

years, researchers have proposed a watermarking method considering geometric invariants. Before embedding and detecting the 

watermark, the geometric invariants of the original image are determined. The geometric attack invariant features are utilized to 

ensure the optimal watermark embedding position. In 2000, Alghoniemy et al. [23] used 7 Hu moment invariants to apply image 

moment to image watermarking technology for the first time. However, watermark detection methods that combine statistical 

model and moment invariant is still of great research significance. Therefore, this paper combines the anti-attack ability of 

geometric moments with statistical models to propose a robust watermark detector. 

The accuracy of watermark detection is affected by many aspects. Besides watermark embedding objects, it also includes 

statistical model establishment, model parameter estimation and detector construction methods. Some statistical models are 

often used, mainly including the Bessel K Form (BKF) distribution [4][12], t location-scale distribution [11][16], generalized 

Gaussian (GG) distribution [10][14], Cauchy distribution [4][19], Gaussian mixture model (GMM) [1], Laplacian distribution 

[9], normal inverse Gaussian (NIG) distribution [5] and Weibull distributions [20][22]. To consider the correlation between 

coefficients more fully, multivariate Cauchy distribution [15], multivariate generalized Gaussian (MVGG) model [13] and 

Hidden Markov Model (HMM) [7][24] were proposed. Then, a valid closed expression based on Bayesian log-likelihood ratio 

test (LLRT) [5][15] is established. In addition, the performance of watermark detection is affected by the accuracy of the 

parameter estimation algorithm. At present, expectation maximization (EM) and maximum likelihood estimation (MLE) 

methods are widely used in parameter estimation of statistical models. The function of detector is to detect whether there is 

hidden binary information from the observed image coefficients. Watermarking detection is often regarded as binary hypothesis 

testing of signals. In the past studies,, the decision rules for constructing detectors include LLRT, the RAO test [18], generalized 

likelihood ratio test (GLRT) [14], locally most powerful (LMP) test [19] and log-likelihood ratio test (LRT) [9][21][22].  

Although statistical models based digital watermark technology has been generally used in information security, the 

performance still has many room for improvement. First, embedding the watermark method directly by modifying the transform 

domain coefficients can not resist the geometric attack well. Second, a single distribution can not well describe the 

characteristics of coefficients distribution. Thirdly, the traditional parameter estimation methods have low accuracy or high time 

file://E:UsersweiAppDataLocalYoudaoDict8.9.6.0
esultuihtmlindex.html#/javascript:;
file://E:UsersweiAppDataLocalYoudaoDict8.9.6.0
esultuihtmlindex.html#/javascript:;
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complexity, so they cannot accurately calculate the parameters of the statistical model. Fourthly, the detectors using decision 

criteria such as GLRT or LRT have good detection effects on the Gaussian distribution. However, the detection probability is 

relatively poor for non-Gaussian distribution and weak signals. Therefore, a statistical model-based watermark detector needs a 

strong decision criterion. 

In this paper, we propose a locally optimal (LO) image watermark detector by modeling FRHFMs magnitudes with Beta 

exponential distribution. The validity and superiority of the scheme are proved by the simulation experiment.  

In conclusion, the characteristics of this method are as follows: 

• Robust fast radial harmonic Fourier moment (FRHFMs) magnitudes is introduced to digital image watermarking domain, 

and is applied for embedding watermark message and developing watermark detector.   

• We use Beta-exponential distribution to model the FRHFMs magnitudes, whose peak and heavy tail statistical 

characterization can be described accurately.   

• The modified ML estimation algorithm is employed to calculate the parameters of the Beta-exponential distribution.  

• Based on Beta-exponential distribution and LMP test, a locally optimal image watermark detector is developed. In 

addition, the closed-form expressions of the detection statistics are derived from the Beta-exponential model to verify the 

performance of the detector.  

• The excellent performance of the proposed watermark detector is proved by a lot of experiments.  

The remaining chapters are organized as follows. Section 2 mainly introduces the digital image watermarking technology 

based on a statistical model in recent years. The concept of the FRHFMs is briefly introduced, and the robustness of the 

FRHFMs magnitudes is studied in Section 3. Section 4 mainly studies the statistical characteristics of FRHFMs magnitudes and 

then uses Beta-exponential model to fit the moment magnitude coefficients. MMLE parameter estimation method is also given 

to improve the accuracy and reliability of the model. In Section 5, we detail the watermark embedding process of this scheme. 

Section 6 deduces the LO watermarking detector based on Beta-exponential model, and discusses the performance of the 

constructed detection method. In Section 7, we analyze the detection probability of the suggested watermarking detection 

method and contrast to other excellent detectors through simulation experiments. Section 8 draws conclusions.   

2. RELATED WORK

The primary target of image watermark technology is to settle the balance problems among the transparency, payload and 

robustness of watermark information. Therefore, watermark methods based on statistical models have been widely studied.  

In paper [16], an additive watermark detector has been proposed according to Neyman-Pearson (N-P) criterion in contourlet 

domain. This method has modeled the contourlet transform coefficients using t location-scale distribution. In [6][8][11][13] 

[16][18][20][22][23]new detection method based on 2D-GARCH model is proposed, which fully considering the dependencies 

between wavelet coefficients. Khalil et al. [14] used GG distribution for modeling in DT-CWT domain and developed an 

additive watermark detector using a generalized likelihood ratio test. However, the additive watermark algorithm is not strong in 

robustness and invisibility. And multiplication embedding rule can improve the detection rate of watermarking. Therefore, the 

multiplicative watermarking method is more popular in watermarking embedding. Wang et al. [19] developed a multiplicative 

watermark detector based on Cauchy distribution by using the LMP test criterion, which can well describe the local correlation 

of NSCT difference coefficients and improve the detection probability. Meanwhile, the robustness of the detector has been 

improved by using the multiplicative watermark embedding method. However, since Cauchy distribution is only suitable for 

symmetric data types, many coefficient features cannot be fully fitted. Therefore, it is necessary to select a more fit distribution 



4

to build the model. Sadegh et al. [11] developed an optimal detector using t location-scale distribution to model the contourlet 

coefficients, wherein the receiver operating characteristics (ROC) curve has been obtained for testing the detection probability of 

the suggested detector in the contourlet domain. In [22], the digital image watermarking technology based on a binary 

hypothesis test was introduced. The statistical models such as Gamma, Rayleigh and Weibull have been used to fit the DT-CWT 

coefficients. But when images are subjected to geometric attacks, the detector is less robust.  

Sadreazami et al. [5] developed a blind watermark detector modeling the Contourlet coefficients, and in which the transform 

coefficients obeying non-Gaussian distribution were modeled by normal inverse Gaussian distribution (NIG). Nonetheless, since 

the inter-scale correlations of the transform coefficients are ignored, Linear correlation detector has many shortcomings for 

non-Gaussian signals. Therefore, Amini et al. [4] developed a LO detector based on HMM model, which provided a better 

probability of detection than linear correlation detectors by using image signal statistics. Dong et al. [20] developed a full band 

watermark scheme in DCT domain, and constructed a LO detector based on Weibull distribution to detect whether DCT 

coefficients contain watermarks. Although the DCT has better noise immunity, it lacks some properties such as directionality, 

translation invariance and multiresolution. In [10], developed a blind watermark detector based on generalized Gaussian 

distribution (GGD) in wavelet domain by using Neiman-Pearson (NP) criterion. This watermark detector usually assumes that 

wavelet transform coefficients are isolated and uniformly distributed. Hence, characteristics of these coefficients such as 

correlation cannot be fully considered. In paper [24], a new watermark detection method based on a log-likelihood ratio test has 

been proposed in color images, which detected signals submerged in the noise by a binary decision criterion. The inter-channel 

correlations in RGB color channels and the inter-scale correlations of image coefficients have been considered by adopting the 

hidden Markov model. 

In [7], proposed a multi-channel blind watermark detector based on color images, which used a log-likelihood ratio decision 

criterion to obtain a valid closed expression for the test statistics. In paper [15], a multiplicative watermarking scheme based on 

Bayesian log-likelihood ratio has been designed. To consider the inter-scale correlations of contourlet coefficients, a multivariate 

Cauchy distribution was introduced, which can accurately fit the distribution characteristics of the transform coefficients and 

eliminate the inaccuracy of the single model to the coefficients. In [9], introduced a watermark detector based on Laplace 

distribution to model DST coefficients, which was detected according to the principle of likelihood ratio test. In [12], a 

watermark detection method is designed according to maximum likelihood (ML) criterion, which used BKF distribution to 

model Contourlet coefficients, and they analyzed its receiver operating characteristics by Monte Carlo simulations. However, 

transformation domain coefficients have a weak ability to resist various attacks. 

Hosny et al. [25] derived the new fractional-order multi-channel orthogonal exponent moments (MFrEMs), and proposed 

MFrEMs based color image watermarking algorithm. Zhou et al. [26] proposed a novel robust reversible watermarking (RRW) 

scheme based on the discrete wavelet transform (DWT), in which the Zernike moments based geometric correction is utilized to 

predict attack parameters. Xia et al. [27] proposed a geometrically invariant color medical image null-watermarking scheme 

based on quaternion polar harmonic Fourier moments (QPHFM). Based on quantization technique and the distribution of 

moment magnitude, Hosny et al. [28] inserted the watermark information into host color images by modifying the quaternion 

radial substituted Chebyshev moments (QSRCMs) magnitudes. Hosny et al. [29] presented a geometrically invariant color 

image watermarking method using Quaternion Legendre-Fourier moments (QLFMs). These moments based image 

watermarking schemes generally have better robustness, but they all ignore the tradeoff among imperceptibility, robustness and 

watermark capacity.  

https://ieeexplore.ieee.xilesou.top/abstract/document/4085708/
https://s3.sci-hub.org.cn/extdomains/www.google.com/books?hl=zh-TW&lr=&id=SGuzH7F6A7AC&oi=fnd&pg=PA176&dq=
https://sciencedirect.xilesou.top/science/article/pii/S0375960196008626
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3. ROBUSTNESS ANALYSIS OF FRHFMS DOMAIN MAGNITUDES 

3.1 An Introduction to FRHFMs  

The gray image in polar coordinates is ),( rf , then traditional radial harmonic Fourier moments (RHFMs) on the unit 

circle can be expressed as  

     
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The angular function 
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where   is Kronecker delta and 2  indicates normalization factor. nk  and ml  represent Kronecker symbols, 

 ,*
rP

kl
 is the conjugate of  ,rPkl . 

The original grayscale image ),( rf  is reconstructed as 

      
 


N

n

jm
M

Mm

nm erTrf
0
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where nm  denotes the RHFMs, and  rT  is the radial function.  

To obtain better performance, we adopted a fast radial harmonic Fourier moments (FRHFMs) algorithm [30] based on FFT. 

The traditional RHFMS for calculating the inscribed circle mapping has rotation invariance. Therefore, the inscribed circle 

mapping is still used in the image watermark for FRHFMs [30][31]. In addition, FRHFMs provide higher image reconstruction 

quality, lower computational complexity, lower noise sensitivity and magnitude invariance. The following describes the specific 

calculation method in the polar coordinate system. 

In the unit circle, radial xr  and angular y  are first divided into H  equal parts, and the unit circle is nearly segmented 

into 
2H  small regions. So converting Cartesian coordinate system of the image with pixel AA  to ),( yxp rf   [31] in 

polar coordinates is  

    
2
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2
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2

sin
2
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H
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H

y
y

 2 , 1,,1,0,  Hyx   and AH 4 . 
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In addition, the FRHFMS nm  obtained by FFT can be expressed as: 
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Where, T  is the FFT of function  
2

),(, u
vupvup

r
rfrG    that moves zero-frequency component to the center of the 

spectrum. 

3.2 Robust FRHFMs Domain Magnitudes  

Because FRHFMS has geometric invariance, low time complexity and strong anti-noise ability [27], the FRHFMs amplitude 

of the image block is selected as the embedding position of the watermark in this paper. Firstly, the 512×512 pixel carrier image 

is split into 4*4 non-overlapping sub-blocks. Next, a second-order FRHFMs transform is performed in each block to get the 

FRHFMs magnitude of the host image. Fig. 1 shows second-order magnitude domains of different images with the size of 

640×384. 

In this paper, to verify that the FRHFMs magnitudes possess better robustness than spatial domain, and is more suitable for 

watermark watermarking, the normalized error is introduced. In order to facilitate the comprehensive comparison and evaluation, 

the paper needs to standardize the initial information to ensure that the error values in space and magnitude domains have the 

same order of magnitude. Data Z-score normalization is the most classic normalization way, which maps the data uniformly to 

the interval [0,1]. Then the normalized error is expressed as  

attack0 IIP                                            (7) 

 


n

i

iP

n
E


1

                                         (8) 

Here, Iattack denotes the attacked signal, and I0 denotes the original unattacked signal. The mean of P is   and the standard 

deviation of P is  . The amount of signals is n and Ʃ is the cumulative sum. Table 1 records the normalized error values of the 

second-order FRHFMs magnitudes under different attacks. And the experimental images are three grayscale images of Lena, 

Barbara and Peppers. 

file://E:youdaoDict8.7.0.0
esultuihtmlindex.html#/javascript:;
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 (a) Host images                 (b) FRHFMs magnitudes images             (c) FRHFMs magnitudes images (×10) 

Fig. 1. Original images and FRHFMs magnitudes images. 

Table 1. Normalize error between the original signal and the attacked signal. 

Attack types 

Lena Barbara Peppers 

FRHFMs  
magnitudes 

Host image 
FRHFMs  

magnitudes 
Host image 

FRHFMs 
 magnitudes 

Host image 

JPEG Compression（QF=90） 0.0244 0.0651 0.0252 0.0518 0.0280 0.0668 

JPEG Compression（QF=30） 0.0339 0.0838 0.0314 0.1087 0.0371 0.1137 

Median filtering（9×9） 0.0119 0.0377 0.0375 0.0673 0.0136 0.0250 

Median filtering（5×5） 0.0111 0.0271 0.0260 0.0611 0.0076 0.0184 

Gaussian filtering（9×9） 0.0216 0.0518 0.0412 0.0700 0.0219 0.0383 

Gaussian filtering（5×5） 0.0207 0.0511 0.0389 0.0698 0.0212 0.0380 

Gamma correction =2 0.0667 0.8482 0.0654 0.7824 0.0632 0.7892 

Gamma correction =0.9 0.0341 0.8882 0.0343 0.8504 0.0325 0.8346 

It is well known that the smaller normalized error value means the stronger robustness. According to the normalized error 

formula, we test the robustness of four grayscale images: Lena, Barbara, Peppers and Baboon. Fig. 2 shows the error images of 

the spatial pixels and moment magnitudes.  

                     (a) JPEG (QF=30)                                              (b) Median filtering（5×5）

https://ieeexplore_ieee.xilesou.top/abstract/document/6853679/
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 (c) Gaussian Filtering（9×9）                                       (d) Gamma correction  =0.9

Fig. 2. The normalized error images under various attacks where the left is the normalized error image of the host image and the right is the standardization error 

image of moment magnitudes. 

Table 1 shows the normalized error results of FRHFMs magnitudes coefficients are smaller than that of image pixels. And 

Fig. 2 shows that the normalized error images of FRHFMs magnitudes are darker than that of image pixels. Both the subjective 

and objective results indicate that the FRHFMs magnitudes are more robust than the spatial domain. Hence, this scheme selects 

local FRHFMs domain magnitudes to insert and detect watermarking information. 

4. MODELING OF ROBUST FRHFMS DOMAIN MAGNITUDES

4.1 Statistical Analysis of Robust FRHFMs Domain Magnitudes  

The model effectiveness in the FRHFMs magnitudes affects the performance of the suggested watermark method, and one of 

the key steps in accurate modeling is to study the distribution characteristics of FRHFMs magnitude coefficients. First, each test 

image with a size of 512×512 is divided into Nblock non-overlapping sub-blocks of nn  in size, and the second order FRHFMs 

of the image blocks is calculated to obtain the moment magnitudes of each block. The most stable moment magnitude in each 

block is selected to form Nblock magnitude coefficients. 

Here, we take four typical grayscale images as examples and use distribution histogram and kurtosis value to analyze the 

edge statistical character of FRHFMs magnitudes. In the experiment, the carrier images with 512*512 pixels are chosen, and 

each image is split into 16384 non-overlapping sub-blocks, and FRHFMs of each image block are calculated. The position (2, 2) 

of each block is chosen to form a total of 16384-moment magnitudes and Fig. 3 provides the histograms of these moment 

magnitudes. We can clearly see from the histogram that the FRHFMs magnitude coefficients have the feature of sharp peak and 

heavy tail. The kurtosis values are 16.7605, 11.3751, 21.5277 and 15.1866 respectively, which are far greater than 3, indicating 

that they have non-Gaussian distribution characteristics. Therefore, a reasonable model is needed to accurately describe the 

characteristics of the magnitude coefficients.   

                               (a) Lena                                                  (b) Barbara 
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(c) Peppers                                                  (d) Boat 

Fig. 3. Distribution histograms of FRHFMs magnitude coefficients. 

4.2 Statistical Modeling of Robust FRHFMs Domain Magnitudes  

The performance of the watermark detector largely determined by the modeling accuracy of the FRHFMS magnitudes, so 

Beta-exponential distribution [3][32] suitable for the magnitudes coefficients is selected to describe the statistical characteristics 

of the FRHFMs magnitudes in this scheme.  

The Exponential distribution is a very simple distribution function. However, the three-parameter Beta-exponential 

distribution appears, which effectively makes up for the deficiency of two-parameter exponential distribution. Then the 

probability density function (PDF) ),,;( nmkxf i  of Beta-exponential distribution is  

  1
exp1

),(
),,;(

 



 ii kxkx

i e
C

k
kxf                            (9) 

Where, k is the scale parameter ,  and   denote the shape parameters of Beta-exponential distribution function. Here, 

       /),(C  and 0ix  denotes the ith  random variable. And the distribution has the 

characteristics of high peak and heavy tail. 

We next study how to precisely select the appropriate model to fit the FRHFMs magnitudes. In Fig. 4, the modeling results 

of the magnitude coefficients, in which four images are fitted by different distribution functions. It is observed that the Beta- 

exponential model has a higher fitting degree than other distributions. Hence, the Beta-exponential distribution can delineate the 

FRHFMs magnitudes more accurately.. 

(a) Lena                                                    (b) Barbara 
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(c) Peppers                                                    (d) Boat 

Fig. 4. Fitting graphs of FRHFMs magnitude coefficients.  

In addition to the subjective tests above, we also compare the results based on the Kolmogorov-Smirnov (KS) metric. The 

KS test value is calculated as 

)()(max xCxCQ teks                                      (10) 

Among them, Ct(x) and Ce(x) denote the referenced and empirical cumulative distribution function respectively. The smaller the 

KS value, the better the fitting effect of the distribution function used. In this paper, the FRHFMs magnitudes of Lena, Barbara, 

Peppers and Boat images are fitted using different distributions. Then, the KS test values of each distribution are calculated 

separately. Table 2 shows that the KS test values of Beta-exponential distribution is the smallest. It is reasonable to believe that 

the Beta-exponential distribution can better describe the FRHFMs magnitudes.   

Table 2. Comparison of KS values of various statistical distributions. 

Images 
Gamma 

distribution 
BKF  

distribution 
Exponential 
distribution 

Cauchy  
distribution 

Weibull 
distribution 

Beta- 
Exponential 
distribution 

Barbara 0.1427 0.2027 0.1910 0.2126 0.1100 0.0244 

Peppers 0.0806 0.3355 0.1106 0.1463 0.0840 0.0128 

Boat 0.0891 0.1893 0.0707 0.2031 0.0727 0.0206 

Lena 0.0868 0.2862 0.1041 0.1548 0.0859 0.0135 

Average 0.0998 0.2535 0.1191 0.1792 0.0882 0.0178

4.3 Modified Maximum Likelihood Parameter Estimation  

Parameter estimation is an important work in statistical model watermarking technology, and accurate parameters can ensure 

the performance of the watermarking detector, so an appropriate parameter estimation algorithm is very important. As 

optimization of the maximum likelihood estimation (MLE), the modified maximum likelihood estimation (MMLE) method has 

more generality. Moreover, when the sample data is small, the estimator obtained by MMLE convergence still has the 

advantages of consistency and unbias. Since direct iteration may lead to some problems such as local optimality, the likelihood 

function is linearized by Taylor expansion method to accurately solve the estimate values. Hence, The MMLE method not only 

reduces the computational complexity but also improves the numerical accuracy. Kumar et al. [33] demonstrated that MMLE is 

stable for the results of estimating finite populations, and the estimators of this method can be obtained easily with the use of 

computational tools. 
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Then, the parameter values of Beta-exponential model are estimated by MMLE method. Let random samples be 

hxxx ,,, 21  , then according to the function     dxxdx /ln , the logarithmic likelihood function in Equation (9) can 

be 

       



h

i

i

h

i

i xkkxChkhkL
11

exp1ln)1(,lnln,,ln                (11) 

The specific process of the robust MMLE method is as follows [3][33]: 

Step 1: The likelihood equation is denoted by ordinal variables: hxxx  21 . 

Step 2: The linearized awkward function ikx
e


 is derived from Taylor expansion method around the population quantile. 

Let function ikx

i exg
)(  expanded at point ii tx  ( )( ii xEt  ), and we can obtain 

  iiiiitx

i

i
ii xtx

dx

xdg
tgxg

i
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






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)()( hixi ,,2,1,0           (12) 

Among them, ii kt

i

kt

i ekte
  , ikt

i ke
 . In order to calculate ii tx  ))(( ii xEt  , the PDF of a virtual random 

variable v is defined as 
ve=g(v) [34], and )()( ii xFXE   , where 

ueuF )( . When 20h , it  can be obtained 

from the following formula [35]:    1 
hidvvg

it

. Therefore, ti can be derived as   1ln  hiti . 

Step 3: In the end, the likelihood equation is solved and the unique solution is obtained. The modified likelihood function of 

parameters  ,   and k  can be obtained as follows   
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Let Equation (13) equals to 0, the simultaneous three equations and use the function 


  

0

211 2)( xxtx
exdtetx   to get the specific parameter values. 

To prove the powerful performance of this method, we use Beta-exponential distribution to conduct Monte Carlo simulation 

experiments for MMLE and MLE methods. For the convenience of comparison, the shape parameter 1  and scale 

parameter 1k  are first fixed and the discrete random variables are generated, and then the shape parameter   is estimated. 

We set the sample size of 5000 and randomly generate 1000 groups of samples in the experiment. Estimates of different 

parameter   are generated for each group of sampling experiment and run independently for 1000 times. Table 3 reports the 

parameter estimation results using different approaches. It implies that MMLE method is better than traditional MLE in terms of 

estimation accuracy and computational complexity.  

To compare the two algorithms more intuitively, Fig. 5 shows the average running time and average errors of the two 

algorithms in different sample sizes. It can be concluded that MMLE method is superior to MLE method in both estimation 
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accuracy and computational complexity under different amount of sample sets. As the sample size increases, the parameter 

estimation error decreases and the average calculation time becomes longer. The main reason for such a change rule is that the 

small sample sizes cannot adequately represent the overall trend, resulting in the lack of accuracy of the estimation values. 

Furthermore, more sample data will inevitably lead to more calculation time. Hence, MMLE algorithm is used to calculate the 

parameters of Beta-Exponential distribution in this scheme. 

Table 3. The average estimated result of shape parameter 

Actual shape parameters 


MMLE MLE 

Average errors 
Average 

estimated values 
Average errors 

Average estimated 
values 

5.0 0.0220 5.0220 0.0246 5.0246 

4.0 0.0178 4.0178 0.0173  3.9827 

3.0 0.0115 3.0115 0.0151 3.0151 

2.0 0.0164 1.9836 0.0167 2.0167 

1.0 0.0098 0.9902 0.0116 0.9884 

(a) Average errors (b) Average times

Fig. 5. The compare results of two methods under different sample sizes  

5. DIGITAL WATERMARK EMBEDDING

This section describes the embedding part of digital image watermarking technology in detail. This embedding method 

selects the multiplicative method to hide watermark information in FRHFMs magnitudes with local geometric invariance. Fig. 6 

shows the embedding process of watermarking information. where  NYNxyxfI  0,0),,(  is the original 

carrier image, ),( yxf  denotes the image element,   Llww l  1,1,1  are binary watermark bits with the same 

probability of +1 and −1. (i.e. 



L

l

lw
1

0 ), and I   is a watermarked image.  

Step 1: Divide the original image into 4×4 blocks. The original carrier image I  is divided into N non-overlapping, 

equally sized sub-blocks, each of which has a size of 4×4. Then the N sub-blocks are sorted by high entropy values.  

An imperceptible watermarked image can be effectually acquired by using the entropy masking model. The model shows 

that the high entropy regions of an image are highly complex. The larger the entropy value, the greater the uncertainty of image 

information sources. In addition, high entropy regions contain more image texture features, which is beneficial to resist noise 

and information hiding. Then the entropy (H) [2] formula is expressed as  
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   i

R

i i apapH log
1

  
                                   (14) 

where ia indicates an array of discrete possible events, and its probability is indicated by  iap . R represents the number of 

possible events. 

Step 2: High entropy blocks choice. The first L high entropy blocks  LlBl ,...3,2,1  are selected and the magnitude 

coefficients based on the second-order FRHFMs are calculated for each image block. The target point (2, 2) of the magnitude 

coefficient blocks is changed by multiplicative rule to achieve the embedding of the watermark sequence wl. What is particularly 

noted here is that each amplitude is embedded with the same watermark bit. The embedded expression is written as  

l

li

li

i Bi
wbitwatermarkifx

wbitwatermarkifx
y 








 ,
1)1(

1)1(




                    (15) 

Among them, iy  indicates containing watermark moment magnitudes, ix  indicates original moment magnitudes, and 

denotes an embedding strength (positive weighting factor), which can well adjust the balance between imperceptibility and 

robustness of watermarking. In order to keep watermark invisible, the watermarking strength is usually 10   . 

The embedding strength   is determined by the formula of watermark document ratio (WDR) [11] 













2

22

10log10
i

w

x

WDR



                                    (16) 

where the variance of the original image moment magnitudes is 
i

ix x
qi

22 1
 and q represents the count of magnitude  

coefficients. 
2

w
  represents the variance of the watermarking data, which is equal to 1 in this scheme. The image may be 

slightly distorted during the watermarking process, so WDRs are negatively related to the quality of images. According to 

Equation (16), the embedding strength λ is given by 

21010
ix

WDR

                                         (17) 

Step 3: Obtain watermarked image blocks. The formula for obtaining image blocks containing watermarking information 

is 

       yxfyxfyxfyxf ere ,,,, '                                (18) 

Among them,  yxfr ,  and  yxfe ,' represents the image block reconstructed by original FRHFMs and modified FRHFMs 

respectively, and  yxf ,  is defined the original image block. 

Step 4: Acquire watermarked image. The high entropy image blocks with the watermark are swapped with the original 

image blocks to get a watermarked image I'.  

file://E:UsersweiAppDataLocalYoudaoDict8.9.6.0
esultuihtmlindex.html#/javascript:;
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Fig. 6. The process of embedding watermark data.

6. DIGITAL WATERMARK DETECTION

This section describes the construction of the watermark detector in detail. Actually, the purpose of watermarking detection 

is to detect whether the host image contains watermark information. For watermark detection, a detector based on the statistical 

property of moment magnitude coefficients helps to obtain accurate and reliable results. If I' is a watermarked image with 

nn  pixels, then the specific process of watermarking detection is shown in Fig. 7. 

The image I' with watermark is split into N non-overlapping sub-blocks of size 4×4. After calculating the entropy value of 

each block, these blocks are sorted in descending order. The second-order FRHFMs of the first L high-entropy blocks with the 

same number of watermarks are calculated to be the magnitude coefficients. Then, using the FRHFMs magnitudes in the same 

area as the embedding watermark position to form the target domain, and then L accurate moment magnitudes are obtained. A 

basic assumption is that after the watermark is embedded, the statistical distribution of FRHFMs magnitudes will not change. 

The watermark bit is defined as equal probability, and the moment magnitudes are assumed to be isolated and uniformly 

distributed. To detect watermark information hidden in the FRHFMs magnitudes, a statistical watermark detector based on the 

Beta- exponential model is constructed through the LMP test. 

Fig. 7. Detection process of watermark data.  

6.1 Locally Optimal Watermark Detector 

When watermark embedding intensity is weak, the watermark detection can be distinctly expressed as a weak signal 

detection problem. Otherwise, it can be regarded as a strong signal detection problem. Since the strength of the watermark is 
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suppressed by some attacks such as noise, rotation and filtering, watermark detection under strong signals can also be considered 

as a smaller signal detection problem. The LO detector is specifically designed to detect weak signals, so it is very significant to 

introduce this detector in watermark detection scheme.   

The watermarking detection problem is customarily regarded as a binary hypothesis testing problem, then the multiplicative 

watermark detection method is 

 wxy

xy


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:

1

0

H

H
                                     (19) 

Among them, H1 represents the alternative hypothesis that there is hidden information, and H0 is the null hypothesis. 

 Lyyy ,,, 21 y  and  Lxxx ,,, 21 x are the original FRHFMs magnitude coefficients and the FRHFMs magnitude 

coefficients with watermark respectively. w= wi฀{+1,−1},1≤i≤L} is watermark information and λ is watermark strength. A 

watermark detector based on Neyman-Pearson lemma is presented 
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where  y  represents the likelihood ratio and η denotes the threshold. Assuming the FRHFMs magnitudes of the 

watermarked image follows Beta-exponential distribution (optimal distribution). The conditional probability density functions 

under both assumptions are expressed as 
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Watermarks can be considered as weak signals added to a strong background (the original image), so the statistical properties 

of original magnitude coefficients do not be changed by the embedded watermark. Then the logarithmic likelihood ratio is 

determined by  
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where τ=ln(η). Equation (22) is expanded to Taylor series at λ=0 based on the approximation of the likelihood ratio test, and the 

LO detector is obtained after ignoring the second and higher orders by 
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where )(ygLO  denotes "locally optimal nonlinearity". The derivation process of applying the PDF of Beta-exponential model 

to this formula is given by 
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Now using (23) and (24) in (22), the final statistical decision formula of the LO detector is expressed as 
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where the embedding strength λ can be obtained from Equation (17), if lLOD is more than the decision threshold τ, H1 is accepted; 

otherwise, H0 is accepted.  

6.2 Performance Analysis of the Proposed Watermark Detector 

Performance of watermark detection methods must be analyzed before they are applied in practice. Next, we test the 

performance of the watermark detector for the given image based on the detection probability Pdet and the false alarm probability 

Pfa. Generally, the false alarm probability Pfa is fixed. The optimal detector should minimize the probability of miss (Pm), that is, 

maximize the detection probability Pdet=1−Pm. The determination threshold   is gained by Naiman-Pearson criterion. This 

threshold minimizes the watermark missing probability Pm under the condition that the false alarm probability Pfa is bounded. 

We can get the following expression 
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erfcxQ . 0  is the mean and 0 is the variance under the 0H  assumption, and the specific process 

of the calculation is shown in the appendix A.     erferfc 1  represents the complementary error function. For a given 

faP , the threshold expression is derived by 
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If 
faPxQ )( , then xPQ fa  )(1 . According to the above formulas, the relationship between faP  and detP  (that is the 

ROC curve of the proposed detector) is expressed as 
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7. EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of the proposed watermark detector on some standard grayscale images 

with different sizes from Computer Vision Group Test Images database s [36], and various length pseudorandom watermark 

sequences. Then, we compare our approach with the state-of-the-art methods such as Etemad’s t LS[11], Rabizadeh’s BKF[12], 

Sadreazami’s Cauchy[15], Amirmazlaghani’s CT-GARCH[38], Sadreazami’s NIG[5], Amini’s CHMM[24], Amirmazlaghani’s 

WT-GARCH [37], and Amini’s WHMM[7] based approaches. 

In this work, all experiments are implemented in MATLAB R2016a, where the personal computer configuration is Windows 

10 system and Intel(R) Xeon(R) CPU i5-3470 @ 3.20 GHz 8GB memory. 

7.1 Performance Evaluation of the Proposed Watermark Detector 

7.1.1 Accuracy  

For the purpose of validating the theoretical expressions of the suggested detection method, the theoretical and experimental 

ROC curves are compared through simulation experiments. Fig. 8 exhibits the averaged ROC curves for 96 test images, in 

which WDR varies from −30dB to −36dB in the range of 10−12 ≤ Pfa ≤10−4. In Monte Carlo simulation experiments, 100 binary 

watermark sequences with length of 4000 bits are generated randomly. As can be observed from the figure, the two ROC curves 

are basically coincident, indicating the availability of the closed-form theoretical expressions of statistical properties. 

WDR= -30dB

WDR= -32dB

WDR= -34dB

WDR= -36dB

Fig. 8. The experimental (solid) and theoretical (dashed) ROC curves.

7.1.2 Imperceptibility   

Imperceptibility is one of the main requirements of watermark algorithms and the objective measure [3] for assessing this 

feature is the PSNR between original and the watermarked image. Fig. 9 shows the test results of the imperceptibility of 

watermarked images using our proposed watermarking method. We choose host images with 512×512 pixels as the test images. 

At the same time, the WDR is defined as −40 dB and a set of 1000-bit pseudo-random sequence is used. Fig. 9 (c) shows that the 

naked eye cannot notice the distinction between the watermarked and no-watermark image without the help of image processing 

technology. Moreover, PSNR values are all over 38, which is enough to show that our watermarking scheme has good 

imperceptibility. 
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Lena                  Baboon                  Peppers                  Barbara                Boat 

(a) 

PSNR=51.4433dB        PSNR=46.3734dB         PSNR=50.3979dB         PSNR=46.3815dB         PSNR=49.1523dB 

(b) 

(c) 

Fig. 9. Imperceptibility analysis: (a) original images, (b) images with watermark and (c) the difference image (×10).  

7.1.3 Robustness  

Next, we discuss the robustness of the presented LO detection method under different attacks, including JPEG compression, 

Gaussian filtering, cropping and AWGN. For a given image, we compare the statistical decision formula lLOD with the decision 

threshold τ to get the detector response under a given false alarm probability (Pfa=10-8). And we give the average detection 

responses of the Lena image in 100 randomly generated binary watermark sequences with length of 6000 bits. Fig. 10 (a) 

demonstrates detection responses under JPEG compression attacks, in which the quality factor increases from 10 to 100. Fig. 10 

(b) shows detection responses based on Gaussian filtering, where the window sizes are 3×3, 5×5 and 7×7. Fig. 10 (c) and (d) 

show detection responses under cropping (cropping ranges from 2% to 20%) and AWGN attacks (σn varies from 5 to 35) 

respectively. The results show that the Beta-exponential detector based on the LMP test can provide higher detection rates under 

different attacks. Therefore, the proposed detector has strong robustness. 

file://E:UsersweiAppDataLocalYoudaoDict8.9.6.0
esultuihtmlindex.html#/javascript:;
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                                    (a)   (b)

(c) (d)

Fig. 10. The detection responses of Lena image under WDR = −40dB. (a) JPEG compression, (b) Gaussian filtering, (c) cropping and (d) AWGN attacks. 

7.1.4 Capacity and Time    

In the simulations, we embed watermark sequences of different message lengths into twenty standard grayscale images 

(512×512×8 bits). Table 4 shows the relationship between average PSNR, average time of watermark embedding/ detection and 

watermark capacity. As shown in this table, the proposed watermark scheme provides lower time complexity, larger watermark 

capacity and stronger imperceptibility. 

Table 4. The average performance of the proposed watermark algorithm.

Watermark length 
(bits) 

The average 
embedding time 

(seconds) 

The average PSNR 
(dB) 

The average  
detecting time 

(seconds) 

1000bit 2.5189 48.7496 2.5189 

5000bit 3.6118 42.6870 3.2358 

10000bit 4.9220 40.5230 4.0671 

7.2 Comparisons with State-of-The-Art Methods 

In this section, we compare the proposed approach with eight state-of-the art statistical image watermarking methods, 

including Etemad’s t LS[11], Rabizadeh’s BKF[12], Sadreazami’s Cauchy[15], Amirmazlaghani’s CT-GARCH[38], 

Sadreazami’s NIG[5], Amini’s CHMM[24], Amirmazlaghani’s WT-GARCH [37], and Amini’s WHMM[7] based methods. We 

selected these eight methods based on their similarities to the proposed approach, and based on the presence of sufficient 

algorithm descriptions (including implementation details and parameter settings etc.) provided in the respective publications. 

7.2.1 Proability of Detection for Varying Watermark Strengths 

For investigating the proposed detector performance under various watermark powers, we take five different WDRs into 
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account, ranging from −60 (dB) to −40 (dB). In Fig. 11, we plot the detection probabilities for different WDRs with the false 

alarm probability of 0.01, and test 6 gray images of 512 by 512, including Barbara, Airplane, Boat, Couple, Lena and Peppers. It 

can be noticed that as the watermark powers enhances, the detection probabilities of four detectors increase. As the same time, 

we can observe that the detection performance of the Beta-exponential detector appears more powerful than other contourlet 

domain detectors (t-LS [11], BKF [12] and NIG [5]) for different watermark strengths. 

 (a) Barbara (b) Airplane

(c) Boat (d) Couple

(e) Lena (f) Peppers

Fig. 11. Comparison tests of detection probability under different watermark intensities 

.

7.2.3 AUROC Values under Various Attacks  

In this part, we compare the suggested digital image watermark detector with other detectors based on multivariate Cauchy 

distribution [15], BKF distribution [12] and HMM [7][24]. The 100 experiments on 24 grayscale images with size of 256×256 

are tested under pseudo-random watermark sequences of the same size as the compared algorithm. In Table 5, we give the 

average AUROC values of 24 experimental images in the range of 0≤Pfa≤10−4. As can be observed from this table, the suggested 

multiplicative Beta-exponential detector provides the highest AUROC value, indicating the detector has superior performance to 

that of other existing detectors. 
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In Table 6, the average AUROC values of multiple test images are obtained under Gaussian filtering, cropping, rotation, 

scaling and gamma correction attacks. As can be observed from the table, although the performance of the detector in this paper 

is similar to that of HMM-based detector [24] under strong gamma correction and cropping attacks, on the whole, the proposed 

detector provides larger AUROC values than other detectors under both conventional attacks and geometric attacks. 

Table 5. AUROC values (×10-4) obtained using different watermark detectors in the area [0, 10−4] (WDR =−42 dB) 

Methods AUROC 

WHMM [7] 0.9117 

BKF [12]] 0.7286 

Cauchy [15] 0.8362 

CHMM [24] 0.9934 

Proposed 0.9948

Table 6. The AUROC values (×10-4) obtained under different attacks.

WHMM [7] BKF [12] Cauchy [15] CHMM [24] Proposed 

Cropping 

5% 0.8567 0.69983 0.8310 0.9104 0.9267 

10% 0.7517 0.6118 0.7369 0.8045 0.7928

Gaussian filtering 

3×3 0.8854 0.7009 0.7893 0.9007 0.9315

5×5 0.8032 0.6875 0.7245 0.8865 0.9047

7×7 0.7769 0.4765 0.6879 0.8644 0.8830

Gamma correction 

0.9 0.8876 0.6998 0.8004 0.9032 0.9185

1.1 0.8132 0.6435 0.7993 0.9007 0.8974 

Rotation 

 0.5° 0.8921 0.8821 0.7832 0.9121 0.9370

 1° 0.8764 0.8054 0.7251 0.9003 0.9243

 2° 0.8021 0.7994 0.6673 0.8732 0.8821

Scaling 

0.8 0.7591 0.5889 0.6554 0.8548 0.8940

1.2 0.7254 0.5982 0.6118 0.8003 0.8335

To clearly prove the robustness of the suggested algorithm, Fig. 12-15 provide the average AUROC test results of this 

detector and other existing advanced detectors under various attacks, where the watermarked images undergo different types of 

attacks including JPEG compression, salt & pepper noise, median filtering and AWGN. In Fig. 12, we can see that the suggested 

LO detector under JPEG compression attacks provides more robust properties than that of other detectors. Especially compared 

with the optimal algorithm [24] in existing detectors, the proposed detector is more likely to detect watermarks under strong 

attack condition with QF =5. 
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Fig. 12. AUROC of different detectors under JPEG compression attacks. 

Fig. 13 shows that under AWGN attacks, the suggested LO detector provides the largest AUROC values among all the 

detection algorithms compared. It should be observed that when σn =40, the proposed detector still outperforms to other methods. 

Salt & pepper noise and median filtering attacks are considered as common attacks when assessing the performance of any 

watermarking method. Fig. 14 and Fig. 15 indicate that the suggested watermark detector has greater advantages than competing 

techniques when the watermarked image undergoes common signal attacks. 

Fig. 13. AUROC of different detectors under AWGN attacks. 

Fig. 14. AUROC of different detectors under salt & pepper noise attacks. 
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Fig. 15. AUROC of different detectors under median filtering attacks. 

Next, we also compare the average performance of the presented watermark detector and other existing watermark detectors, 

including CT-GARCH [38] and WT-GARCH [37], as shown in Table 7. Here, we used 24 images with size of 512×512×8bits as 

host images, including Peppers, Living room, Lake, Pirate, Bridge, and Gold hill etc. Meanwhile, we randomly generated 24 

different watermark sequences (128×256 bits), the range of the given PFA is [0,1]. Thus, 576 different combinations of 

watermark messages and host images (24 watermarks×24 hosts) were used in the evaluation. The comparative experiments are 

carried out under the same experimental conditions. According to the above experimental results, the proposed detector 

demonstrates excellent performance against various attacks under different WDR values.  

Table 7 Average AUROC values under various attacks.  

Attack Types WT-GARCH [37] CT-GARCH [38] Proposed 

JPEG Compression (QF=60) 
WDR=−50dB 0.8591 0.8994 0.9282 

WDR=−45dB 0.9413 0.9978 0.9853 

Gaussian Filtering (5×5) WDR=−60dB 0.6401 0.9038 0.9539 

Median Filtering (5×5) WDR=−50dB 0.8504 0.9688 0.9993 

Gaussian Filtering (5×5) and 

AWGN ( =10) 
WDR=−50dB 0.7582 0.9780 0.9931 

Median Filtering (5×5) and 

AWGN ( =10) 
WDR=−50dB 0.8149 0.9334 0.9803 

Scaling with WDR= −50dB 
SF=0.75 0.8063 0.9926 0.9986 

SF=2 0.7814 0.9157 0.9578 

Rotation with WDR= −45dB 
 =3 0.8561 0.9529 0.9633 

 =−3 0.8774 0.9454 0.9768 

According to the above comparison results, we can clearly conclude that our proposed Beta-exponential distribution based 

watermark detector achieves high work performance compared with some state-of-the-art methods. This improvement mainly 

comes from four aspects: First, we introduced FRHFMs to statistical image watermarking, and apply robust local FRHFMs 

magnitudes for inserting watermark signal and developing watermark detector. Second, we modeled the robust local FRHFMs 

magnitudes with Beta-exponential distribution, which can capture accurately the non-Gaussian and heavy-tailed statistical 

characterization of local FRHFMs magnitudes. Also, we estimate effectively the statistical model parameters of the 

Beta-exponential PDF by modified ML estimation approach. Third, we developed the blind statistical watermark detector using 

Beta-exponential distribution and locally most powerful test. 
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8. CONCLUSION

In this algorithm, we have used Beta-exponential distribution to fit the RHFMs magnitude coefficients and designed an 

optimal watermark detector. The multiplicative method has been used to insert the watermarking information into the magnitude 

coefficients. To enhance the detection probability, we also used MMLE algorithm to calculate the model parameters. Further, the 

optimal detector is derived by the LMP test and assessed its performance. A theoretical expression of the detection has been 

verified through Monte Carlo simulation experiments in detail. Then the AUROC curves and the ROC curves of this algorithm 

are compared with other advanced detection algorithms. It has been observed that this detector presents a higher detection 

probability than other detection methods based on the t-LS, NIG, BKF, GG and 2D-GARCH distributions with predetermined 

false alarm probability. The robustness of this watermark detector under regular attacks and geometric attacks has also been 

researched, and the experimental results indicate that our detector has better detection performance than other existing schemes.  

Nevertheless, this method still has some problems, such as inaccurate watermark detection probability in strong signals. In 

the future, more robust modeling objects and more versatile models will be further explored and studied to obtain better the 

performance of the watermark detector.  

Appendix A. Variance and mean of log-likelihood ratio under hypotheses H0 and H1.   

In this section, the likelihood ratio provided can be regarded to obey the Beta-exponential distribution conditioned on each of 

the H0 and H1 hypotheses. We can calculate the variance and mean under the two hypotheses, i.e., 0 , 1 , 0 , 1 . An 

expression for the mean 0  under the H0 hypothesis is derived by   
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The variance under hypothesis H1 is given by 

 

     
  

  
 































 















L

i

ii

iiiiiie

ke

L

l il

lllllle

ke

L

i

iiiiiie

ke

LODLOD

wwxxk

wwxxkE

wwxxkE

HTEHTVar

iwixixk

iwixixk

lwlxlxk

lwlxlxk

iwixixk

iwixixk

1

2

1

)1(

1

)1(

1

2

1

)1(

2

111
2
1

)(

)(

])|)y(([)|)y((

)(

)(

)(

)(

)(





























                (A.4) 

Conflicts of interest The authors declare that they have no conflict of interest. 

Ethical standard All procedures performed in studies involving human participants were in accordance with the ethical 

standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later 

amendments or comparable ethical standards. 

Informed consent Informed consent was obtained from all individual participants included in the study.   

REFERENCES 

[1] M. Amirmazlaghani, M. Rezghi, H. Amindavar. A novel robust scaling image watermarking scheme based on Gaussian mixture model. Expert Systems 

with Applications, 2015, 42(4):1960-1971. =>1 

[2] P. Bhinder, K. Singh, N. Jindal. Image-adaptive watermarking using maximum likelihood decoder for medical images. Multimedia Tools and Applications, 

2018, 77(8):10303-10328. 

[3] X. Y. Wang, J. Tian, J. L. Tian, P. P. Niu, H. Y. Yang. Statistical image watermarking using local RHFMs magnitudes and Beta exponential distribution. 

Journal of Visual Communication and Image Representation, 2021, 77: 103123. 

[4] M. Amini, M. O. Ahmad, M. N. S. Swamy. A new locally optimum watermark detection using vector-based hidden Markov model in wavelet domain. 

Signal Processing, 2017, 137:213-222. 

[5]  H. Sadreazami, M. O. Ahmad, M. N. S. Swamy. Optimum multiplicative watermark detector in contourlet domain using the normal inverse Gaussian 

distribution. Proceeding of the IEEE International Symposium on Circuits & Systems. Lisbon, Portugal, 2015:1050-1053. 

[6] M. Amirmazlaghani. Additive watermark detection in the wavelet domain using 2D-GARCH model. Information Sciences, 2016, 370-371:1-17. 

[7] M. Amini, H. Sadreazami, M. O. Ahmad, M. N. S. Swamy. Multichannel color image watermark detection utilizing vector-based hidden Markov model. 

Proceedings of the 2017 IEEE International Symposium on Circuits and Systems, Baltimore, MD, USA, 2017:1-4. 

[8] A. K. Singh. Improved hybrid algorithm for robust and imperceptible multiple watermarking using digital images. Multimedia Tools and Applications, 

2017, 76(6):8881-8900. 

[9] B. Ahmaderaghi, F. Kurugollu, J. M. D. Rincon, A. Bouridane. Blind image watermark detection algorithm based on discrete shearlet transform using 

statistical decision theory. IEEE Transactions on Computational Imaging, 2018, 4(1):45-59. 

https://www.sciencedirect.com/science/article/pii/S1047320321000778?dgcid=author#!
https://www.sciencedirect.com/science/article/pii/S1047320321000778?dgcid=author#!
https://www.sciencedirect.com/science/article/pii/S1047320321000778?dgcid=author#!
https://www.sciencedirect.com/science/article/pii/S1047320321000778?dgcid=author#!
file://E:youdaoDict8.5.3.0
esultuihtmlindex.html#/javascript:;
https://sciencedirect.xilesou.top/science/journal/00200255
https://ieeexplore.ieee.xilesou.top/xpl/RecentIssue.jsp?punumber=6745852


26

[10] J. Liu. An image watermarking algorithm based on energy scheme in the wavelet transform domain. Proceedings of the 2018 IEEE 3rd International 

Conference on Image, Vision and Computing, Chongqing, China, 2018: 668-672. 

[11] S. Etemad, M. Amirmazlaghani. A new multiplicative watermark detector in the contourlet domain using t location-scale distribution. Pattern Recognition, 

2017, 77: 99-112. 

[12] M. Rabizadeh, M. Amirmazlaghani, M. A. Attari. A new detector for contourlet domain multiplicative image watermarking using Bessel K form 

distribution. Journal of Visual Communication and Image Representation, 2016, 40:324-334. 

[13] V. Sedighi, J. Fridrich, R. Cogranne. Content-adaptive pentary steganography using the multivariate generalized Gaussian cover model. Media 

Watermarking, Security, and Forensics, 2015, 9409H:1-13. 

[14] K. Zebbiche, F. Khelifi, K. Loukhaoukha. Robust additive watermarkig in the DTCWT domain based on perceptual masking. Multimedia Tools and 

Applications, 2018, 77(16):21281-21304.   

[15] H. Sadreazami, M. O. Ahmad, M. N. S. Swamy. A robust multiplicative watermark detector for color images in sparse domain. IEEE Trans. on Circuits 

and Systems II: Express Briefs, 2015, 62(12):1159-1163.  

[16] S. Etemad, M. Amirmazlaghani. Additive watermark detector in contourlet domain using the t location-scale distribution. Proceeding of the 2016 2nd 

International Conference of Signal Processing and Intelligent Systems. Tehran, Iran, 2016. 

[17] X. Y. Wang, Y. N. Liu, H. Xu, A. L. Wang, H. Y. Yang. Blind optimum detector for robust image watermarking in nonsubsampled shearlet domain. 

Information Sciences, 2016, 372:634-654. 

[18] H. B. Bi, Y. Liu, M. M. Wu, Y. L. Ge. NSCT domain additive watermark detection using RAO hypothesis test and Cauchy distribution. Mathematical 

Problems in Engineering, 2016, 2016:1-18. 

[19] X. Y. Wang, S. Y. Zhang, T. T. Wena, H. Y. Yang. P. P. Niu. Coefficient difference based watermark detector in nonsubsampled contourlet transform 

domain. Information Sciences, 2019, 503:274-290. 

[20] L. Dong, Q. Yan, Y. Lv, S. Y. Deng. Full band watermarking in DCT domain with Weibull model. Multimedia Tools and Applications, 2016, 76(2):1-18. 

[21] M. Amirmazlaghani. A novel statistical detector for contourlet domain image watermarking using 2D-GARCH model. International Conference on Image 

Analysis & Processing, 2017:547-557.  

[22] M. Barazandeh, M. Amirmazlaghani. A new statistical detector for additive image watermarking based on dual-tree complex wavelet transform. 

Proceeding of the 2016 2nd International Conference of Signal Processing and Intelligent Systems. Tehran, Iran, 2016.  

[23] M. Alghoniemy, A. H. Tewfik. Image watermarking by moment invariants. Proceeding of the 2000 International Conference on Image Processing. 

Vancouver, BC, Canada, 2000:73-76. 

[24] M. Amini, H. Sadreazami. M. O. Ahmad, M. N. S. Swamy. A channel-dependent statistical watermark detector for color images. IEEE Transactions on 

Multimedia, 2019, 21(1):65-73. 

[25] K. M. Hosny, M. M. Darwish, M. M. Fouda. Robust color images watermarking using new fractional-order exponent moments. IEEE Access, 2021, 9: 

47425-47435.  

[26] X. Zhou, Y. Ma, Q. Zhang, M. A. Mohammed, R. Damaševičius. A reversible watermarking system for medical color images: balancing capacity, 

imperceptibility, and robustness. Electronics, 2021, 10: 1024. https://doi.org/10.3390/electronics10091024.  

[27] Zhiqiu Xia, Xingyuan Wang, Mingxu Wang, Salahuddin Unar, Chunpeng Wang, Ying Liu. Geometrically invariant color medical image 

null-watermarking based on precise quaternion polar harmonic Fourier moments. IEEE Access, 2019, 7: 122544-122560.  

[28] K. M. Hosny, M. M. Darwish. Resilient color image watermarking using accurate quaternion radial substituted Chebyshev moments. ACM Transactions 

on Multimedia Computing, Communications, and Applications, 2019, 15(2): 1-25. 

[29] K. M. Hosny, M. M. Darwish. Robust color image watermarking using invariant quaternion Legendre-Fourier moments. Multimedia Tools and 

Applications, 2018, 77(19): 24727-24750. 

[30] C. P. Wang, X. Y. Wang, Y. W. Li, Z. Q. Xia, C. Zhang. Quaternion polar harmonic Fourier moments for color images. Information Sciences, 2018, 

450:141-156. 

[31] C. P. Wang, X. Y. Wang, Z. Q. Xia. Geometrically invariant image watermarking based on fast radial harmonic Fourier moments. Signal Processing: 

Image Communication, 2016, 45:10-23.  

[32] S. Nadarajah, S. Kotz. The beta exponential distribution. Reliability Engineering & System Safety, 2006, 91(6):689-697. 

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9409/94090H/Content-adaptive-pentary-steganography-using-the-multivariate-generalized-Gaussian-cover/10.1117/12.2080272.short
file://E:youdaoDict8.5.3.0
esultuihtmlindex.html#/javascript:;
https://sciencedirect.xilesou.top/science/article/pii/S0020025516306582#!
https://sciencedirect.xilesou.top/science/article/pii/S0020025516306582#!
https://sciencedirect.xilesou.top/science/article/pii/S0020025519305973#!
https://sciencedirect.xilesou.top/science/article/pii/S0020025519305973#!
https://sciencedirect.xilesou.top/science/article/pii/S0020025519305973#!
https://sciencedirect.xilesou.top/science/article/pii/S0020025519305973#!
https://sciencedirect.xilesou.top/science/article/pii/S0020025519305973#!
https://sciencedirect.xilesou.top/science/journal/00200255
https://sciencedirect.xilesou.top/science/journal/00200255/503/supp/C
file://E:youdaoDict8.5.3.0
esultuihtmlindex.html#/javascript:;
https://ieeexplore.ieee.xilesou.top/xpl/RecentIssue.jsp?punumber=6046
https://ieeexplore.ieee.xilesou.top/xpl/RecentIssue.jsp?punumber=6046
https://sciencedirect.xilesou.top/science/journal/00200255/450/supp/C
https://sciencedirect.xilesou.top/science/article/abs/pii/S0923596516300236#!
https://sciencedirect.xilesou.top/science/article/abs/pii/S0923596516300236#!
https://sciencedirect.xilesou.top/science/article/abs/pii/S0923596516300236#!
https://sciencedirect.xilesou.top/science/journal/09235965
https://sciencedirect.xilesou.top/science/journal/09235965
https://sciencedirect.xilesou.top/science/journal/09518320


27

[33] S. Kumar, P. Chhaparwal, G. Zou. A robust unbiased dual to product estimator for population mean through modified maximum likelihood in simple 

random sampling. Cogent Mathematics, 2016, 3(1):1168070. 

[34] E. Oral. Modified maximum likelihood estimation in Poisson regression. Biom Biostat Int J, 2017, 6(1):00154. 

[35] D. C. Vaughan, M. L. Tiku. Estimation and hypothesis testing for a nonnormal bivariate distribution with applications. Mathematical and Computer 

Modelling, 2000, 32(1–2):53-67. 

[36] XAvailable: http://decsai.ugr.es/cvg/dbimagenes/index.php. 

[37] H. J. Qu, Y. H. Peng. Contourlet coefficient modeling with generalized Gaussian distribution and application. Proceedings of the International Conference 

on Audio, Language and Image Processing, Shanghai, China, 2008:531-535. 

[38] M. Amirmazlaghani. Heteroscedastic watermark detector in the contourlet domain. IET Computer Vision, 2019, 13(3): 249-260.   

https://sciencedirect.xilesou.top/science/article/pii/S0895717700001199#!
https://sciencedirect.xilesou.top/science/article/pii/S0895717700001199#!
https://sciencedirect.xilesou.top/science/journal/08957177
https://sciencedirect.xilesou.top/science/journal/08957177
https://sciencedirect.xilesou.top/science/journal/08957177/32/1
http://decsai.ugr.es/cvg/dbimagenes/index.php
https://digital-library.theiet.org/content/journals/iet-cvi/13/3

