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Abstract
The rapid development of mobile Internet has spawned various mobile applications (apps). A large number of apps make
it difficult for users to choose apps conveniently, causing the app overload problem. As the most effective tool to solve the
problem of app overload, app recommendation has attracted extensive attention of researchers. Traditional recommendation
methods usually use historical usage data to explore users’ preferences and then make recommendations. Although traditional
methods have achieved certain success, the performance of app recommendation still needs to be improved due to the
following two reasons. On the one hand, it is difficult to construct recommendation models when facing with the sparse
user–app interaction data. On the other hand, contextual information has a large impact on users’ preferences, which is
often overlooked by traditional methods. To overcome the aforementioned problems, we proposed a context-aware feature
deep interaction learning (CFDIL) method to explore users’ preferences and then perform app recommendation by learning
potential user–app relationships in different contexts. The novelty of CFDIL is as follows: (1) CFDIL incorporates contextual
features into users’ preferences modeling by constructing novel user and app feature portraits. (2) The problem of data sparsity
is effectively solved by the use of dense user and app feature portraits, as well as the tensor operations for label sets. (3)
CFDIL trains a new deep network structure, which can make accurate app recommendation using the contextual information
and attribute information of users and apps. We applied CFDIL on three real datasets and conducted extensive experiments,
which shows that CFDIL outperforms the benchmark methods.
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1 Introduction

With the vigorous development of the mobile Internet, the
number of mobile applications (app) has increased dra-
matically, which provides great convenience to people’s
production and life. According to statistics,1 as of 2020, there
are more than 3.3 million and 2.1 million apps published on
Google Play and App store, respectively. Facing the huge
amount of apps, users often unable to accurately find the
app that really meets their needs, i.e., users cannot solve the
overload of apps. Therefore, it is of great significance to help
users to personalize and accurately select apps that meet their
needs.

As the most effective tool to solve the overload problem,
recommender systems are widely used in newsmedia, online
shopping and social networking sites. Traditional recommen-

1 https://www.statista.com/statistics/276623/number-of-apps-
available-in-leading-app-stores/.
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dation method leverages users’ historical usage information
to explore their preferences, and then make recommenda-
tions. The current mainstream method not only uses the
historical user’s feedback on apps, such as user’s rating,
comment, frequency of use, but also introduces the addi-
tional information of users or apps, such as the users’ own
attributes, apps’ version information, category information.
As a result, the recommendation performance can be further
improved by building recommendation model based on the
above information.

In recent years, deep neural network techniques have
achieved great success in computer vision and natural lan-
guage processing. Many researchers attempt to capture the
relationships between users and items using deep neural
networks to improve the performance of recommendation
model. Even though progress has been gained, most deep
recommendation models mine users’ preferences through
user-item interactions. The effects of spatiotemporal infor-
mation on users’ preferences have not been considered, i.e.,
research on the space-time laws of users and apps is not
enough.

In conclusion, the existing recommendationmethods have
two problems as follows: (1) context information has much
influence on users’ selections to apps. However, existing
methods considered only additional information about users
and apps, not context information. (2) In the real world, user–
app interaction data are very sparse. It is difficult to build
recommendation model using spare data. In order to address
these challenges, we proposed a context-aware feature deep
interaction learning for app recommendation, called CFDIL.

CFDIL constructs feature portraits of users and apps,
respectively, using context information and attribute infor-
mation of users or apps. These feature portraits can describe
exactly attributes and interactive features of users or apps,
which is helpful for mining users’ preferences in spe-
cific contexts. By introducing convolutional neural network
and factorization machine to extract in-depth features of
users and apps, CFDIL constructs deep learning frame-
work based on these feature portraits to explore potential
interactive features of users and apps in special contexts.
Moreover, feature portraits enrich characterization data of
users and apps, meanwhile, CFDIL processes sparse label
set using tensor decomposition, which can effectively avoid
the adverse effects on our model of sparse data to improve
the performance of the recommendation method. The main
contributions of this paper are as follows.

1. CFDIL proposes a method to construct contextual fea-
tures of users and apps, and integrates the contextual
features with the features of users or apps to form a fea-
ture portrait, respectively. Feature portraits can accurately
describe the characteristics of users, apps and user–app
interactions. Incorporating contextual information in fea-

ture portrait provides powerful information support for
mining users’ preferences of using apps in specific con-
texts.

2. CFDIL trains a novel deep network framework for feature
portraits. By introducing convolutional neural networks
(CNN) and factorization machine (FM), CFDIL effec-
tively extracts the deep features of users and apps to
explore the potential interactions in specific contextual
conditions, which can provide more accurate recommen-
dations for users.

3. The feature portraits of users and apps effectively enrich
the representation data of users and apps, and make the
model input denser. At the same time, CFDIL uses tensor
factorization technique to process the label set for model
back-propagation and weight updates. The use of dense
feature portrait and label effectively avoid the adverse
effects of sparse data on model learning.

4. We deployed CFDIL on three real datasets and imple-
mented a large number of experiments. The experimental
results show that CFDIL achieves state-of-the-art perfor-
mance.

2 Related works

In this section, we introduce the related work of this paper.
First, we introduce the classification of traditional app
recommendation methods and then introduce the app rec-
ommendation methods based on deep learning.

2.1 The traditional app recommendationmethods

The traditional app recommendationmethodsmainly include
the following categories.

– Collaborative filtering-based recommendation method
(CF-based method).
CF-based method is a similarity-oriented recommenda-
tion method. This method is based on the assumption
that a target user has similar preferences with users who
have similar historical item experiences. Therefore, the
most important part in CF-based method is to calculate
the similarity between users or apps. The basic similar-
ity construction method in CF-based method is based on
user–app interaction matrix to calculate the similarity of
users or apps. For instance, Kim et al. (2013) identify
the most similar social members of target users based on
semantic relations between apps, and then make app rec-
ommendations. Yankov et al. (2013) identify and analyze
the relationship between apps in the apps ecosystem. Xia
et al. (2014) leverage the app description text to calculate
the similarity between apps, and then make app recom-
mendations. Similar to Xia et al. (2014), Hao et al. (2016)
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also use the description of app to calculate the similarity
between apps. Liu and Wu (2016) leverage users’ log of
using apps to design a latent factor-based collaborative
filter method. Hu et al. (2018) leverage the idea of user-
based collaborative filtering to make recommendations.
CF-based recommendationmethod has beenwidely used
in many fields, including app recommendation, because
of its simple logic and easy implementation. However,
in the real world, user–app interaction matrix unable to
reflect users’ preferences due to it is extremely spare,
which leads to poor performance. Aiming at the problem
of data sparsity in app recommendation, themodel-based
app recommendation method is proposed.

– Model-based app recommendation method.
The representative method among model-based recom-
mendationmethods ismatrix factorization-basedmethod
(MF-based method). The basic idea of this method is as
follows. First, MF-based method constructs an original
user–app interaction matrix. The elements in the orig-
inal matrix are the feedback information of a specific
user for a specific app, such as rating, usage frequency.
The matrix is a sparse matrix, which is similar with the
user–app matrix in CF-based method. Then, the sparse
user–app original matrix is processed into a non-empty
matrix bymatrix factorization technique. The non-empty
elements in this matrix are considered to be a user’s
preference for an app. For example, Liu et al. (2013)
give the introduction about MF-based app recommenda-
tion. Lin et al. (2014) leverage the probabilistic matrix
factorization to explore users’ preferences. Zhu et al.
(2014a) leverage latent dirichlet allocation (LDA) model
to map the interaction contextual information between
users and apps into low-dimensional space and then
make recommendation. This method is the same as MF-
based recommendation. Yao et al. (2017) construct a
user–app version rating matrix, and use matrix factor-
ization method to explore users’ preferences. Although
MF-based method can resist the adverse effects of data
sparsity on recommendation, the loworder vectors gener-
ated in the processing of matrix factorization has no clear
physical meaning, which leads to poor interpretability.
This also leads to the lack of personalization inMF-based
method. At the same time, due to the fact that apps are
easy to developed, andnewapps are constantly generated,
and usually need to be added to the user–app interaction
matrix for retraining, which also leads to the lack of scal-
ability of MF-based method.

– The additional information-based recommendation
method.
There is lots of additional information in interaction
between users and apps. For example, the contextual
information of users using the app (Zhu et al. 2014a, b;
Pu et al. 2018; Wang et al. 2016), user comments on apps

(Zheng et al. 2014; Fu et al. 2013), app version informa-
tion (Yao et al. 2017), app permission information (Liu
et al. 2015), app description information (Chen et al.
2015), etc. The rich additional information can effec-
tively supplement the user–app interaction matrix, so as
to improve the performance of app recommendation.

2.2 Deep learning-based recommendationmethod

In recent years, deep learning technique has achieved great
success in image recognition, natural language processing,
speech recognition and other fields because of its excellent
nonlinear expression ability, which can automatically learn
the potential relationships in features. Deep learning tech-
nique emphasizes learning from massive data, which solves
the problem that traditional machine learning algorithms are
difficult to deal with high-dimensional, heterogeneous and
noisy data.

At the same time, researchers also explore the applica-
tion of deep learning technique in recommender system. For
example, due to deep learning technique has powerful abil-
ity to mine the potential interaction features, Cheng et al.
(2016), Guo et al. (2017), Shan et al. (2016) based on the
idea of features interaction to explore the combination of
different features between users and items, in order to mine
users’ preferences. The difference of these methods is that
Cheng et al. (2016) explore the influence of the depth and
width combination between users and apps on target users’
choice. Guo et al. (2017) use the factorization machine to
mine the low-level interaction information between users
and app features, and use DNN to mine the deep interaction
information between features, so as to achieve the purpose
of users’ preference mining. Unlike the above two methods,
Shan et al. (2016) directly embed the features of users and
apps, MLP network to reduce a lot of artificial feature engi-
neering.

Harada et al. (2019) propose CNCF to recommend game
apps for users, which leverages contextual information to
enhance the recommendation performance. Kim et al. (2016)
leverage CNNmodel to extract users’ preferences from their
comments on items. Xu et al. (2019) incorporate contex-
tual information into deep learning model to explore users’
preferences. Bobadilla et al. (2020) proposed a deep neural
architecture based on classification.Notably, its collaborative
filtering method can be generalized to most of the existing
recommender systems. Liang et al. (2020) explore the fea-
tures of user–app interactions which models the interactions
of features from different views through the attention mech-
anism.
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3 Preliminaries

In this section, we give the general definition of the problem
to be studied in this paper at first, and then give themotivation
of CFDIL.

3.1 Problem definition

The goal of app recommendation is to recommend apps for
target users, which meet their preferences under a specific
contextual condition. Without loss of generality, for a given
user set U and an app set A, our task is to make an app
recommendation list Ru for u, u ∈ U , where Ru = {a|u, a ∈
A, u ∈ U }. The a in the recommendation list Ru conforms
the preferences of user u.

The recommendation is based on the probability of the
target user’s preference for an app under a specific context.
Therefore, to recommend apps for users, we first need to cal-
culate the probability of the preferences of all apps in A for
the target user u under specific context conditions, and then
select the top-k apps with the highest preference probability
for recommendation. In this process, the prediction of the
target users’ preferences probability for a given app is par-
ticularly critical, which directly determines the accuracy of
the recommendation.

Next, we give the motivation of the proposed CFDIL.

3.2 Motivation

Most of the existing app recommendation methods use user–
app interaction vectors to explore user’s preferences, and
then make recommendations. By combing real datasets, we
found that user–app interactions show highly aggregated
characteristics in spatiotemporal dimensions. However, the
existing recommendation methods often ignore this point, so
we hope to integrate the spatiotemporal information into fea-
ture matrix to improve the accuracy of recommendation. In
this paper, we refer to the combination of time and location
information as contextual information.

We visualize the spatial characteristics of user–app inter-
actions at a given time slot in the form of a heat map. We
leverage a scatter chart to show the temporal characteristics
of user–app interactions. Figure 1 (a) shows the heat map of
the number of times a user used apps in a certain time slot
and (b) shows the heat map of the number of times an app
was used in a certain time slot. Figure 2 (a) shows the number
of times a user used apps in different time periods and (b)
shows the number of times an app was used in different time
slots. It is easy to find that the temporal and spatial interac-
tion between users and apps are always aggregative, which
indicates that contextual information has strong relevance to
users and apps.

Fig. 1 Left: a A user’s historical location when using apps, from 13:00
p.m. to 15:00 p.m. Right: b the historical usage location of an app, from
8:00 a.m. to 10:00 a.m

Fig. 2 Left: a The number of times a user used apps in different time
slots. Right: b the number of times an app was used in different time
slots

We present several examples to explain context informa-
tion. For a user, his/her daily life is regular in the long term, no
matter he/she is a worker, retiree or teenager. Such regularity
can be reflected by context of users using apps. For exam-
ple, a worker often signs in an app at the workplace and uses
food-ordering apps at lunchtime; a retiree often reads news
using an app after breakfast. For an app, it always appears
in a context accord with its function, i.e., apps also have
their regularities. For example, food-ordering apps are often
used at lunchtime, and Metro apps are often used in subway
stations. Therefore, we construct their feature portraits for
users and apps to show their temporal and spatial regulari-
ties. We believe that introducing context information to our
model will be helpful to improve the accuracy of preference
prediction.

The existing app recommendation methods are based
on user–app interaction vector for preference modeling. It
should be noted that the user–app interaction information
in the real world is extremely sparse, and the recommenda-
tion model is difficult to effectively explore user preferences
by using sparse data. Inspired by the above discussion, the
incorporation of contextual information can enrich and sup-
plement the feature matrices of users and apps to alleviate
the problem of data sparseness. Based on the aforemen-
tioned consideration, we proposed a context-aware feature
deep interaction learning (CFDIL) method to improve the
app recommendation performance.
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Table 1 The descriptions of
symbols used in this paper

Symbols Descriptions

U The set of users

A The set of mobile applications

T The set of time slots

u A target user, u ∈ U

a An target app, a ∈ A

t A time slots, t ∈ T

Pu
t The feature portrait of u in t

Pa
t The feature portrait of a in t

Labu,a,t Number of times user u interacts with app a in time slot t

Fu
t The fields set of Pu

t

Fa
t The fields set of Pa

t

Ru The app recommendation list for user u

Fig. 3 The overall framework of CFDIL. CFDIL consists of four
main parts: information extraction and integration, label processing,
multi-order interaction learning of feature portraits, making app rec-
ommendation

3.3 Symbols

To facilitate the clear presentation of this paper, we give the
notations and descriptions of the symbols used in CFDIL, as
shown in Table 1.

4 Proposed work

4.1 Framework

In this section, we first introduce the framework of CFDIL
and then introduce each module of CFDIL in detail.

The overall flow of CFDIL is shown in Fig. 3, which con-
sists of four main parts.

1. Information extraction and integration. In this part,
CFDIL first extracts and constructs the feature portraits
of users and apps, which both contain two parts: (1) the
own attribute information of users and apps and (2) the
contextual information of users and apps (spatial charac-
teristic in a certain time slot).

2. Label processing. CFDIL constructs a three-dimensional
tensor with user, app and time as coordinates. The
elements in the tensor are the number of interactions
between users and apps in a certain time slot. To fur-
ther explore users’ preference for untouched apps and
to solve the problem of label data sparsity, this section
performs tensor factorization on labels.

3. Multi-order interaction learning of feature portraits.
CFDIL constructs new networks by Factorization
machine (FM) and convolutional neural network (CNN)
to learn multi-order and deep potential interaction fea-
tures of users and apps.Multi-order learning is performed
on user and app feature portraits to effectively explore
users’ preferences.

4. Making app recommendation. Based on the trained
model, CFDIL can accurately predict target users’ pref-
erences in specific contexts and complete app recommen-
dations.

Next, we will describe the key technologies used in each
stage in detail.

4.2 Information extraction and integration

This part is to construct users and apps feature portraits,
and mainly contains two sub-steps, information extraction
and information integration. Figure 4 shows the overall con-
struction process of app portraits and user portraits. Next, we
describe these two steps in detail, respectively.

4.2.1 Information extraction

We mainly extract two kinds of information from users and
apps, attribute information and contextual information. The
detailed extraction method is as follows.
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Fig. 4 Details about information extraction and integration

1. According to Chen et al. (2015), the attribute information
of users and apps has great impact on users’ preferences.
Therefore, we select users’ attribute information, such as
gender, age and device model, and apps’ attribute infor-
mation, such as category, and developer, a total of five
kinds of attribute information.

In order to facilitate the training of the subsequent model,
we represent the attribute information of users and apps
with the same dimension and length vector. In this paper,
we map the attribute information of users (Table 3) or
apps (Table 4 ) into an attribute vectorV A,V A ∈ R

200×1,
respectively.

2. We also extract the contextual information of users and
apps, in addition to their own attribute information.

The contextual information mainly refers to time and
location information, which can be found in Table 5. We

use the following steps to extract contextual information
of users and apps.

– We first split the day into 7 time periods T = {00 :
00 − 06 : 00, 06 : 00 − 09 : 00, 09 : 00 − 11 :
00, 11 : 00 − 13 : 00, 13 : 00 − 17 : 00, 17 :
00 − 19 : 00, 19 : 00 − 24 : 00}. We split
the geographic region which contains of all inter-
action between users and apps into a matrix VC ,
VC ∈ R

200×199 according to longitude and latitude,
i.e., we map this geographic region into a matrix
which contains 200 × 199 geographic cells.

– For each app and user in a certain time slot, we
construct app contextual matrix and user contextual
matrix, respectively. For an app, we count the his-
torical number of times the app has been used by all
users, and fill the value into the corresponding cell in
VC . For a user, we use the same method to construct
the user contextual matrix. The difference is that the
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elements in user contextual matrix are the historical
number of times the user used apps.

4.2.2 Information integration

For each app and user in each time slot, we integrate the
attribute information and contextual information of users and
apps, respectively, to construct the portrait of apps and users.
For an app a, we connect the app’s contextual matrix VC
with its attribute vector V A to form an app feature portrait
Pa
t , P

a
t ∈ R

200×200, t ∈ T , a ∈ A, as shown in Fig. 4.
Similarly, for a user u, we use user’s contextual matrix VC
and user’s attribute vector V A of u to construct the user’s
feature portrait Pu

t , P
u
t ∈ R

200×200, t ∈ T , u ∈ U .

4.3 Label preprocessing

The data used to train app recommendation model are {Pu
t ,

Pa
t , Labu,a,t }, t ∈ T , u ∈ U , a ∈ A, where Pu

t is the feature
portrait of user u in t , Pa

t is the feature portrait of app a in
time slot t , and Labu,a,t is the historical interaction number
between user u and app a in t . Generally speaking, Labu,a,t

is used as a label for model training. However, there are two
problems for Labu,a,t applied to train app recommendation
model:

1. Labu,a,t only represents the selection result of user u in
a given context, and cannot equivalently represent user’s
preference. For example, Labu,a,t = 0 means that u did
not use a during t , but this does not mean that u does not
like a. Because user u may not be aware of the existence
of app a.

2. For a large number of apps, people will only use a few
apps. The vast majority of Labu,a,t is 0, i.e., the label
data are extremely sparse. The sparse label data make
the recommendation model unable to fully perceive the
positive feedback label data, which leads to the weak
generalization ability of the model recommendation.

To solve the above two problems, we leverage tensor fac-
torization technique to process Labu,a,t . The detailedmethod
is as follows:

1. We construct a tensor L A with user, app and time slot as
coordinates. The elements in L A is Labu,a,t , which is the
historical number of times user u interacts with app a in
time slot t .

2. We use the same method as Zhu et al. (2021) to decom-
pose L A. The principle of the decomposition process is
shown in Fig. 5. After decomposition, we get a new ten-
sor L A∗ with the same size as the original tensor L A.
The difference is that the data in L A∗ is non-sparse.

3. We use the elements of tensor L A∗ to update the value
of Labu,a,t , and then use the updated value of Labu,a,t to
represent u’s preference label for a in t .

4.4 Multi-order interaction learning of feature
portraits

CFDIL constructs user’s portraits Pu
t and app’s portraits Pa

t ,
and processes the sparse label data Labu,a,t . In this part, we
will describe howCFDIL uses Pu

t , P
a
t and Labu,a,t formulti-

order interactive learning in detail. CFDIL mainly contained
two parts, FM part and CNN part. The overall framework
of CFDIL is shown in Fig. 6. Next, we will describe how
CFDIL performs multi-order interactive learning in detail.

4.4.1 FMmodel

CFDIL uses FM to learn low-order features interaction
between users and apps, as shown in the FM part in Fig.
6.

The input data of FM are a two-tuple which formally
expressed as {Fu

t ∪ Fa
t ,Labu,a,t }, where Fu

t and Fa
t are the

field sets of Pu
t and Pa

t . F
u
t ={ f ut,n, n ∈ N }, N is the number

of attribute of Pu
t . F

a
t ={ f at,m,m ∈ M}, M is the number

of attribute of Pa
t . In this paper, N is 4, Fu

t is {gender,
age, device model, user contextual matrix}; M is 3, Fa

t is
{category, developer, app contextual matrix}. Labu,a,t is the
label of Fu

t ∪ Fa
t , which is obtained in Sect. 4.3.

We use an objective function to learn the low-order inter-
action features of users and apps, which is expressed as Eq.
1:

ŷ f = ω0 +
M+N
∑

i=1

ωi xi +
M+N
∑

i=1

M+N
∑

j=i+1

< Vi , Vj > xi x j (1)

where xi and x j are the fields of apps and users portraits,
xi , x j ∈ {Fu

t ∪ Fa
t }; ω0, ωi , Vi , Vj are model parameters, ω0

is the global bias, ωi is the weight of the i th variable, Vi and
Vj are the implicit matrix of parameters. ω0 + ∑M+N

i=1 ωi xi
describes the first-order features of the sample in the form

Fig. 5 Tensor decomposition of L A
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Fig. 6 Details about multi-order interaction learning of feature portraits. CFDIL uses FM to learn low-order interaction features between users and
apps, and uses CNN to learn the higher-order interaction features between users and apps

of linear regression, and
∑M+N

i=1
∑M+N

j=i+1 < Vi , Vj > xi x j
describes its second-order combinatorial features, which are
used to learn the interaction features between users and apps
in different contexts. Since the FMalgorithm uses all univari-
ate and two-by-two feature interactions, it can effectively
learn the low-order features interaction between users and
apps. In Eq. 1, < ·, · > denotes the dot product of two vec-
tors of dimension k, which is expressed as Eq. 2

< Vi , Vj > : =
k

∑

f =1

vi, f ·v j, f (2)

< Vi , Vj > is the cross-weights of features xi and x j . vi, f
and v j, f are the elements in Vi and Vj , respectively. k is the
dimension of the implicit parameter. In order to reduce the
time complexity of the model, the quadratic term of FM can
be simplified according to Eq. 3.

M+N
∑

i=1

M+N
∑

j=i+1

< Vi , Vj > xi x j

= 1

2

M+N
∑

i=1

M+N
∑

j=1

< Vi , Vj > xi x j − 1

2

M+N
∑

i

< Vi , Vj > xi x j

= 1

2

⎛

⎝

M+N
∑

i=1

M+N
∑

j=1

k
∑

f =1

vi, f · v j, f xi x j −
M+N
∑

i=1

k
∑

f =1

vi, f · vi, f xi xi

⎞

⎠

= 1

2

k
∑

f =1

⎛

⎝

(

M+N
∑

i=1

vi, f xi

)

⎛

⎝

M+N
∑

j=1

v j, f x j

⎞

⎠ −
M+N
∑

i=1

v2i, f v
2
i

⎞

⎠

= 1

2

k
∑

f =1

⎛

⎝

(

M+N
∑

i=1

vi, f xi

)2

−
M+N
∑

i=1

v2i, f v
2
i

⎞

⎠ (3)

In Eq. 3,
∑M+N

i=1 v2i, f v
2
i is a constant value, so we only

need the nonzero terms of xi to train the objective function
of Eq. 3. Therefore, the time complexity of the objective
function of FM is O(k(M + N )), and FMmodel can quickly
extract the low-order interactive features.

We transform recommendation task into exploring the
probability of a target user’s preference for an app, i.e.,
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into a regression problem, so we select the loss function
loss(ŷ f , y f ) = (ŷ f − y f )

2.
In addition, we use stochastic gradient descent to train the

parameters, and the gradient formula of the parameters is
shown in Eq. 4.

∂ ŷ f (x)

∂θ
=

⎧

⎨

⎩

1, if θ is ω0

xi , if θ is ωi

xi
∑n

j=1 v j, f x j − vi, f x2i , if θ is vi, f

(4)

In summary, we choose FM to explore the low-order inter-
active features between users and apps, because FM has the
following advantages. (1)The complexity of FMmodel is lin-
ear, which can effectively train sparse user–app interaction
data. (2) The unique structure of FM makes the interactive
learning of low-order features between users and apps more
reasonable.

4.4.2 CNNmodel

CNN model is mainly used to learn the higher-order inter-
action features of user portraits Pu

t and app portraits Pu
t ,

as shown in the CNN part in Fig. 6. We choose CNN to
extract the high-order interactive feature between users and
apps, because CNN has the following three advantages. (1)
The data of Pu

t and Pa
t are in matrix format, which is the

same as the single-channel image data. CNN networks have
a great advantage in processing image format data. (2) CNN
can effectively explore deep features in image format data
by using convolutional operations. (3) CNN uses a shared
convolution kernel mechanism to reduce the complexity of
model training. As a result, CNN can efficiently process the
high-dimensional users and apps portrait data.

The input data of CNN are a two-tuple which formally
expressed as {Pu

t ‖ Pa
t ,Labu,a,t }, where Pu

t ‖ Pa
t indicates

that Pu
t and Pa

t in the same t-time slot are stitched up and
down. Labu,a,t is the label of Pu

t ‖ Pa
t , and the value of

Labu,a,t is equal to that described in Sect. 4.3.
The input layer ofCNN is the start of the interactive feature

learning of Pu
t and Pa

t . The weight is learned through the
hidden layer, and the nonlinear segmentation ability of the
network is enhanced with the help of the excitation function.
By learning parameters and information transfer layer by
layer, CNN can effectively learn the high-order interactive
features of Pu

t and Pa
t . The main structure of CNN used for

our experiments is:
Input layer − > convolutional layer − > activation layer

− > · · · − > pooling layer − > · · · − > fully connected
layer.

It should be noted that we performed an average pool-
ing operation near the middle convolutional layers, which
reduced features by half. The learning process of CNN is
shown in Eq. 5.

x (l+1) = ReLu (W (l)x (l) + b(l)) (5)

where l represents the lth layer of the neural network. x (l) is
the output of lth layer.W (l) and b(l) are themodel parameters
and deviations for lth layer. x (l+1) is the output of lth layer,
and also used as the input of l + 1th layer. In order to avoid
the inefficiency of error back-propagation and to avoid the
problem of gradient explosion, ReLu is used as the activation
function in our model.

Sincewe consider user–app recommendation problemas a
regression problem,we adopt themean square error (MSE) as
the loss function in the convolutionneural network, expressed
by Eq. 6.

MSE = 1

M

M
∑

i=1

(

y(i)
c , ŷ(i)

c

)2
(6)

4.5 App recommendation

CFDIL uses FM to explore the low-order interaction fea-
tures of users and apps from the feature fields of {Fu

t ∪
Fa
t ,Labu,a,t }, and uses CNN to explore the high-order inter-

action features of users and apps from {Pu
t ‖ Pa

t ,Labu,a,t }.
We weighted and summed the learning results of FM and
CNN according to Eq. 7 as the final probability result of
CFDIL.

ŷi = ε0 ŷ f + ε1 ŷc (7)

where ε0 and ε1 aremodel parameters, satisfying ε0+ε1 = 1.
In the subsequent experiments in this paper, setting the values
of ε0 and ε1 to 0.65 and 0.35, respectively, will get the best
recommendation performance.

After the CFDIL model training is completed, we follow
the steps below to recommend apps to users in specific con-
texts. (1) We construct a feature profile Pu

t for a target user
u in time slot t . (2) We construct feature portraits Pa

t of all
candidate apps in time slot t . (3) We input Pu

t and Pa
t into

the trained CFDIL network and then get the recommendation
probability of each app for user u. (4) We sort all candidate
apps according to the recommended probability. The top N
apps are selected based on the ranking to form the final rec-
ommendation list.

5 Experiments

In this section, we deploy CFDIL on a real-world dataset to
verify the recommendation performance of CFDIL. First, we
give the default experimental settings and then evaluate the
performance of CFDIL from different perspectives.
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5.1 Experiments settings

In this section, we first introduce the dataset of our exper-
iment, and then give the evaluation metrics. Finally, we
introduce the baseline methods for comparison.

5.1.1 Dataset

The experimental data are log files of users using apps in
real-world scenarios in three cities, Beijing, Shanghai and
Guangzhou. The datasets contain a total of 8198 users, 2671
apps, and 405,837 user–app usage log records. Each app is
used at least 10 times, and each user has at least 10 app usage
logs. Each user has an average of 49.5 logs. The detailed
information of the dataset is shown in Table 2. For exam-
ple, a user (User_id:2007, Gender: Male, Age: 23, Device:
XiaoMi) uses a game app (App_id:147, Category: Game,
Developer: Tencent) in a specific context (Time_stamp:
2018-07-15 20: 14, longitude: 113.287, latitude: 23.139).
All this information is contained in our dataset, as shown
in Tables 3, 4 and 5.

In our experiments, we split the experimental data into
training set, validation set and test set. The ratio of these three
parts is 7:2:1. The training set is used to train CFDIL. The
validation set is used to adjust the hyper-parameters of the
model, including the number of layers in the CFDIL’s neural
network, the size and number of convolution kernels. The
test set is used to verify the recommendation performance
and generalization ability of CFDIL. During the test, we take
apps used by users without using recommender systems as
standard, to evaluate the recommendation performance.

Table 2 The data structure of the dataset

Dataset Beijing Shanghai Guangzhou

User 2572 2721 2905

App 852 891 928

Record 99,815 138,568 167,454

Duration 168 Hours 168 Hours 168 Hours

Table 3 The user attribute information

User_id Gender Age Device

2007 Male 23 XiaoMi

2122 Female 29 OPPO

2345 Female 31 HuaWei

1098 Male 34 Apple

Table 4 The app attribute information

App_id Category Developer

147 Game Tencent

302 News Sina

457 Social Tencent

722 Shopping Alibaba

Table 5 The interaction between users and apps in different contexts

User_id App_id Time stamp Longitude Latitude

2007 147 2018-07-15 20:14 113.287 23.139

2147 722 2018-07-16 10:07 113.289 23.136

2141 318 2018-07-11 11:54 113.257 23.155

1922 097 2018-07-18 14:21 113.286 23.1299

5.1.2 Metric

We recommend an app list for target users and evaluate it
with two evaluation metrics: precision and recall. We recom-
mend a top-N recommendation list to users, and the length of
the recommendation list is N , so we choose Precisi-on@N
and Recall@N to measure the proposed method. However,
precision and recall are two related metrics, and when one
goes down, it causes the other to go up. In order to consider
the two metrics synthetically, we use the Fα −measure-@N
to measure the recommendation quality.

Precision@N and Recall@N are defined as follows:

Precision@N = T P

N
(8)

Recall@N = T P

M
(9)

where T P is the intersection between the recommendation
list and the ground truth, N is the length of the recommen-
dation list, and M is the length of the ground truth.

Fα−measure@N is defined as follows:

Fα−measure@N = (1 + α2)
Precision × R e c a l l

α2Precision + Recall
(10)

where precision and recall are the results in Eqs. 8 and 9,
respectively; α is used to balance recall and precision. Here,
we choose 1 as the value of α, which means that recall and
precision are equally important.

To get the best hyper-parameters of CFDIL, we use mean
absolute error (MAE) and root mean squared error (RMSE)
to adjust the model parameters. MAE and RMSE are two
indicators that are widely used to measure the accuracy of
recommender system. The detailed definitions of these two
indicators are as follows:
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RMSE =
√

∑T
i=1 (ŷi − yi )2

T
(11)

MAE =
∑T

i=1 |̂yi − yi |
T

(12)

where T in RMSE and MAE is the number of records in the
validation set. ŷi is the i th prediction value of the model, and
yi is the corresponding true value of the i th position.

5.1.3 Benchmark methods

We use the following methods to measure the performance
of CFDIL.

UCF (User-based Collaborative Filtering Method). UCF
is a collaborative filtering method oriented to user vector
similarity which is calculated based on users’ rating data.We
adaptUCF to our problemby the usage frequency of an app to
explore users’ preferences and generate the recommendation
list. We leverage frequency information to find users who are
similar to the target user and recommend apps that similar
users have used but the target user has not used, to target
users.

ICF (Item-based Collaborative Filtering method). ICF is
a collaborative filtering method oriented to app vector simi-
larity. We adapt ICF to our problem by using the following
methods. First, we carry out matrixing process on the dataset
according to the frequency of an app to form a user–app usage
matrix. Then, we extract the app vector from the matrix and
use the cosine similarity coefficient to build the app similar-
ity model. Finally, we leverage the app similarity model to
generate an app recommendation list for target users.

MF (Matrix Factorization). MF recommendation method
is a classic model-based method in the recommendation
domain.We input the user–app usagematrix bymatrix factor-
ization to obtain a non-empty matrix that contains the same
information as the original matrix.

TF (Tensor Factorization). The aim of the model is to
compute the factors for the userUn×d , item Ar×d and context
Cl×d matrices using historical usage data. TF method is also
an MF-based recommendation method.

Similar to the MF method, we use the frequency of an
app according to certain contextual information to denote
the app usage information of a target user and construct a
user–app-context tensor. Then, we use TF method to obtain
a recommendation list. Here, the elements in the tensor are
the app usage information at a certain time.

DNN (Deep Neural Networks). DNN model is a clas-
sic deep learning method. DNN model has strong nonlinear
expression ability, which can learn the complex potential
interactions between users and apps. We apply DNN to app
recommendation. First, the portrait information of users and
apps are used as the input of DNN. Then the interaction infor-

mation of a target user and a target app is used as the label of
model training. Finally, a DNN-based app recommendation
model is trained.

CNN (Convolutional Neural Networks). CNN is also a
classic deep learning method. We apply CNN model to app
recommendation. In order to train the app recommendation
model based on CNN, we take the portraits of users and apps
as the input of CNN model and take the interaction informa-
tion of users and apps in a specific contextual information as
the output of CNN model.

DeepFM. DeepFM model is a novel deep learning-based
recommendation model. The idea of this recommendation
model is feature cross recommendation, i.e., leveraging the
combination of different features of users and items to pre-
dict the recommendation probability. It combined by two
deep models. One part is FM (factorization machine), which
mainly learns the low-order features interaction between
users and items. Another is deep model, which learns the
high-order features interaction between users and items. We
apply DeepFM to app recommendation by inputting the fea-
ture informationof users and apps, and train aDeepFMmodel
by using the interaction information as output label.

5.2 Performance comparison

Figure 7 shows the precision, recall and F-measure val-
ues of recommendation results of CFDIL and benchmark
methods in 3 different city datasets and in different recom-
mendation list lengths. We can get the following conclusions
from the results.

1. The recommendation performance of ICF and UCF
is unacceptable. This is because the interaction data
between users and apps is sparse,which hinders the effec-
tive construction of users and apps vectors by these two
methods. Sparse vectors of users and apps lead to poor
performance. Besides, these twomethods do not consider
the impact of contextual information on users’ choice of
apps.

2. The recommendation performance of MF and TF is bet-
ter than UCF and ICF, but their recommendation results
are still poor. This is because MF and TF have relative
advantages in combating sparsity, which can help the
model deal with sparse user and app vectors more effec-
tively. However, since these two models are naturally
not personalized, their recommendation lack generaliza-
tion capabilities. In addition, the result of TF is better
than that of MF because TF considers context informa-
tion.

3. Deep learning-basedmodels showgood recommendation
performance. Among them, CNN has better recommen-
dation performance than DNN. Both CNN and DNN
use deep models to extract the deep latent interac-
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Fig. 7 The comparisons of
recommendation performance
between CFDIL and benchmark
methods. There are seven
benchmark methods: ICF, UCF,
MF, TF, DNN, CNN, and
DeepFM

tions between users and apps. DNN leverages fully
connected method to learn deep interaction informa-
tion between users and apps, while CNN uses convo-
lution kernels to extract deep interaction information
between users and apps. DNN’s fully connected struc-
ture makes a lot of unnecessary information in user
and app matrix to be added to the interaction pro-
cess. Excessive information doping interferes with the
ability of DNN to mine users’ preferences. CNN uses
convolution kernels to effectively eliminate interference
information, so that the model can mine users’ pref-
erences more efficiently. The performance of DeepFM
is better than DNN and CNN. In addition to using
the deep part to learn high-order feature interactions,
DeepFM also uses FM part to learn low-order interaction
information between users and apps. Thus, the disad-
vantages of the above two methods are eliminated by
DeepFM.

4. The recommendation performance of CFDIL is better
than all benchmark methods. The reasons are as fol-
lows: (1) CFDIL considers contextual information in the
matrix construction process, which helps the model to
judge users’ preference. (2) The FM part in CFDIL fully
expresses the low-order interaction features between
users and apps. (3) The CNN part of CFDIL effectively
explores interaction features of between users and apps
under contextual conditions.

5.3 Themodel hyper-parameters

In this section, we mainly show some exploration of CNN
parameters in CFDIL.We leverage datasets from three cities,
Beijing, Shanghai and Guangzhou, to determine the number
of layers of CFDIL and the number of convolution kernels
in each layer.

Inspired by He et al. (2016), the size of CFDIL con-
volution kernels used in convolution layers is 3 × 3. The
number of convolution kernels is set according to the follow-
ing principle: when the portrait size is halved, the number
of convolution kernels should be doubled to ensure the com-
plexity of learning.

We apply CFDIL on three cities dataset and set the con-
volutional layers of CFDIL to {2, 4, 6, 8, 10, 12, 14} and
set the initial convolution kernels to {8, 16, 32, 64, 128, 256,
512}. We use MAE and RSME to evaluate the model per-
formance to determine the hyper-parameters of CFDIL. The
hyper-parameters that minimize MAE and RSME are the
best.

We use the dataset of Beijing City as the representative to
show the experimental results, as shown in Fig. 8. As can be
seen from Fig. 8, CFDIL performs best when the number of
convolutional layers is 8 and the initial number of convolution
kernels is 128.

In addition, we use Fig. 9 to show the performance of
CFDIL with different number of convolutional layers when
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Fig. 8 CFDIL’s 3D fitting diagram on the number of convolution ker-
nels and convolutional layers. There are 49 real experimental results in
the red circle, and the others are fitting results

Fig. 9 CFDIL with different number of convolutional layers

Fig. 10 CFDIL with different initial number of convolution kernels

the initial number of convolution kernels is 128. We use Fig.
10 to show the performance of CFDIL with different initial
number of convolution kernels when the number of convo-
lutional layers is 8.

5.4 Ablation experiment

5.4.1 Impact of contextual information

We use the feature matrices of users and apps as the input of
CFDIL and train a new model named CFDIL-I. The differ-
ence between CFDIL-I and CFDIL is that CFDIL-I does not
consider the contextual matrices of users and apps. Then we
compare the Precision@N of CFDIL and CFDIL-I to judge
the validity of the proposed contextual matrices of users and
apps.

Figure 11 shows the Precision@N results between CFDIL
and CFDIL-I. It can be seen from the figure that the Pre-
cision@N of CFDIL is significantly better than these of

CFDIL-I under all recommendation lists. This is because
CFDIL constructs user and app portraits that fully consider
contextual information,which can explore users’ preferences
more accurately.

5.4.2 Impact of CNN

First, we use portraits of users and apps as input and elim-
inate the CNN part of CFDIL to get a new model, named
CFDIL-C. Thenwe compare the Precision@NofCFDIL and
CFDIL-C on three cities datasets to judge the effectiveness
of the CNN part of CFDIL.

Figure 12 shows the experimental results. It can be seen
from the experimental results, the Precision@N of CFDIL
are better than these of CFDIL-C. The main reason is as
follows. CNN has a strong ability to extract features from
two-dimensional data, which has been verified in the field of
image processing. The user and app portraits we construct
are mainly composed of two-dimensional geographic infor-
mation generated by interaction between users and apps in a
specific time slot. This data structure is consistent with the
image data structure. CNN can effectively extract interaction
features from the two-dimensional data by using convolution
kernel mechanism. The experimental results show that CNN
can effectively extract the portrait features of users and apps,
and efficiently mine users’ preferences under specific con-
textual conditions.

5.4.3 Impact of FM

First, we use portraits of users and apps as input and eliminate
the FM part in CFDIL to get a new model, named CFDIL-F.
Then, we compare the Precision@N of CFDIL and CFDIL-F
to judge the effectiveness of the FM part of CFDIL.

The experimental results show that CFDIL is more effec-
tive than CFDIL-F, which indicates that the FM part of
CFDIL also plays an important role in mining users’ pref-
erences. The network structure of FM is similar to the FM
part of DeepFMmodel that has been successful in CTR field.
The difference between the two FMs is the type of problem to
be solved. The application field of DeepFM is click-through
rate prediction, which is a classification problem. The FM
part we designed is mainly to help CFDIL predict users’
preference probability, which is a regression problem. The
role of FM part is to help the model obtain the low-order fea-
ture cross information of users and apps effectively, so that
the model can comprehensively consider the low-order cross
features and high-order potential interaction features of users
and apps.
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Fig. 11 Impact of contextual information

Fig. 12 Impact of CNN

Fig. 13 Impact of FM

5.4.4 Impact of TF

The tensor factorization model in CFDIL is used to process
label data. We eliminate the tensor factorization model in
CFDIL to get a new model, named CFDIL-T. The differ-
ence between CFDIL and CFDIL-T is that the label data of
CFDIL-T is extremely unbalanced and sparse. We compare
the Precision@N of CFDIL and CFDIL-T to judge the valid-
ity of the tensor model in CFDIL for label processing.

The experimental results are shown in Fig. 14. It can be
seen from Fig. 14 that the performance of CFDIL is better
than CFDIL-T. The experimental results show that the pro-

posed tensor model in CFDIL can effectively handle sparse
label data.

The sparse label data of user–app interactions make the
training data extremely unbalance.As a result, CFDIL-T can-
not fully receive positive user–app feedback data during the
training process. The tensormodel added inCFDIL canmake
the label data in user–app-context tensor smoother. The ten-
sormodel inCFDILdecomposes the label data, so that even if
a user has not touched an app (the original label is 0), the label
data of the corresponding user and app will get a nonzero
value. The nonzero elements in the user–app-context tensor
represent the probability that the userwill use the app in a spe-

123



CFDIL: a context-aware feature deep interaction... 4769

Fig. 14 Impact of TF

cific context. Tensor factorization processing enables CFDIL
effectively deal with extremely unbalanced user labels, thus
improving the performance of app recommendation.

6 Conclusion and future work

In this paper, we proposed the recommendation frame-
work for mobile apps based on contextual feature profiling
(CFDIL). As far as we know, this is the first attempt to use
contextual feature portraits to explore deep user–app inter-
actions. CFDIL uses contextual feature matrices and the
features of users and apps to form feature portraits. Based
on these portraits, a deep network framework is trained to
provide more accurate recommendations for users, by using
decomposers and convolutional neural networks to mine the
multi-order interaction between users and apps under specific
contextual conditions. We conducted extensive experiments
on real-world datasets to prove the effectiveness of CFDIL
and the value of each step.

CFDIL constructs feature portraits of users and apps,
respectively, using context information and attribute infor-
mation of users or apps. These feature portraits including
space-time laws and attribute features of users and apps.
Through a series of experiments, it was proved that these
feature portraits are very effective for exploring users’ pref-
erences in specific contexts. InCFDIL, FMnetwork can learn
shallow features of users and apps, and CNN is more suitable
for deep mining of interactive features, which is beneficial
to improve the performance of recommendation model. The
introduction of feature portraits, combined with the TF pro-
cessing of labels can resolve the problem of data sparsity
to some extent. In addition, CFDIL mines the features of
real long-term interactions through feature portraits, which
can avoid the problemof unfair recommendations (D’Angelo
et al. 2019).

However, there still exist the following shortcomings in
CFDIL: (1) CFDIL depends on feature portraits of users and
apps to complete recommendation. But these portraits are

macro and stable, and sudden events were unable to display.
For example, people need to work at home due to the sud-
den outbreak of the COVID-19, which cannot be reflected
in these portraits. This is because users have never done this
activity in this context, making the performance of CFDIL
not good enough.However,with the frequencyof homeoffice
increases, this feature will gradually emerge to improve rec-
ommendation performance. How to tackle the problem of
hysteresis in CFDIL will be our research direction in future.
Our preliminary idea is that we introduce attention mech-
anism to emphasize the importance of recent behavior to
shorten the hysteresis of CFDIL as possible. But we know the
introduction of attention mechanism will emphasize sudden
events, which may have a detrimental effect on the robust-
ness of the model. Therefore, it is important to find the
balance between the two. (2) We learn user–app interactions
by context information. But the essence of these interactions
is diverse instead of single. For example, users play games
selectively in free time (active), but it is necessary to punch in
(passive). Active choice can better reflect users’ preferences;
passive choice is more stable. However, this distinction is not
drawn in CFDIL, but should be treated equally. All of this
need us to do further research and exploration.
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