
Layered Feature Representation for Differentiable
Architecture Search
Jie Hao

University of Electronic Science and Technology of China
William Zhu ( wfzhu@uestc.edu.cn)

University of Electronic Science and Technology of China https://orcid.org/0000-0001-8898-9244

Research Article

Keywords: Neural architecture search, Di฀erentiable, Layered feature representation, Candidate operations

Posted Date: December 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1086452/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Soft Computing on April 9th, 2022. See the
published version at https://doi.org/10.1007/s00500-022-06907-1.

https://doi.org/10.21203/rs.3.rs-1086452/v1
mailto:wfzhu@uestc.edu.cn
https://orcid.org/0000-0001-8898-9244
https://doi.org/10.21203/rs.3.rs-1086452/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-022-06907-1

Noname manuscript No.
(will be inserted by the editor)

Layered feature representation for differentiable architecture
search

Jie Hao · William Zhu*

Received: date / Accepted: date

Abstract Differentiable architecture search (DARTS)

approach has made great progress in reducing the com-

putational costs of designing automatically neural ar-

chitectures. DARTS tries to discover an optimal archi-

tecture module, called as the cell, from a predefined

super network containing all possible network archi-

tectures. Then a target network is constructed by re-

peatedly stacking this cell multiple times and connect-

ing each one end to end. However, the repeated design

pattern in depth-wise of networks fails to sufficiently

extract layered features distributed in images or other

media data, leading to poor network performance and

generality. To address this problem, we propose an ef-

fective approach called Layered Feature Representation

for Differentiable Architecture Search (LFR-DARTS).

Specifically, we iteratively search for multiple cell archi-

tectures from shallow to deep layers of the super net-

work. For each iteration, we optimize the architecture

of a cell by gradient descent and prune out weak con-

nections from this cell. Meanwhile, the super network is

deepen by increasing the number of this cell to create an

adaptive network context to search for a depth-adaptive

cell in the next iteration. Thus, our LFR-DARTS can

obtain the cell architecture at a specific network depth,

which embeds the ability of layered feature representa-

tions into each cell to sufficiently extract layered fea-

tures of data. Extensive experiments show that our al-

gorithm solve the existing problem and achieves a more

competitive performance on the datasets of CIFAR10

William Zhu*
Institute of Fundamental and Frontier Sciences at the Uni-
versity of Electronic Science and Technology of China, No.4,
Sec. 2, Jianshe Beilu, Chengdu, China
Tel.: +086+15928727490
E-mail: wfzhu@uestc.edu.cn
ORCID: 0000-0001-8898-9244

(2.45% error rate) , fashionMNIST (3.70%) and Ima-

geNet (25.5%) while at low search costs.

Keywords Neural architecture search · Differentiable ·

Layered feature representation · Candidate operations

1 Introduction

Over the last few years, deep neural networks (DNN)

have demonstrated powerful capabilities of feature

extraction [31,13,7,28] and data mining [4,48,6,40].

Thus, DNN is applied to a large variety of challenging

tasks, such as image recognition [18,14], speech recog-

nition [16,12], machine translation [37,42], and other

complex tasks [34,26,15,3]. But designing an advanced

neural network typically requires substantial efforts of

human experts. To eliminate such a handcraft process,

neural architecture search (NAS) [49,50,32] has been

proposed to automatically search for a suitable neural

network from a predefined search space. Its excellent

performance has increasingly attracted researchers’ at-

tention.

Most NAS approaches apply reinforcement learn-

ing (RL) [49,50,2] or evolutionary algorithms (EA) [33,

24,32] to perform architecture search. Both of their

searching procedure requires sampling and evaluating

numerous architectures from a discrete search space

to obtain the optimal one. The searching procedure

is prohibitively computational overhead. For example,

NASNet [50](RL-based) trains and evaluates more than

20,000 neural networks across 500 GPUs over 4 days.

AmoebaNet [32] (EA-based) even takes 3150 GPU-days

to discover an optimal neural architecture.

To eliminate this high computational overhead,

Liu et al. [25] recently proposed a differentiable archi-

tecture search (aka DARTS), which relaxes the discrete

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www.editorialmanager.com/soco/download.aspx?id=678993&guid=d0a42755-81d3-4dc2-81d1-068d28942bb6&scheme=1
https://www.editorialmanager.com/soco/download.aspx?id=678993&guid=d0a42755-81d3-4dc2-81d1-068d28942bb6&scheme=1
https://www.editorialmanager.com/soco/viewRCResults.aspx?pdf=1&docID=26860&rev=1&fileID=678993&msid=6dbde938-5ed0-4280-89c4-6b451922f440

2 Jie Hao, William Zhu*

3

2

1

0

3

2

1

0

(c) (b)

(a)

Iteration Ⅰ Iteration Ⅱ Iteration Ⅲ Iteration Ⅳ Iteration Ⅴ

…

N×

…

N× N×

… …

N× N×

… …

N×

Prune

Input

Cell Ⅰ

Cell Ⅱ

Cell Ⅲ

Cell Ⅳ

Cell Ⅴ

Output

N

N

Fig. 1 Illustration of the proposed approach, Layered Feature Representation for Differentiable Architecture Search (LFR-
DARTS). (a) The overall pipeline of LFR-DARTS. Suppose there are 5 target cells to be searched, and each cell is searched
in an iteration. Note that the network depth gradually increases in each iteration, and this process is displayed in each box.
(b) The fine structure of the search network containing multiple cells in a iteration. (c) Prune out weak operations for a cell
currently being searched.

search space to be continuous and optimizes a com-

mon cell architecture in a super network (also called

search network in the following) by gradient descent.

Then, the identical cells are repeatedly stacked mul-

tiple times and connected end to end to construct a

target network for a specific task. This kind of NAS ap-
proach indeed reduces the computational costs by the
differentiable search strategy. However, this target net-

work shows poor performance on testing datasets, es-
pecially when transferred to a large-scale dataset since
this repeated and simple network structure in depth-

wise is hard to sufficiently extract the layered features
distributed in media data. In term of image data, the

layered features express semantic information of differ-

ent granularities. In general, the semantic information

need to be handled by convolutional kernels with dif-

ferent configurations. But obviously the simple neural

architecture from DARTS cannot fully extract and uti-

lize these useful features. Therefore, how to search for
cell architectures with layered feature representation for
a target network becomes our research question.

To address the above problem, we propose an ef-

fective approach called Layered Feature Representation

for Differentiable Architecture Search (LFR-DARTS).

Specifically, we initialize a search network constituted

by multiple cells with all candidate operations and then

iteratively search for the architecture of each cell from

shallow to deep layers of the search network. For each

iteration, we first optimize the architecture of a spec-

ified cell by gradient descent and gradually prune out

weak connections from this cell. To effectively learn the
importance of candidate operations and highlight the

optimal ones during this process, we design a new func-
tional network layer called Normalization-Affine and in-

troduce an entropy constraint for the operations being

optimized. When obtaining the optimal architecture of

a cell, we deepen the search network by increasing the

number of this cell to N (a configurable hyperparam-

eter) copies in the original location of network while

keeping other cells unchanged, so as to create an adap-

tive network context to search for a depth-adaptive

cell in the next iteration. Therefore, our LFR-DARTS

makes each cell to be searched at a specific and adap-

tive network depth, which is conducive to embedding

the ability of layered feature representations into each

cell to sufficiently extract data features.

In terms of search efficiency, our approach takes
shorter search time than DARTS since we constantly

prune out weak operations from the search network

to progressively accelerate the forward and backward

propagation of the network. Moreover, the optimiza-

tion for cell architecture is simpler yet more efficient
compared to DARTS, which is demonstrated by the di-

agnostic experiments in Sec. 4.3.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Layered feature representation for differentiable architecture search 3

We validate our LFR-DARTS on the image clas-

sification tasks of CIFAR10, fashionMNIST and Im-
ageNet. We take only 0.45 GPU days (NVIDIA
GTX1080Ti) to obtain an optimal neural architecture

on the training dataset of CIFAR10. Our neural net-

work achieves the state-of-the-art performance on vali-

dation dataset of CIFAR10 (i.e., 2.65% test error rate

with 2.7M parameters and 2.45% test error rate with

4.4M parameters). Then we transfer the neural archi-

tecture to other datasets of fashionMNIST and Im-

ageNet. Under the same circumstances, our network

achieves 3.70% test error rate on fashionMNIST (with

2.5M parameters) and 74.5% top1 accuracy on Ima-

geNet (with only 4.9M parameters).

In summary, we make the following contributions in
this work:

1. We propose a layered feature representation ap-

proach for differentiable architecture search to solve

the problem of insufficient layered feature extraction in

DARTS. Firstly, we design a hierarchical search scheme

that is to search a depth-adaptive cell architecture in

each search iteration. At the end of each iteration, we
dynamically increase the number of the currently ob-
tained cell to N copies in the original depth location so
as to deepen the search network. Compared with other

differentiable search approaches, our hierarchical and

dynamic search scheme allows the discovered network

to sufficiently extract feature information of different

granularities and levels and integrate it to make deci-

sions.

2. A new functional network layer (called as
Normalization-Affine) and the entropy constraint are

developed to highlight important operations among

candidates, while suppressing other weak operations.

That provides higher reliability for optimal architecture

selection.

3. Extensive experiments show the advantages of
our method in neural architecture search. Compared

to other DARTS approaches, our discovered cells are

able to represent different levels of feature information

hidden in data. Therefore, our algorithm achieves com-

petitive even better network performance and general-

ization on several datasets.

2 Related Work

In recent years, NAS is becoming a research hotspot

in artificial intelligence. Many search algorithms have

been proposed to explore neural networks. According to

the strategies to explore the search space, the existing

NAS approaches can be roughly divided into three cat-

egories [11], i.e., reinforcement learning (RL)-based ap-

proaches, evolution algorithm (EA)-based approaches,

and gradient-based approaches.

The early approaches [49,50,1,5,23] use RL to opti-

mize the search policy for discovering optimal architec-

tures. NASNet [50] trains a recurrent neural network as

a controller to decide the types and parameters of neu-
ral networks sequentially. ENAS [30] reduces the com-
putational burden of NASNet by sharing the weights

of common operations among child networks. The EA-

based methods apply evolutionary algorithms to evolve

and optimize a population of network structures [33,

32,41,27]. AmoebaNet [32] encodes each neural archi-

tecture as a variable-length string. The string mutates
and recombines to produce new population of networks.
The high-performance networks will be remained and

they generates the next promising generation.

But both RL-based and EA-based approaches re-

quire excessive computational overhead though achiev-
ing an advanced performance. To address this issue, the

gradient-based approaches [25,23,44,10] are proposed
to accelerate the architecture search. Typically, DARTS
relaxes the discrete search space to be continuous and

utilizes gradient descent to jointly optimize neural ar-

chitecture and network weights. SNAS [44] proposes

to constrain the architecture parameters to be one-hot

to tackle the inconsistency in optimizing objectives be-

tween search and evaluation scenarios. GDAS [10] de-
velops a differentiable sampler over the search space to

avoid simultaneously training all the neural architec-

tures in the space. DARTS+ [22] RobustDARTS [46]

and PDARTS [44] employ early stopping to restrict the

excessive number of ”skip“ operations. FairDARTS [8]

proposes the collaborative competition strategy to ad-
dress the unfair advantage in exclusive competition.
NASSA [21] designs a new importance metric of can-
didate operations for more reliable architecture selec-

tion. Although the gradient-based approaches show

high search efficiency, their network structures lack the
ability of layered feature representations.

3 Method

In this section, we present our proposed algorithm Lay-

ered Feature Representation for Differentiable Architec-

ture Search (LFR-DARTS) in detail. We first intro-

duce a classical differentiable NAS algorithm DARTS

in Sec. 3.1, which is a basis of our LFR-DARTS. Then,

we describe the concrete search procedure of our algo-

rithm in Sec. 3.2. Finally, in Sec. 3.3, we introduce a

minimum entropy constraint and formulate the gradi-

ent optimization for the search network.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4 Jie Hao, William Zhu*

Operation space

• zeroize • max pool 3x3
• avg pool 3x3 • skip connect
• sep conv 3x3 • sep conv 5x5

• dil conv 3x3 • dil conv 5x5

Table 1 The operation space for neural architecture search.

3.1 Preliminary: DARTS

In DARTS, the goal of architecture search is to discover

an optimal cell with the most important operations

from a search network. The search network consists of

L identical cells with the given candidate operations.

These cells connect with each other in order, and each
cell is considered as a directed acyclic graph (DAG)

with B nodes, {x0, x1, ..., xB−1}, where x0, x1 are two
input nodes of this cell, xB−1 is the output node, and

the others are intermediate nodes. The nodes are con-

nected to predecessors by multiple kinds of operations

(e.g., convolution, pooling). These operations share an

operation space O 1, in which each operation is rep-
resented as o(.). The feature transformation f(.) from

node i to the subsequent node j could be represented

by the weighted sum of these operations:

f(i,j)(xi) =

|O|
X

k=1

exp(↵
(i,j)
ok)

P|O|
m=1 exp(↵

(i,j)
om)

ok(xi) (1)

where xi is the feature maps of node i, and ↵ is the

architecture parameter, which is used to weight its cor-

responding operation.

Each intermediate node ({x2, x3, ..., xB−2}) is rep-

resented by all of its predecessors:

xj =
X

i<j

f(i,j)(xi) (2)

The output xB−1 of one cell is calculated by the con-

catenation of the intermediate nodes in the channel di-

mension:

xB−1 = concat(x2, x3, ..., xB−2) (3)

The output of this cell will be input of the next cell. The

cell is a special information processing or feature extrac-

tion block. Thus, the internal architecture (including

operation types and connection between nodes) of the
cell is critical to the performance of a neural network.

3.2 The procedure of layered architecture search

A convolutional neural network (CNN) has a hierarchi-

cal structure so as to extract the layered visual features

of images. As [35,45] describes, the discriminative in-

formation is hidden in feature maps of different layers,
each layer has the characteristic of representing specific

features. Many excellent network structures [38,14,18]

obey this rule consistently. But differentiable NAS al-

gorithms [50,25] just search single cell architecture (a
normal cell and a reduction cell) in pre-defined search

space, and then construct a target neural network by
the repetitive cells. It contradicts the common sense
and cannot be guaranteed that the neural network with
repetitive and oversimplified structure is capable of suf-

ficiently extracting layered features. It causes poor per-

formance, especially when transferring the cell architec-

ture to a large-scale dataset.

Following the characteristics of neural networks, we

propose a new differentiable NAS algorithm called Lay-

ered Feature Representation for Differentiable Architec-

ture Search (LFR-DARTS). Firstly, we specify the num-
ber of target cells to be searched and initialize a search

network by a few identical cells that contain the same

structure and candidate operations inside. These cells

are connected in order, which makes each cell naturally

placed in the different depths of the search network.

Then, we iteratively search for multiple cells with differ-
ent architectures from shallow to deep layers. For each

iteration, we first optimize the architecture of a cell by

gradient descent and gradually prune out weak connec-

tions from this cell. Once a cell discovers its optimal ar-

chitecture, we will fix its architecture in the search net-

work and then perform the search for a deeper-adaptive

cell in the next iteration.

In order to embed the capability of layered feature

representation into the cells, we dynamically increase

the depth of the search network during the search pro-

cess, rather than keeping the static state as in DARTS.

Concretely, when we discover the optimal architecture

of a cell (if it is a normal cell), we will increase its

number to N copies in the original depth of the search

network while simultaneously keeping other cells un-

changed. In this way, our gradually growing search net-

work creates an adaptive network context for searching

optimal cells adaptive to different network depths.

But we find that there exist some problems when ap-

plying the architecture optimization strategy of DARTS

to our search process. First, this optimization strat-

egy in DARTS is just applied to searching a single
cell, not multiple cells with different hierarchical fea-

tures. Since the parameters ↵ for architecture opti-

mization in DARTS are shared between cells, leading
to optimizing and producing only a common cell. Sec-
ond, the search procedure is complicated as DARTS
needs to alternatively optimize the architecture param-

eters ↵ and network weights ! by gradient descent. ↵

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Layered feature representation for differentiable architecture search 5

is trained on the validation dataset and ! is trained

on the training dataset respectively, which greatly con-
sumes search time. To solve the problems of architec-
ture optimization, we design a new functional layer

called Normalization-Affine (NA), which follows inter-

mediately after each candidate operation and provide
us a selection indicator of optimal operations.

For any candidate operation, our NA functional
layer first normalizes the output of this operation and
then reweights the normalized result by a trainable pa-

rameter to learn its importance. We formulate the NA

layer for any k-th operation in a set of candidate oper-

ations:

NAk(xin) = 'k × norm(xin) (4)

norm(xin) =
xin − µ
√
�2 + ✏

(5)

where the trainable weight parameter 'k is referred

to as an affine parameter which is used to weight

each operation. ✏ is a very small value close to zero.

xin = {x1
in, x

2
in, ..., x

m
in} is the intput tensor of the

NA layer and the output tensor of the k-th operation,
and it contains m feature maps. µ = {µ1, µ2, ..., µm} ,

� = {�1,�2, ...,�m} are mean vector and standard de-

viation vector of the mini-batch xin. µ and � also con-

tain m elements, and each element is corresponding to

a feature map of xin. The normalized function norm(.)

partially comes from Batch Normalization [20], which
is one of the most common and useful normalization
approaches in CNN models.

We combine Eq. 1, Eq. 4 and 5, get information

conversion from node j to i, shown as Eq. 6:

Fij(xj) =

|O|
X

k=1

'k ×
x̂k
j − µk√
�k

2 + ✏
(6)

x̂k
j = ok(xj) (7)

where ok(.) is the k-th operation in a set of candidate

operations and xj is the input of the operation. µk, �k

denote the mini-batch mean and mini-batch standard

deviation vector of the output of k-th operation.

Each NA layer, corresponding to any operation, con-

tains a learnable affine parameter ', which is trained

and updated together with weight parameters ! by gra-

dient descent. Since different cell is located in different

depth of network, the affine parameters of the cell will
be trained to learn the layered neural architectures. In

addition, we optimize affine parameters and weight pa-

rameters in the same gradient descent step rather than

alternate optimization, which saves half of the search

time compared to DARTS.

Our dynamic search approach gradually prune out

the weak operations from search network based on the

affine parameters. The importance score S of an oper-

ation between any pair of nodes is defined as follows:

Sk = softmax(|'k|) =
exp(|'k|)

P|O|
j=1 exp(|'j |)

(8)

where 'k denotes the affine parameter corresponding to

the k-th operation in the operation space. The larger

Sk is, the more likely the corresponding candidate op-
eration is to be retained during the search process.

We might doubt whether the normalization is re-
ally necessary in the NA layer. We have found through

experiments that directly using the affine parameter

to weight an operation without beforehand normaliza-

tion cannot achieve an ideal result. The reason is that

the distribution of the outputs from different opera-
tions probably varies widely, which makes it pretty hard

to identify importance of operations by the affine pa-
rameters '. For any operation, its weight parameters

! will be optimized and updated simultaneously with

the corresponding '. Optimizing the two kinds of pa-

rameters together could make them vary synchronously,

resulting in same result by increasing one and deceasing

another. Therefore, normalization before reweighting is

quite necessary since it makes the results from different

operations uniformed so that the affine parameters can

genuinely represent the importance of operations.

3.3 Network optimization with entropy constrain

During the search process, we optimize the affine pa-

rameters ' together with weights ! by the gradient

descent. Then we try to pick out the operation with

the highest importance score from the candidates. But

the importance scores of operations between a pair of

nodes could be very close to each other, which makes
it challenging to select an optimal operation among
them. Thus we consider adding an entropy constraint

over these candidate operations to concentrate the high

scores on one or few operations, then the operations

with high scores can be identified and selected more

easily. To this end, we redesign the loss function as fol-
lows:

L(Ytrain|', w,Xtrain) = LCE + �

B
X

p=1

Hp (9)

Hp = −
|O|
X

j=1

Sj logSj , s.t.

|O|
X

j=1

Sj = 1, 0 ≤ Sj ≤ 1 (10)

where LCE is a general cross entropy loss function and
PB

p=1 Hp denotes the summation of entropies w.r.t.

all candidate operations in the cell currently being

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6 Jie Hao, William Zhu*

searched, Hp is the entropy of the p-th set of candidate

operations. B is the number of nodes in a cell and |O|
is the size of the operation space. � is a scaling factor

that controls the rate of convergence.

We try to minimize the loss function Eq. 9, and this

optimization procedure forces the entropy to decrease

so that the importance score distribution S tends to

a single peak gradually. When the scaling factor � is
larger, the constraint is stronger, thus the difference of

importance scores can get obvious through the train-

ing with the fixed number of steps. We verify the en-

tropy constraint effectiveness, and details are presented
in Sec. 4.3.2.

With the minimum entropy constrain, we formulate
the optimization and gradient computing about affine

parameters. According to Eq. 6 and Eq. 9, the gradient

w.r.t. an affine parameter 'k can be computed as below:

@L

@'k

=
@LCE

@'k

+ �(−
@Hk

p

@'k

)

=
@LCE

@Fij(xj)
norm(x̂k

j)− �

|O|
X

j=1

(logSj + 1)
@Sj

@'k

(11)

where
∂Sj

∂ϕk
depends on the positive and negative of 'k,

the result as follows:

@Sj

@'k

=

8

<

:

Sj(�jk − Sj), 'k ≥ 0

−Sj(�jk − Sj), 'k < 0

(12)

where �jk = 1 if j = k or else �jk = 0. From Eq. 11 and
12, we can observe that the entropy constraint also de-

livers interactive information between different affine
parameters, which pushes the competition of various

operations. Moreover, there is no extra computational

burden for training our search network just like a com-

mon convolutional neural network. The pseudocode of

our proposed algorithm LFR-DARTS is presented in

Alg. 1.

4 Experiments

In this section, we compare the performance of our al-

gorithm LFR-DARTS with other NAS approaches and

human-designed networks on the several popular im-

age classification datasets, including CIFAR10, fash-

ionMNIST and ImageNet [9]. Following DARTS [25],

We conduct our experiment in two steps: (1) Archi-

tecture search: searching the optimal cell on the train-

ing dataset of CIFAR10; (2) Architecture evaluate: con-

struct an evaluation network by the obtained cells and

test its performance on the testing datasets of CI-

FAR10, fashionMNIST and ImageNet.

Algorithm 1 LFR-DARTS - Layered Feature Repre-

sentation for Differentiable Architecture Search
Input: Training data: (Xtrain, Ytrain); Total target cells:

�; Training epochs for each cell: T
Output: � optimal cells

1: Initialize a search network G consisting of � cells

2: while (iter ≤ �) do

3: The target cell to be searched in G : Citer
4: Initialize the operation space Oiter

5: while (epoch ≤ T) do

6: Train the search network G and minimize
L(Ytrain|', w,Xtrain) = LCE + �(−

PB

p=1 Hp)

7: if epoch > 0 and epoch%(T/3) == 0 then

8: Compute the importance score of each oper-

ation: Sk = softmax(|'k|) =
e|ϕk|

P|O|
j=1

e
|ϕj |

9: Prune out the operations with low impor-
tance scores from Oiter

10: end if

11: epoch = epoch+ 1

12: end while

13: if Citer ⊆ normal cell then

14: Fix the architecture of normal cell Citer and

expand it to N copies in the original position

of G

15: end if

16: iter = iter + 1

17: end while

18: return � optimal cells

4.1 Architecture search and result

The initial search network G consists of � = 5 cells

where two reduction cells (with stride = 2) are inserted
between three normal cells (with stride = 1). The num-
ber of nodes B = 7 in a cell. The initial operation space

O is same as [50,25] and the size of space |O| = 8 at

the beginning of each iteration. The search network in
the each iteration will be performed the search training

of T epochs before obtaining the final architecture of

the corresponding cell. The process of search training
assures the the performance stability of the search net-

work after each network prune. In our experiment, the

value of T is set to 60 because we find through exper-

iments that the accuracy of the search network keeps

relatively steady after about 60 epoch training. Fewer

training epochs usually lead to performance collapse as
network parameters have not converged. More training
epochs contribute little to the result. All of our exper-

iments are run on one device with a CPU of Intel core

i7-8700K and a GPU of NVIDIA GTX1080Ti.

The architecture search is implemented on the deep

learning framework PyTorch [29] with initial channels

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Layered feature representation for differentiable architecture search 7

of 16 and a batch size of 96. The initial learning rate is

0.025 and then annealed down to zero following a cosine

schedule. A standard SGD optimizer with momentum

of 0.9 and weight decay of 3 × 10−4 is adopted. The

hyperparameter � is fixed at 5×10−3. Other experiment

settings follow [25]. The architecture search takes only

0.45 GPU days on a single GPU device.

We implement the experiment five times with dif-

ferent random seeds and pick out the best cells based

on the validation performance. The cells discovered by

LFR-DARTS algorithm are presented in Fig. 2.

4.2 Architecture evaluate

4.2.1 Evaluation on CIFAR10

An evaluation network consisting of 16 cells
discovered in 4.1 is trained from scratch

for 600 epochs on the CIFAR10 with
mini-batch=50, initial learning rate=0.025,

init channels=36, drop path prob=0.15, momen-

tum=0.9, weight decay=3× 10−4 and auxiliary towers

of weight=0.4. We use standard image preprocessing

and data augmentations, i.e., randomly cropping,

horizontally flipping and batch normalization. Other

settings remain the same as [30,25]. Two reduction

cells as Fig. 2(d) and Fig. 2(e) are located at 1/3

and 2/3 of the total depth of the evaluation network,

respectively. The other positions of the network are

filled with three other kinds of the normal cells, i.e.,

Fig. 2(a), 2(b) and 2(c).

To explore the performance limitation of our discov-

ered neural architecture, we further increase the initial

channels to 50 for the evaluation network which con-

tains 15 cells and more parameters (denoted as large

settings in Table 2). We compare our neural network

with other networks designed by experts and other NAS

methods under fair conditions where the parameters are

less than 5M for all the NAS networks. Every evalua-

tion network is trained 5 times using different random

seeds and the results prove that our discovered network

has excellent performance and strong stability.

The test results and the comparison with other ap-
proaches are summarized in Table 2. As shown in Ta-

ble 2, our LFR-DARTS achieves a test error rate of

2.65% with only 2.7M parameters on the validation

dataset of CIFAR10. With more parameters (4.4M),

LFR-DARTS further reduces the error rate to 2.45%,

which almost outperforms the existing state-of-the-art

works with less computational cost than DARTS.

4.2.2 Evaluation on fashionMNIST

The discovered cell architectures are first transferred
to another dataset called fashionMNIST, consisting
of a training set of 60,000 images and a testing set

of 10,000 images. Each image is a 28x28 grayscale

image associated with a label from 10 classes. The

evaluation network is constructed by 15 cells, 36 ini-

tial channels. We training this evaluation network by
a SGD optimizer with learning rate=0.025, momen-
tum=0.9, weight decay=3 × 10−4 and auxiliary tow-

ers of weight=0.4, mini-batch size=96. Other configu-

rations are same as that in Sec. 4.2.1. This network is

training for 300 epochs and reaches a test error rate of

3.70% with 2.5M parameters and a test error rate of

3.63% with 4.1M parameters. The comparison results

of other algorithms are displayed in Tab. 3.

4.2.3 Evaluation on ImageNet

We transfer our architecture discovered on CIFAR10 to

a large-scale dataset named ImageNet, and the result

also demonstrates excellent generalization performance.

Following the mobile setting in [50,30], we construct

our evaluation network by 15 cells and train it for 250

epochs with batch size 160, initial channels 48, weight

decay 3×10−5, monmentum=0.9 and initial SGD learn-

ing rate=0.1 (decayed linearly to 0.0). We keep other

hyper-parameters and settings as that on CIFAR10. We

compare our algorithm with other approaches and the

results are presented in Table 4.
We compare the complete architecture search and

evaluation process of ours, DARTS and random search

on three datasets, respectively. Please refer to Fig. 3

and Fig. 4. Fig. 3 illustrates the loss learning curves

on CIFAR10 (a), fashionMNIST (b) and ImageNet (c).

Fig. 4 shows the training/testing process at the eval-
uation stage on the same three datasets. The results
show that our method achieves better performance and

generalization than the baseline methods.

4.3 Diagnostic experiments

4.3.1 Efficiency of architecture search

Our LFR-DARTS algorithm has shown high search ef-
ficiency and space utilization. In the experiment, the
architecture search contains � iterations. In each iter-

ation, we make statistics on the time and space cost
of one epoch training, and the results are presented in
Table 5. For each iteration, we gradually remove the

weak operations from the search network at 3 steps, re-

spectively. At the beginning, it spends 196 seconds in

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8 Jie Hao, William Zhu*

(a) (b)

(c) (d)

(e)

Fig. 2 The cells discovered by LFR-DARTS algorithm; (a) Normal cell I; (b) Normal cell II; (c) Normal cell III; (d) Reduction
cell I; (e)Reduction cell II.

Architecture
Test Params GPU Search

Error(%) (M) days Method
ResNet-18 [14] 3.53 11.1 - Manual
DenseNet [19] 3.46 25.6 - Manual
SENet [18] 4.05 11.2 - Manual
NASNet-A [50] 3.41 3.3 1800 RL
NASNet-A + cutout [50] 2.65 3.3 1800 RL
AmoebaNet-A + cutout[32] 3.12 3.1 3150 Evolution
PNAS [23] 3.41 3.2 225 SMBO
ENAS [30] 3.54 4.6 0.5 RL
ENAS+cutout [30] 2.89 4.6 0.5 RL
DARTS(2nd order) + cutout[25] 2.82 3.4 1.6 Gradient
Random Sample [25] 3.49 3.1 - -
SNAS + cutout [44] 2.85 2.8 1.50 Gradient
GDAS + cutout [10] 3.87 3.4 0.21 Gradient
GDAS +cutout [10] 2.93 3.4 0.21 Gradient
LFR-DARTS + cutout 2.65 2.7 0.45 Gradient
LFR-DARTS + cutout (large settings) 2.45 4.4 0.45 Gradient

Table 2 Test classification error rates for LFR-DARTS, human-designed networks and other NAS architectures on CIFAR10.

one epoch training with 10094M GPU memory usage
and reduces to 87 seconds with 8676M GPU memory

usage at the last. It clearly shows that the training time
and space costs constantly get decreasing, which proves
that our method speeds up the search process.

To further show the difference in the search
efficiency between our algorithm and DARTS, we

investigate the forward-propagation and backward-
propagation time of our method and DARTS during
the search process. For the search network of ours

and DARTS, we set the same batch size=32, training

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Layered feature representation for differentiable architecture search 9

Architecture
Test Params GPU Search

Error(%) (M) days Method
VggNet [36] 6.53 26.0 - Manual
ResNet-18 [14] 5.10 11.1 - Manual
DenseNet [19] 4.61 25.6 - Manual
NASNet-A + cutout [50] 3.66 2.5 1800 RL
AmoebaNet-A + cutout[32] 3.67 2.3 3150 Evolution
PNAS [23] 3.89 2.5 225 SMBO
ENAS+cutout [30] 3.79 2.6 0.5 RL
DARTS(2nd order) + cutout [25] 3.77 2.2 1.6 Gradient
Random Sample [25] 3.95 2.5 - -
SNAS + cutout [44] 3.80 2.3 1.50 Gradient
GDAS + cutout [10] 3.76 2.4 0.21 Gradient
LFR-DARTS + cutout 3.70 2.5 0.45 Gradient
LFR-DARTS + cutout (large settings) 3.63 4.1 0.45 Gradient

Table 3 Test classification error rates for LFR-DARTS, human-designed networks and other NAS architectures on fashion-
MNIST.

Architecture
Accuracy (%) Params GPU Search

Top1 Top5 (M) days Method
Inception-V1 [38] 69.8 89.9 6.6 - Manual
MobileNetV2 [17] 72.0 91.0 3.4 - Manual
ShuffleNetV2 [47] 73.7 - ∼5 - Manual
NASNet-A [50] 74.0 91.6 5.3 1800 RL
NASNet-B [50] 72.8 91.3 5.3 1800 RL
NASNet-C [50] 72.5 91.0 4.9 1800 RL
AmoebaNet-A [32] 74.5 92.0 5.1 3150 Evolution
AmoebaNet-B [32] 74.0 91.5 5.3 3150 Evolution
AmoebaNet [32] 75.7 92.4 6.4 3150 Evolution
PNAS [23] 74.2 91.9 5.1 225 SMBO
MnasNet [39] 74.8 92.0 4.4 - RL
DARTS [25] 73.1 91.0 4.9 1.6 Gradient
SNAS [44] 72.7 90.8 4.3 1.5 Gradient
GDAS [10] 74.0 91.5 5.3 0.21 Gradient
LFR-DARTS (Ours) 74.5 91.7 4.9 0.45 Gradient

Table 4 Comparison with the state-of-the-art image classification methods on ImageNet.

Pruning steps
Cell I Cell II Cell III Cell IV Cell V

(s/M) (s/M) (s/M) (s/M) (s/M)

1 196/10094 181/8676 139/8676 123/8676 95/8676
2 179/9512 163/8310 131/8676 112/8676 92/8676

3 169/9512 156/8310 123/8676 104/8676 87/8676

Table 5 The search time/space costs for the cell in different iterations.

epochs=300, and then we monitor the time changes of

once propagation. The results are displayed in Fig. 5.

The propagation time in our method descends step by

step in Fig. 5(a) as the search network constantly drops

weak operations. But DARTS needs to conduct a bilevel

optimization of architecture parameters and network

weights simultaneously. We measure the propagation

time and illustrate it in Fig. 5(b). As can be seen, our

method still keeps a faster search process than DARTS

even in the initial phase. The search process gets ac-

celerated gradually in the later phases, which is also

suitable for searching deeper networks.

4.3.2 Effectiveness of entropy constraint

In this section, we experimentally verify the effective-

ness of the entropy constraint mentioned in Sec. 3.3.

The entropy constraint is a part of the loss function

Eq. 9. The minimum entropy over candidate operations

makes the distribution of operations’ importance score

tend to a single or few peaks. This distribution makes

it easier to filter out optimal operations since the con-

straint highlights the most important operation. In fact,

the parameter � is closely related to the distribution of

the importance score, so an appropriate scaling factor

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10 Jie Hao, William Zhu*

LFR-DARTS

(a)

LFR-DARTS

(b)

LFR-DARTS

(c)

Fig. 3 Loss learning curves of neural networks on three datasets ((a): CIFAR10, (b): FahsionMNIST, (c): ImageNet).

LFR-DARTS

(a)

LFR-DARTS

(b)

LFR-DARTS

(c)

Fig. 4 Training and testing error rate of neural networks on three datasets ((a): CIFAR10, (b): FahsionMNIST, (c): ImageNet).

(a) LFR-DARTS (b) DARTS

Fig. 5 The efficiency comparison of once forward and backward propagation during the search process.

is a key. We conduct experiments to compare the ef-

fects of different values of � on the results. During a

search stage, we randomly chose one set of operations
(containing 8 operations) in a searching cell and ob-
serve its differences of importance scores under differ-

ent � settings. The result is displayed as Fig. 6, where

� = 0.0 means no entropy constraint in the experiment.

The four sub-figures show the distributes of importance

score at four different training epochs. The distributes

vary as the training, and various � has different impacts
on the results. In the initial phase of the training 6(a),

the importance is a random distribution. After a pe-
riod of training 6(d), the high scores are concentrated
on few operations. From the extensive experiments, we

find that the importance score converges better under

the condition of � = 0.005 than other settings. Too

large or small values of � could lead to unsatisfactory

convergence results. As we can see, it gets worse while

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Layered feature representation for differentiable architecture search 11

candidate operation

(a) Training epoch=1

candidate operation

(b) Training epoch=5

candidate operation

(c) Training epoch=10

candidate operation

(d) Training epoch=20

Fig. 6 The distribution of importance scores varies as training time under different λ.

� ≥ 0.05. So an appropriate entropy constraint w.r.t.

candidate operations can make a positive contribution

to the process of architecture search.

5 Discussion

From the visualized results of the discovered cells in

Fig 2, we get some interesting observations consistent
with common sense are that shallow network layers pre-
fer to select small separable convolutional kernel (as

Fig. 2(a)) and deeper layers prefer large dilated separa-

ble convolutional kernel (as Fig. 2(c)). Therefore, these

discovered cells show striking depth-adaptive charac-

teristic. That is small-size convolutional kernels in the

shallow layers do well in extracting the fine-grained fea-

ture information of data. The large-size convolutional

kernels in the deeper layers are conducive to process-

ing the fused features. Sufficient layered information

can provide more reliable basis for making decisions.

However, the network architectures stacked repeatedly

in DARTS cannot meet the requirement of feature ex-

traction. LFR-DARTS takes this problem into consid-

eration, thus improves the performance of differentiable
approaches. Our method also provides a valuable refer-

ence for developing more elaborate and useful architec-

ture cells.

In addition, our search process is divided into mul-
tiple stages and performed iteratively. Each cell archi-

tecture is searched based on the obtained cells and the

current network depth. Although, these cells are not the

global optima, their combination provides an approx-

imately optimal solution for the architecture search.

The greedy search scheme is currently adopted by most

differentiable search methods. Thus, there are lots of

promising improvements in this greedy search scheme.

Our work has shown many advantages in designing

network architectures for image tasks. It is also worth

applying our method to other fields, such as object de-

tection, natural language processing etc. We will fur-

ther explore the differentiable approaches of architec-

ture search to solve the problems of model automated

design in other fields.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

12 Jie Hao, William Zhu*

6 Conclusion

In this paper, we propose a novel differentiable NAS al-
gorithm called Layered Feature Representation for Dif-

ferentiable Architecture Search (LFR-DARTS) to solve

the existing problem of insufficient layered feature rep-

resentation. In this way, LFR-DARTS improves the per-

formance and generalization of discovered network ar-

chitectures compared to other differentiable NAS algo-

rithms. Specifically, we develop a layered and dynamic
architecture search scheme to discovered multiple op-
timal cells from shallow to deep layer and gradually

prunes out the weak operations from the search net-

work. Besides, to effectively learn the importance of
candidate operations and highlight the optimal ones

during search process, we design a new functional layer
Normalization-Affine and introduce an entropy con-

straint for the operations. The extensive experiments

on the image classification tasks demonstrate our algo-

rithm can achieve better performance while requiring

low computational costs.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (61772120).

Compliance with ethical standards

Funding: This study was funded by National Natural
Science Foundation of China (grant number 61772120).

Conflict of Interest: The authors declare that they have

no conflict of interest.

Ethical approval: This article does not contain any

studies with human participants or animals performed

by any of the authors.

Authorship contributions

All authors contributed to the study conception and

design. The experiment design and implementation are

done by Jie Hao. The first draft of the manuscript was

written by Jie Hao and all authors commented on pre-

vious versions of the manuscript. All authors read and

approved the final manuscript.

References

1. Bowen Baker, Otkrist Gupta, Nikhil Naik, and
Ramesh Raskar. Designing neural network architec-

tures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

2. Irwan Bello, Barret Zoph, Vijay Vasudevan, and
Quoc V Le. Neural optimizer search with rein-
forcement learning. arXiv preprint arXiv:1709.07417,
2017.

3. Bobadilla, Jesús and Lara-Cabrera, Raúl and
González-Prieto, Ángel and Ortega, Fernando.
DeepFair: Deep Learning for Improving Fairness in
Recommender Systems. International Journal of
Interactive Multimedia & Artificial Intelligence, 6(6),
86–94, 2021.

4. Max Bramer. Principles of data mining, volume 180.
Springer, 2007.

5. Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and
Jun Wang. Efficient architecture search by network
transformation. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

6. Zhiling Cai, Xiaofei Yang, Tianyi Huang, and William
Zhu. A new similarity combining reconstruction coef-
ficient with pairwise distance for agglomerative clus-
tering. Information Sciences, 508:173–182, 2020.

7. Zhiling Cai and William Zhu. Multi-label feature se-
lection via feature manifold learning and sparsity regu-
larization. International Journal of Machine Learning
and Cybernetics, 9(8):1321–1334, 2018.

8. Chu X, Zhou T, Zhang B, et al. Fair darts: Elimi-
nating unfair advantages in differentiable architecture
search. In European conference on computer vision,
pages 465–480, 2020.

9. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

10. Xuanyi Dong and Yi Yang. Searching for a robust neu-
ral architecture in four gpu hours. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1761–1770, 2019.

11. Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

12. Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–
6649. IEEE, 2013.

13. Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and
Lofti A Zadeh. Feature extraction: foundations and
applications, volume 207. Springer, 2008.

14. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 770–778, 2016.

15. Heydarpour, F and Abbasi, E and Ebadi, MJ and
Karbassi, Seyed-Mehdi. Solving an Optimal Control
Problem of Cancer Treatment by Artificial Neural Net-
works. In International Journal of Interactive Multi-
media & Artificial Intelligence, 6(4), 2016.

16. Geoffrey Hinton, Li Deng, Dong Yu, George Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Brian
Kingsbury, et al. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal process-
ing magazine, 29, 2012.

17. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Layered feature representation for differentiable architecture search 13

Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

18. Jie Hu, Li Shen, and Gang Sun. Squeeze-and-
excitation networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 7132–7141, 2018.

19. Gao Huang, Zhuang Liu, Laurens Van Der Maaten,
and Kilian Q Weinberger. Densely connected convo-
lutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 4700–4708, 2017.

20. Sergey Ioffe and Christian Szegedy. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

21. Jie Hao, William Zhu. Saliency: a new selection crite-
rion of important architectures in neural architecture
search. In Neural Computing and Applications, 1–15,
2021.

22. Liang H, Zhang S, Sun J, et al. Darts+: Improved
differentiable architecture search with early stopping.
In arXiv preprint arXiv:1909.06035, 2019.

23. Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neu-
ral architecture search. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 19–
34, 2018.

24. Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisan-
tha Fernando, and Koray Kavukcuoglu. Hierarchical
representations for efficient architecture search. arXiv
preprint arXiv:1711.00436, 2017.

25. Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

26. Mohammad Lotfollahi, Mahdi Jafari Siavoshani,
Ramin Shirali Hossein Zade, and Mohammdsadegh
Saberian. Deep packet: A novel approach for encrypted
traffic classification using deep learning. Soft Comput-
ing, 24(3):1999–2012, 2020.

27. Benteng Ma, Xiang Li, Yong Xia, and Yanning Zhang.
Autonomous deep learning: A genetic dcnn designer
for image classification. Neurocomputing, 379:152–161,
2020.

28. Mark Nixon and Alberto Aguado. Feature extraction
and image processing for computer vision. Academic
press, 2019.

29. Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. 2017.

30. Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le,
and Jeff Dean. Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268,
2018.

31. Vadlamani Ravi and H-J Zimmermann. A neural net-
work and fuzzy rule base hybrid for pattern classifica-
tion. Soft Computing, 5(2):152–159, 2001.

32. Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. Regularized evolution for image classi-
fier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
4780–4789, 2019.

33. Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. Large-scale evolution of image

classifiers. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
2902–2911. JMLR. org, 2017.

34. Sunil Saumya, Jyoti Prakash Singh, and Yogesh K
Dwivedi. Predicting the helpfulness score of online re-
views using convolutional neural network. Soft Com-
puting, pages 1–17, 2019.

35. Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

36. Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

37. Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112, 2014.

38. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. pages 1–9, 2015.

39. Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Va-
sudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2820–2828, 2019.

40. Verma, K. K., and Singh, B. M. Deep Multi-Model
Fusion for Human Activity Recognition Using Evolu-
tionary Algorithms. In International Journal Of Inter-
active Multimedia And Artificial Intelligence, In press,
1–15, 2021.

41. Hanzhang Wang, Hanli Wang, and Kaisheng Xu. Evo-
lutionary recurrent neural network for image caption-
ing. Neurocomputing, 2020.

42. Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

43. Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
Snas: stochastic neural architecture search. arXiv
preprint arXiv:1812.09926, 2018.

44. Liu C, Zoph B, Neumann M, et al. Progressive neu-
ral architecture search. Proceedings of the European
conference on computer vision (ECCV), 19–34, 2018.

45. Matthew D Zeiler and Rob Fergus. Visualizing and un-
derstanding convolutional networks. In European con-
ference on computer vision, pages 818–833. Springer,
2014.

46. Zela, Arber and Elsken, Thomas and Saikia, Tonmoy
and Marrakchi, Yassine and Brox, Thomas and Hutter,
Frank. Understanding and robustifying differentiable
architecture search. In International Conference on
Learning Representations, 2020.

47. Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 6848–6856, 2018.

48. William Zhu. Relationship between generalized rough
sets based on binary relation and covering. Informa-
tion Sciences, 179(3):210–225, 2009.

49. Barret Zoph and Quoc V Le. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

14 Jie Hao, William Zhu*

50. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 8697–8710, 2018.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Front Page

Jie Hao and William Zhu*

University of Electronic Science and Technology of China

No.4, Sec. 2, Jianshe Beilu, Chengdu, China

* The corresponding author: wfzhu@uestc.edu.cn, +086+15928727490

William Zhu’s ORCID: 0000-0001-8898-9244

