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Abstract

The path planning for mobile robots has attracted extensive attention,
and evolutionary algorithms have been applied to this problem increas-
ingly. In this paper, we propose a novel gradient eigen-decomposition
invariance biogeography-based optimization (GEI-BBO) for mobile robot
path planning, which has the merits of high rotation invariance and excel-
lent search performance. In GEI-BBO, we design an eigen-decomposition
mechanism for migration operation, which can reduce the dependence
of biogeography-based optimization (BBO) on the coordinate system,
improve the rotation invariance and share the information between
eigen solutions more effectively. Meanwhile, to find the local opti-
mal solution better, gradient descent is added, and the system search
strategy can reduce the occurrence of local trapping phenomenon.
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In addition, combining the GEI-BBO with cubic spline interpola-
tion will solve the problem of mobile robot path planning through a
defined coding method and fitness function. A series of experiments
are implemented on benchmark functions, whose results indicated that
the optimization performance of GEI-BBO is superior to other algo-
rithms. And the successful application of GEI-BBO for path planning
in different environments confirms its effectiveness and practicability.

Keywords: Mobile robot path planning, Biogeography-based optimization,
Eigen-decomposition, Gradient decent strategy, System search strategy

1 Introduction

In recent decades, mobile robot path planning (MRPP) has become an indis-
pensable aspect of artificial intelligence in robotics, and has been widely
studied and discussed [1]. The goal of path planning is to search out an opti-
mal or nearly optimal collision free path from the initial state to the target
state according to a certain performance index (such as time, distance, etc.)
[2]. According to different environmental information, path planning can be
divided into global path planning and local path planning [3]. Global path
planning is carried out in the known environment. By modeling the current
environmental information, mobile robots can use the existing mature path
planning algorithm or improved algorithm to plan an optimal path from the
start to the end in the established environmental model [4]. In the local path
planning problem, the environmental information is usually unknown, focusing
on considering the current local environmental information of the mobile robot
to make the robot have good obstacle avoidance ability. The working environ-
ment of the mobile robot is detected by sensors to obtain information such as
the location and several properties of obstacles [5]. However, without complete
environmental information, the results of local path planning may not be best
or even incorrect. Therefore, global path planning, which can be regarded as
an optimization problem, has attracted more attention and become a hot topic
in research of path planning [6].

Researchers have developed many methods for global MRPP. Traditional
path planning methods include grid method [4], artificial potential field method
[7], visual graph method [3], neural network method [8], etc. However, these
methods partly have some problems such as complex calculation, low effi-
ciency, easy to fall into local optimization, which usually leads to certain
inconveniences in solving the problem of global MRPP. Meanwhile, evolution-
ary algorithms for MRPP show a growing number of advantages and attract
increasing attention [9].

Using the evolutionary algorithm for global MRPP, which can put the
problem of path planning down to the problem of finding the optimal path
with the minimum cost [10]. In addition, many evolutionary algorithms, such
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as genetic algorithm (GA) [11], particle swarm optimization algorithm (PSO)
[12] and ant colony algorithm (ACO) [13], have strong computing capability
and robustness, which can achieve optimization results well. At present, many
evolutionary algorithms have been applied to the problem of MRPP [14]. For
example, considering the slow convergence speed of ACO, Liu et al. proposed
an improved ACO to improve its convergence speed and applied it to the
MRPP in the grid environment [15]. Marco et al. combined the artificial bee
colony algorithm with the evolutionary planning algorithm to solve the prob-
lem of MRPP, through a set of local processes to refine the feasible path [16].
The comparison results of the method on a set of benchmark problems and
the experimental results on a real mobile robot show that the method has
good performance. Hong et al. proposed a co-evolutionary improved GA for
global MRPP, which puts forward an effective fitness function and modifies
the genetic operator of traditional GA [17]. For the problem of global smooth
MRPP, song et al. advanced a new multimodal delayed PSO (MDPSO) [18].
The test results based on benchmark function show that the performance of
MDPSO is better than other five famous PSO algorithms. Finally, the applica-
tion of MDPSO in the global smooth MRPP further proves that it has better
performance than the global smooth path generated by GA in previous stud-
ies. These evolutionary algorithms have been used to solve the problem of
MRPP, and have achieved remarkable results, but in general, these methods
still have some shortcomings in computational complexity, local optimization
and adaptability.

Biogeography-based optimization (BBO) [19] is an evolutionary algorithm
based on the concept of biogeography. Based on a mathematical model, the
algorithm describes the migration of species between habitats, that is, from
unsuitable habitats to suitable habitats [20]. BBO is an efficient bionic search
algorithm, which has the advantages of relatively simple principle, less adjust-
ment parameters, easier implementation of the algorithm, and high operation
efficiency. Many researchers have improved BBO and applied it to many fields
[21], including MRPP. For example, Zhu et al. proposed a method based on
chaotic predator-prey BBO (CPPBBO) to solve the path planning problem of
unmanned aerial vehicle [22], and the simulation results show that CPPBBO
is more effective than other algorithms. Mo et al. advanced a biogeography
PSO algorithm to plan the path of mobile robot by combining the BBO
and PSO, then using the BPSO algorithm, the optimal path based on the
approved voronoi boundary network is found out [23]. Yang et al. put forward
an improved optimization algorithm based on biogeography to solve the prob-
lem of global MRPP in the static environment [24]. It can be seen from these
articles that BBO has been effectively applied to MRPP. However, due to
the strong dependence of BBO on the coordinate system, the performance of
the algorithm is inadequate when solving high-dimensional problems, and the
ability of BBO to mine the global optimal solution is also slightly insufficient.
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In order to solve these problems, we proposed a novel gradient eigen-
decomposition invariance biogeography-based optimization algorithm (GEI-
BBO). The innovation of this paper is as follows:

1. A novel biogeography-based optimization migration eigen-decomposition
based migration strategy which shares information between eigen solutions
more effectively is proposed based on eigen-decomposition. The egien-
decomposition based migration reduces the dependence on the coordinate
and improves the rotation invariance of BBO.

2. On the basis of the egien-decomposition based migration strategy, the gra-
dient descent strategy is added to search the neighborhood of the best
individual, which can more effectively mine and not only search the optimal
solution, so as to improve the local search ability of BBO.

3. The system search strategy is put forward to ensure that the algorithm
with gradient descent strategy finds the global optimal solution, which can
carry out a range search for each dimension, so as to cover the whole search
range well and avoid falling into local optimum.

4. GEI-BBO is combined with the cubic spline interpolation method to solve
the problem of MRPP. This paper defines the coding method based on
the path node and constructs fitness function which aims at avoiding the
obstacle and finding the shortest path.

The rest of the paper are organized as follows. The second section
introduces the basic BBO. The third section introduces gradient eigen-
decomposition invariance biogeography-based optimization. The fourth section
is the method for path planning. The fifth section is the simulation results
and analysis. The sixth section is the conclusion. The seventh section is the
acknowledgement. The eighth section is references.

2 Biogeography-based optimization

BBO is a new population-based optimization algorithm to solve global opti-
mization problems, based on the concept of biogeography. In biogeography,
each habitat is regarded as an individual, and the index to measure its quality
of life is called habitat suitability index (HSI) [23]. Good habitats for species
have high HSI and bad habitats have low HSI. A habitat has many charac-
teristics, such as area, temperature, rainfall and so on. These characteristics
will affect the habitat, so they are referred to as the suitability index variables
(SIVs). In BBO, a candidate solution to the problem is considered as a habi-
tat. Each candidate solution is associated with a fitness value that is similar
to the HSI of the habitat. High HSI habitats represent better solutions, and
low HSI habitats represent worse solutions. Immigration rates and emigration
rates for each candidate solution are used to share features probabilistically
between habitats.

In BBO, the rate of immigration A and the rate of emigration p determine
the dynamic movement between habitats, depending on the number of species
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Fig. 1: Species model of the habitat

in the habitat [25]. The equation for the rate of immigration Ay and the rate
of emigration py of k species can be written as follows:

Me=10-15) (1
pi = B(5) 2)

where I and F are the maximum immigration rate and the maximum emi-
gration rate, respectively. n = Spax is the maximum number of species in the
habitat. If I = F, then A\ + pux = 1.

BBO is different from other evolutionary algorithms because of its migra-
tion strategy. The migration strategy is based on the migration model, that is,
the immigration rate and the emigration rate equation. The migration model
generally adopts the linear model. When a habitat X; needs to be relocated
according to the migration rate, some methods, such as roulette, will be used
to select a source habitat X; probabilistically according to the migration rate,
and then a SIV will be selected randomly in the source habitat to replace
directly or modify X;. BBO can improve the solution through the migration
operation.

The mutation operation of BBO is to randomly mutate the habitat accord-
ing to the mutation rate m(s), that is, changing the SIVs of the habitat. m/(s)
is determined by the following equation:

1-P,

5 ) (3)
max

where m(s) is the mutation rate of habitat, M4, is the maximum mutation

rate, Ppq: is the maximum probability. BBO can increase the diversity of

species through mutation operation [26].

m(s) = Myaqx(
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3 Gradient eigen-decomposition invariance
biogeography-based optimization

In this section, we introduce a method to solve the problem of two-dimensional
static global MRPP. We introduce three innovative points of the proposed
algorithm, namely, the eigen-decomposition based migration, gradient descent
and system search strategy. Finally, the algorithm is described.

3.1 Eigen-decomposition based migration

In order to improve the rotation invariance of BBO algorithm, the eigen-
decomposition based migration is proposed in this paper. The core of the
eigen-decomposition based migration is to rotate the original coordinate sys-
tem into the eigenvector-based coordinate system, in which habitants can
share their information more effectively. The proposed method illustrates that
the migration of BBO can be carried out more effectively in the eigenvector-
based coordinate system. The eigen-decomposition based migration is to
carry out the eigen-decomposition of population, and migrate the decomposed
population, which will make BBO run more effectively.

Habitat 3

3

Habitat 2

Habitat 6

v

(a) Original migration (b) Eigen-decomposition based migration

Fig. 2: The core of the eigen-decomposition based migration

Firstly, suppose a population H

H=(HE, .. HE . HHT } . )
G _ G ! G G 1= 1,...,n; J1= 1,...,D 4
HE = (HE ), s HG s HG 1) )
where n is the population size, D is the number of independent variables, G
is the number of iterations, HZG is the ith population in the Gth iteration.
H is not a square matrix of order n, it cannot be eigen-decomposed directly,
so we introduce the concept of covariance matrix.
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H(EJ) Hg’Z) H(g’D)
@1 Hiz) (3,D)
Hp = . . : =lciez - cp] (5)
G e e
Hiyy Higy - Hep)
Then the covariance matrix is:
cov(cy,c1) cov(er,eg) -+ cov(er,ep)
1 cov(ca,c1) cov(ea,ca) -+ cov(ca,cp)
cov(H) = — : . ) . (6)
n—1 : : : :
cov(cp, ) cov(ep,ea) -+ cov(ep,cp)

where cov(c;, ¢;) is the covariance between the ith independent variable and
the jth independent variable in Gth generation, which is defined as follows:

cov(ci,¢;) = El(c; — &)(¢j — &) (7)

where & and &; represents the mean values of the ith and jth independent
variables, respectively.

Thus it can be seen that covariance matrix cov(H) is a symmetric
matrix of order n , and the following standard form can be obtained by
eigen-decomposition:

cov(H) = QuAnQnu" (8)
where Qg is a D x D eigen matrix composed of feature vector of cov(H) , Ay
is a diagonal matrix composed of all the eigenvalues of cov(H). After eigen-
decomposition, the eigenvector is obtained. We also need to rotate the matrix
H with the eigenvectors. That is:

eigH® = HE x Qg ) )

eigHY = (eigH(Cily ...,eigH(Cij), ...,eigH(CiD)) }Z =L.,nmj=1.D (9)
Migration of the eigHS obtained by the rotation operation results in the

generation of eigH lG *1 Because of the eigen-decomposition and rotation oper-

ation, the migration can run more efficiently. After the migration operation,

H should be rotated back and used as the population of the new generation.

The following operation is enough.

HE ' =eigH ™ % Qu (10)

In summary, the steps of the migration algorithm based on eigen-
decomposition are as follows:
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Algorithm 1 Eigen-decomposition based migration

Require: HY
Ensure: H ZG +1
1: fori=1ton do

Compute the matrix cov(H)

Apply Eigen-decomposition according to Equation 8

Rotate according to Equation 9

for k=1to D do

if rand < \; then

select eigH ]G with probability u;
eigH(C;k) — eigH(Cik)+a . eigH&k)

9: ez'gHg‘};)l — eigH(Cik)

10: end if

11: end for

12: Get HiGJr1 according to Equation 10

13: end for

® ST kW

3.2 Gradient decent strategy

BBO algorithm is effective in searching the global optimal region, but it is
difficult in mining the global optimal region. The local search performance of
BBO can be improved by adding gradient descent into BBO to search the best
individual domain.

The following conditions are required to activate the local search of gradient
descent:

1) N¢ is a positive integer.

2) gradient flag G 44 is equal to G4, G4 is a predefined value.

If both of these conditions are met, then we apply gradient descent strategy
to Ng optimal individuals. Gj.4 starts at zero and increases by 1 when the
following conditions are met.

Ry = Join(it) = fuw (it +1) _ (11)

fmin (Zﬁ) o

where Ry is the improvement ratio, which is the relative improvement of the
minimum generation value from the i(t) iteration to the i(¢+1) iteration. &1 is a
predefined threshold. Moreover, by adding G 4 through G ¢, the incremental
G 4 delays the next call to gradient descent local search. The reason why the
gradient is called infrequently is that when the algorithm falls into a local
optimal state, multiple local searches may not be helpful, and the function
evaluation times will be wasted.

In short, gradient descent is activated when R; is continuously smaller than
€1. We use the fmincon function in MATLAB to achieve the gradient descent
of the best individual. The gradient descent algorithm is shown as follows:
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Algorithm 2 Gradient descent
Require: HY i =1: Ng
Ensure: HZ-G“J =1:Ng
1: Compute improvement ratio Ry < (fmin(it) — fmin (it + 1))/ fimin (it)

2: if R; < g1 then

3: Gflag = Gflag +1

4: else

5: Gflag =0

6: end if

7. if Ng > 0 and Gflag = G4 then

8: Apply gradient descent to the Ng best individuals in the population
9: Gflag =0

10: GAZGflag-l-G[

11: end if

3.3 System search strategy

In order to ensure that the algorithm with gradient descent strategy can find
the global optimal solution, we add the system search strategy, which can cover
the whole search range well and avoid falling into the local optimal.

The conditions for activating the system search strategy are similar to those
for gradient descent in 3.2, and the improved ratio R; is also used. When the
following formula is satisfied, the system search strategy will be activated.

_ Jfmin(it) — fuin(it + 1)

R = fmin(it) <e (12)

where ¢ is the computer precision, that is, when there is no improvement in
the minimum cost value from the i(t) iteration to the i(¢+1) iteration, a global
search will be conducted for Ns optimal individuals to execute the system
search strategy. The steps of the system search strategy are as algorithm 3.
As shown in the table, we increment or decrement the independent variables
in accordance with A in the search space, where «y is a specific score that can
be evaluated as oy = 0.1. The system search strategy decreases the value of
the given dimension pop; ) by an increment A, equal to 10% of the size of the
search space, one increment at a time, until the value reaches the lower bound
of the search space. Then, the system search strategy increases the value of
the given dimension, one increment at a time, until it reaches the upper limit
of the search space. By performing this process for each dimension, the system
search strategy realizes the global search, and replaces the original individual
with the best one found by it to avoid falling into the local optimization.

3.4 Description of the GEI-BBO algorithm

The GEI-BBO algorithm proposed in this paper includes the contents men-
tioned in section 3.1, 3.2 and 3.3 above. Before the number of iterations reaches
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Algorithm 3 System search strategy

Require: H,i=1:Ng
Ensure: HZ-G“,i =1:Ng

1. if Ry < € then

2 A=ag(UB—LB)

3 for i =1 to N, do

4 for k=1to D do

5: temp k) = POD(i,k)
6: while temp(i, k) > LB do
7
8
9

temp(i, k) < temp(i, k) — A
if f(tempgr)) < f(pop(ir)) then
: DPOD(ik) = temp k)
10: end if

11: end while

12: temp k) = POD(i,k)

13: while temp(i, k) <UB do

14: temp(i, k) < temp(i, k) + A
15: if f(tempaw)) < f(pop,k)) then
16: DPOD(ik) = temp; k)

17: end if

18: end while

19: end for

20: end for

21: end if

the maximum number of iterations m, n habitats are selected to migrate
according to the proportional parameter P in each iteration. If the random
number is less than P, the migration is based on the eigen-decomposition, and
if the random number is greater than P, the migration is based on the stan-
dard BBO. After migration, the mutation was carried out. Then the gradient
descent strategy is implemented on the Ng best individuals, and the system
search strategy is implemented on the NNy best individuals. Ng and Ny are
preset parameters. The specific algorithm flow is as follows:

4 Method for path planning

Combining the improved algorithm with cubic spline interpolation method,
the coding method based on the path node is defined, and the method and
fitness function aiming at solving the obstacle avoidance and shortest path of
mobile robot are constructed to solve the problem of MRPP. Fig.3 shows a
conceptual map of habitat migration in MRPP using GEI-BBO to understand
how the proposed approach works.

In the figure, habitat 1 has the highest HSI, representing the most suitable
habitat, followed by habitat 2, habitat 3 and habitat 4. The higher the HSI, the
more suitable for species growth, the less need to be changed, so the lower the



Springer Nature 2021 B TEX template

Article Title 11

Algorithm 4 GEI-BBO

1: Initialize a population of N habitats
2: for it =1 to M do
3: fort=1to N do

4: if thenrand < P

5: Apply Eigen-decomposition based migration (3.1)

6: else

7: Apply standard BBO migration

8: Apply mutation operation according to mutation rate m(s)

9: end if

10: Apply gradient descent to the Ng optimal individuals in the
population (3.2)

11: Apply system search strategy to the Ng optimal individuals in the
population (3.3)

12: end for

13: end for

immigration rate, the higher the emigration rate. It can be seen that habitat
1 has the highest emigration rate, while habitat 4 has the highest emigration
rate. Residents represent the path nodes. So the fourth habitat accepts many
residents (path nodes) from other habitats, as shown in different colors. Purple
nodes and links also describe mutations that occur in all habitats, regardless
of their HSI values. This example shows how path planning evolved using the
proposed approach. The specific coding method and fitness function are shown
below.

4.1 Cubic spline interpolation

Cubic spline interpolation is a kind of piecewise interpolation method to form
a smooth curve through a train of interpolation point intervals based on cubic
polynomials. The curve of moving path of mobile robot fitted by cubic spline
interpolation method is smoother than the curve fitted by straight line and
circular arc. In this paper, the cubic spline interpolation method is integrated
into the improved GEI-BBO algorithm to solve the problem of static global
MRPP.

On the interval [a,b], taking n 4+ 1 nodes a = 29 < z1 < ... < T, = b, if
s(x) satisfies following conditions:

1) s(z) € C*[a,b].

2) On each small interval [z;, z;11], s(x) is a cubic polynomial.

3) On node z;, given the function value f; = f(z;),i = 0,1,...,n and
s(x;) = fi,1 =0,1,...,n. Then s(x) is a cubic spline interpolation function.

The cubic spline interpolation function is a piecewise cubic polynomial, on
each small interval [z;, 2;+1], which can be written as: s(z) = a;23+b;2% +c;x+
di,i =0,1,....,n — 1, where a;, b;, ¢;, d; is the undetermined coefficient, so s(x)
has 4n undetermined coefficients. To solve for s of x, we need 4n conditions.



Springer Nature 2021 B TEX template

12 Article Title
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Migration » . - .
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Mutation Mutation
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Habitat 4 Habitat 3
HSI@)>HSI()>HSI(@®)>HSI@®)
Mutated path nodes(@)
Fig. 3: Conceptual model of migration between the habitats for MRPP

From s(z;) = fi,i =0,1,...,n, n+ 1 interpolation conditions can be obtained.
And from s(z) € C?[a,b], s(x) is second differentiable on the interval [a, b], so
the first order is differentiable and s(z) is continuous. Therefore, the following
conditions can be obtained

" "

s_(x;) = s, (2;),i=0,1,...,n -1 (13)
s (zi) = s, (2:),i=0,1,..,n—1 (14)
s_(z;) = s4+(x;),i=0,1,....n— 1 (15)

So far, there are 4n — 2 conditions. In the actual calculation, two boundary
conditions need to be introduced to calculate s(z). Commonly used boundary
conditions are:

1) The value of the first derivative at the two endpoints is given.

2) The value of the second derivative at the two endpoints is given.

3) s(z) is a function of period b — a.

4.2 Encoding

It can be seen from above that cubic spline interpolation is a piecewise inter-
polation method, and the junction between segments is called the path node.
The splines between segments are different, and the whole spline curve is con-
tinuous in the first order, and is continuous in the second order at the path
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node. Therefore, the directions between segmented splines may be different,
and the path node represents the maximum turning times of the entire path.
According to this, this paper takes all nodes on a path as the code of a habitat
individual, that is, a habitat individual represents all nodes on the correspond-
ing path. The x-coordinate set of all m path nodes on a path constitutes the
m~dimensional z-coordinate of habitat individuals, and correspondingly, the
y-coordinate set of all m path nodes on a path constitutes the m-dimensional
y-coordinate of habitat individuals.

Suppose  we  know  the coordinates of m  path node
(Tm1, Ym1)s (Tm2, Ym2)s -y (Timms Ymm ), starting point coordinates (zs, ys) and
terminal coordinates (x¢,y:), on the interval (zs,Tm1, Tma, - s Tmm, ) and
(Ys, Ym1, Ym2, -5 Ymm, Yt ), the abscissa and ordinate of n interpolation points
are obtained by cubic spline interpolation. In this way, we get n interpolation
points, and the line between the path node and the interpolation point and
the starting point and the ending point is the path of the mobile robot that
we want.

4.3 Fitness function

There are two conditions for global MRPP: 1) Do not collide with obstacles;
2) The path length should be as short as possible. In this paper, the evaluation
criterion of fitness function is the shortest path length satisfying the above
conditions. In this paper, the constructed fitness function is:

f=L-(1+p8-v) (16)

where [ is a very large number, and it’s used to impose a very large cost value
to exclude paths that have collisions, and it can take on a value of 1000. L
is the distance from the starting point to the terminal point, the calculation
formula is:

L= \/($i+1 —2:)” + (Wir1 — v:)° (17)
where v is a flag variable. v = 0 means the path is non-collision path; otherwise,
there is a collision path. The initial value of v is set to 0. In the rectangular
obstacle environment, the following equation is used to determine whether the
obstacle is encountered:

d = (zobsy, — space) < xx;&&xx; < (vobsy + l_obsy+space)&é
(yobsy — space) < yy;&&yy; < (yobsy + w_obsy+space)  (18)

where j is the number of nodes, including path nodes and interpolation points.
zx; and yy; represent the abscissa and ordinate of the node. (xobsy, yobsy) is
the starting point of the kth rectangle obstacle, that is the bottom left corner
of the rectangle. [_obs; , w_obsy is the length and width of the rectangular
obstacle. space is a small positive number to avoid hitting the edge of the
rectangle.



Springer Nature 2021 B TEX template

14 Article Title

At each node, judge whether it collides with the obstacle according to
formula 18. When it encounters the obstacle, d will generate a non-zero change
value. When d changes, v will be added with one. If the path does not pass
through any obstacle, then v = 0, otherwise, v is equal to a number that is
not zero.

4.4 Path planning process

We combine GEI-BBO with cubic spline interpolation to design the path
planning steps, the flow chart of path planning is shown in Figure 6.

Step 1: Determine the number of path nodes m and initialize the algorithm.

Step 2: The coordinates of n interpolation points are obtained by cubic
spline interpolation.

Step 3: The path length L and the flag variable v are calculated respectively
to obtain the value of fitness function.

Step 4: Using GEI-BBO to update the ordered habitat individuals.

Step 5: Determine whether the maximum number of iterations is reached.
If yes, output the optimal result directly. If not, return to the step 2 for

circulation.

Initialize parameters and m path nodes

|
o
Get n interpolation points
v
Calculate the path length L, flag variable v and the value of fitness function
v
Sort and display the best result
v
Use GEI-BBO to update the habitat individuals
Equal to the maximum No

number of iterations

Get and display the optimal path

End

Fig. 4: Flow chart of path planning
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5 Simulation results and analysis

In order to prove the effectiveness and practicability of the proposed method,
we first use 23 benchmark test functions to compare and test the GEI-BBO,
and then use it in the simulation experiment of path planning, and conduct
in-depth analysis and summary of the experimental results.

5.1 Experiments on benchmark test functions

We use the benchmark test function proposed by Yao et al. [27] for comparative
test to verify the effectiveness of the algorithm proposed in this paper. There
are 23 test functions in total, and the basic information is shown in Table 1.

Table 1: benchmark test functions

ID Function name Separability Dimension Search space Optima
F1 Sphere model Separable 30 [—100, 100]P 0

F2 Schwefels problem 2.22 Non-separable 30 [-10,10]" 0

F3 Schwefels problem 1.2 Non-separable 30 [—100, IOO]D 0

F4 Schwefels problem 2.21 Non-separable 30 [—100, 100]P 0

F5 Generalized Rosenbrocks functions Non-separable 30 [—30, SO]D 0

F6 Step function Separable 30 [—100, IOO]D 0

F7 Quartic function Separable 30 [—1.28,1.28]" 0

F8 Generalized Schwefels problem 2.26 Separable 30 [—500, 500]D -12569.5
F9 Generalized Rastrigins function Separable 30 [-5.12,5.12]P 0

F10 Ackleys function Separable 30 [—32,32]P 0

F11 Generalized Griewank function Separable 30 [—600, 600] P 0

F12 Generalized Penalized function 1 Non-separable 30 [—50, 50]D 0

F13 Generalized Penalized function 2 Non-separable 30 [—50, 50] P 0

F14 Shekels Foxholes function Non-separable 2 [—65.536, 65.536]D 0.9980
F15 Kowaliks function Non-separable 4 [-5,5]P 0.00031
F16 Six-Hump Camel-Back function Non-separable 2 [-5,5]° -1.03162
F17 Branin Function Non-separable 2 [-5,10] x [0,15] 0.39788
F18 Glodstein-Price function Non-separable 2 [—2,2]P 2.99999
F19 Hartmans function 1 Non-separable 3 [0, 11" -3.86278
F20 Hartmans function 2 Non-separable 6 [0, 11" -3.32199
F21 Shekels Function 1 Non-separable 4 [0, 1017 -10.1531
F22 Shekels Function 2 Non-separable 4 [0, 10]P -10.4029
F23 Shekels Function 3 Non-separable 4 [0,10]P -10.5364

It can be seen from Table 1 that function F1-F13 is a high-dimensional
problem, function F1-F5 is unimodal, function F6 is a step function, function
F7 is a quartic function with noise, function F8-F13 is a multimodal function,
the number of local minimum values increases exponentially with the problem
dimension, function F14-F23 is a low-dimensional function with only a few
local minimum values [27]. This group of test functions includes not only low-
dimensional and single-mode functions, but also many high-dimensional and
multi-mode functions. It can detect the convergence speed of the algorithm
well, and also reflect the ability of the algorithm to get rid of the poor local
optimization and find the better near global optimization. We selected some
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of the more typical test functions, whose three-dimensional diagram is shown
in Figure 5.

(a) Generalized Schwefel’s Function (F8) (b) Generalized Rastrigin's Function (F9) (c) Ackley's Function (F10)

(d) Generalized Penalized Function (F12) (e) Shekel's Foxholes Function (F14) (f) Six-Hump Camel-Back Function (F16)

Fig. 5: Three dimensional graph of partial test function

In order to carry out the comparative test, we selected seven other
evolutionary algorithms, namely GA [11], PSO [10], ACO [28], BBO [25],
covariance matrix adaptation evolution strategy (CMA-ES) [29], whale opti-
mization algorithm [30], sine cosine algorithm [31], salp swarm algorithm [32],
hybrid invasive weed/biogeography-based optimization (IWO/BBO) [33] and
linearized biogeography-based optimization (LBBO) [34], and Tables 2 and 3
shows the test results of comparative algorithms.
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Table 2: Algorithm comparison results 1

ID Fitness GA PSO ACO CMA-ES WOA SCA
F1 BEST 5.14E+01  9.29E-07 7.11E-15 3.53E-25 2.81E-83 1.73E-02
MEAN 3.71E+02  2.75E-04 3.96E-13 8.04E-24 5.40E-74 1.71E+01
72 BEST 3.03E-03 2.50E-02 1.09E-09 1.90E-12 1.48E-58 7.63E-11
MEAN 5.69E-03 3.29E-01 1.02E-08 3.20E-12 2.65E-53 1.47E-08
F3 BEST 1.16E403 2.17TE+402 1.82E4+04 1.64E-01 5.33E4+00  9.00E-06
MEAN 2.63E4+03 1.05E+03 4.90E4+04 2.59E400 1.63E4+02 1.77E-01
F4 BEST 1.18E+01  2.89E+00 9.32E+00  6.01E-10 1.95E-02 2.27E-05
MEAN 1.70E4+01  6.41E+00 3.87E+01 1.10E-09 2.32E4-00  1.80E-03
F5 BEST 8.61E4+01  2.69E+01 1.89E+01 1.75E+00  6.66E4+00  7.02E4-00
MEAN 8.63E4+02  7.10E4+01  9.93E+01  2.28E400 7.17TE400  7.54E+00
76 BEST 5.59E4+02 5.00E4+00 0.00E+400 0.00E+00 9.15E-05 1.67E-01
MEAN 1.03E4-03 1.41E401  0.00E400 0.00E4-00 1.87E-03 4.22E-01
F7 BEST 1.48E-02 2.35E-02 2.29E-02 1.40E-03 1.47E-04 1.25E-04
MEAN 2.30E-02 5.88E-02 3.24E-02 2.93E-03 3.22E-03 4.04E-03
F8 BEST -6.75E+03 -9.01E403 -1.09E4-78 -5.39E+03 -3.65E+03 -2.49E403
MEAN -4.82E4+03 -7.45E403 -2.01E+78 -4.60E+03 -3.10E403 -2.11E403
F9 BEST 1.39E401  2.29E+01 1.52E4-02 1.34E402 0.00E4-00 0.00E4-00
MEAN 2.12E4+01  4.12E+01 1.89E+02  1.53E402  9.30E4-00  1.15E-01
F10 BEST 4.08E4+00 1.34E4+00  2.00E-08 1.81E-13 8.88E-16  6.86E-09
MEAN 6.42E+00 2.46E+00  1.34E-07 2.66E-13 3.73E-15  4.54E-06
Fl1 BEST 3.64E+00 4.78E-04 2.44E-15 0.00E4-00 0.00E+00 2.96E-13
MEAN 1.17E401  5.97E-02 9.11E-03 0.00E4-00 1.34E-01 5.48E-02
F12 BEST 1.13E4+00  1.48E-03 6.27E-13 1.81E-24 2.36E-04 3.90E-02
MEAN 4.86E400  9.12E-01 2.07E-02 7.99E-24 2.51E-03 1.12E-01
F13 BEST 2.08E+01 1.11E-01 6.63E-12 3.52E-24  8.24E-03 2.01E-01
MEAN 3.75E4+01  6.43E+00  4.39E-03 4.16E-23  4.46E-02 2.93E-01
Fl4d BEST 1.33E400 9.98E-01 9.98E-01 1.00E400  9.98E-01 9.98E-01
MEAN 5.03E+00 1.95E+00 3.51E4+00 5.18E400 2.86E4+00  2.38E+400
Fi5 BEST 3.60E-04 3.08E-04 6.00E-04 1.29E-03 3.16E-04 6.06E-04
MEAN 8.20E-04 1.88E-03 9.16E-04 2.69E-03 6.34E-04 1.17E-03
Fl6 BEST -1.03E4+00 -1.03E4+00 -1.03E+00 -1.03E+00 -1.03E400 -1.03E+00
MEAN -1.03E4+00 -1.03E4-00 -1.00E4-01 -1.03E+00 -1.03E+00 -1.03E+400
Fi7 BEST 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
MEAN 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.00E-01
Fi8 BEST 3.00E4+00 3.00E400 3.00E+400 3.00E+00 3.00E400 3.00E+00
MEAN 3.00E+400 3.00E400 3.00E+400 3.00E+00 3.00E400  3.00E+00
Fl19 BEST -3.86E+400 -3.86E4-00 -3.86E4-00 -3.86E-+00 -3.86E+00 -3.86E4-00
MEAN -3.86E+00 -3.86E+400 -3.86E400 -3.86E-+00 -3.86E+00 -3.85E400
F20 BEST -3.32E400 -3.32E4-00 -3.32E4-00 -3.32E+00 -3.32E+00 -3.16E4-00
MEAN -3.32E+00 -3.24E4+00 -3.27E4+00 -3.26E+00 -3.09E+00 -3.01E400
Fo1 BEST -1.02E+01 -1.02E401 -1.02E4-05 -1.02E+01 -1.01E+01 -4.58E4-00
MEAN -7.17E400 -7.15E400 -5.67E+00 -8.65E+00 -8.09E400 -1.50E4-00
F29 BEST -1.04E+01 -1.04E401 -1.04E4-01 -1.04E+01 -1.04E+01 -6.48E4-00
MEAN -7.44E+4+00 -7.15E400 -4.48E4+00 -1.04E401 -7.90E+00 -2.87E+00
Fo3 BEST -1.05E+401 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -5.14E+00
MEAN -9.00E+00 -8.38E400 -7.57E4+00 -1.05E+01 -8.09E+00 -3.09E4-00
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Table 3: Algorithm comparison results 2
ID  Fitness SSA BBO IWO/BBO LBBO GEL-BBO
F1 BEST 5.97E-08 3.57E-01 4.42E-17 0.00E+4-00 8.95E-39
MEAN 2.99E-07 5.88E-01 6.61E-17 0.00E4-00 2.74E-24
2 BEST  7.22E-06 1.92E-01 7.10E-09 6.86E-04 1.13E-33
MEAN 3.14E-03 2.35E-01 2.02E-08 4.56E-03 5.25E-17
F3 BEST 1.92E-08 6.20E4-01 1.23E-14 6.65E-12 6.25E-21
MEAN 5.60E-07 8.67E+401 1.71E-14 2.30E-09 3.93E-19
F4 BEST 1.49E-05 6.53E-01 2.46E-11 3.40E-08 5.64E-17
MEAN 2.95E-05 7.87E-01 4.54E-08 1.31E-07 9.50E-17
F5 BEST 6.41E400 3.56E4-01 8.49E-04 8.50E-03 0.00E+00
MEAN 1.82E+402 1.17E4-02 5.67TE+01 2.34E4-01 0.00E+4-00
F6 BEST 5.66E-10 0.00E400 0.00E+00 2.84E+02 0.00E+00
MEAN 8.97E-10 0.00E400 0.00E+00 3.74E402 0.00E+00
F7 BEST  5.46E-03 1.79E-03 3.11E-05 2.88E-02 1.85E-05
MEAN 1.29E-02 4.16E-03 3.19E-05  3.69E-02 6.75E-05
F8 BEST  -3.14E+03 -9.80E4-03 -4.38E403 -6.74E4-03 -9.79E4-03
MEAN -2.79E403 -9.04E4-03 -3.59E403 -4.79E403 -8.72E4-03
F9 BEST  3.98E+400 2.23E+01 1.78E-14 6.87E-11 0.00E+400
MEAN 1.47E+01 3.40E+4-01 3.28E-05 1.67E-03 2.23E-08
Flo BEST 1.00E-05 1.98E-01 2.27TE-03 2.32E4-00 2.11E4-00
MEAN 8.78E-01 2.39E-01 3.68E-03 2.45E4-00 2.12E+00
Fl1 BEST  5.90E-02 3.71E-01 2.39E-13 1.16E-05 1.11E-16
MEAN 2.01E-01 5.78E-01 1.06E-02 9.53E-03 5.88E-16
F12 BEST  8.74E-12 8.64E-04 7.35E-17 1.03E-05 2.73E-32
MEAN 8.48E-01 1.37E-03 5.47E-15 7.19E-04 3.86E-30
F13 BEST  5.50E-11 1.02E-02 1.87E-18 7.90E-10 1.10E-02
MEAN 1.10E-03 1.96E-02 3.61E-17 6.08E-04 9.85E-02
Fld BEST  9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01
MEAN 1.10E400 1.20E+4-00 9.98E-01 9.98E-01 2.08E+00
Fi5 BEST  6.04E-04 3.61E-04 3.08E-04 3.08E-04 3.08E-04
MEAN 9.06E-04 5.38E-04 3.08E-04 3.08E-04 4.11E-04
Fl6 BEST -1.03E400 -1.03E400 -1.03E4-00 -1.02E400 -1.03E4-00
MEAN -1.03E+400 -1.03E4-00 -9.30E-01 -1.01E4-00 -1.03E4-00
F17 BEST 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
MEAN 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Fi8 BEST 3.00E+00 3.00E400 3.00E4+00 3.00E+00 3.00E400
MEAN 3.00E+00 3.00E400 3.00E4+00 3.00E+00 3.00E400
Fl19 BEST  -3.86E+00 -3.86E400 -3.86E4+00 -3.86E+00 -3.86E-+00
MEAN -3.86E400 -3.86E4-00 -3.81E400 -3.80E+00 -3.86E4-00
F20 BEST -3.32E+4+00 -3.32E400 -2.37E+00 -3.32E+4+00 -3.32E400
MEAN -3.22E400 -3.32E400 -2.52E400 -3.31E400 -3.32E4-00
Fol BEST -1.02E401 -1.02E4-05 -2.05E400 -1.97E400 -1.02E4-01
MEAN -8.65E+400 -1.02E401 -1.30E400 -1.30E+00 -1.02E4-01
F29 BEST -1.04E+401 -1.04E401 -3.92E+00 -5.10E400 -1.04E4-01
MEAN -1.04E401 -7.73E400 -1.96E4-00 -5.04E4-00 -1.04E+01
F23 BEST -1.05E401 -1.05E401 -2.30E+00 -5.34E400 -1.05E4-01
MEAN -6.93E+00 -9.33E4-00 -1.80E4-00 -5.25E400 -1.05E4-01
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In Tables 2 and 3, MEAN is the average of ten test results, BEST rep-
resents the best result of 10 and the bold part is the best one among 11
algorithms. Our proposed GEI-BBO obtains 16 optimal BEST and 14 optimal
MEAN solutions in the optimization process of 23 functions, and its perfor-
mance is better than the other 10 comparison algorithms. The experimental
results verify the effectiveness of the optimization process of GEI-BBO on the
benchmark function.

5.2 Simulation on path planning

In order to verify the effectiveness of the proposed algorithm in solving the
problem of MRPP, we designed a planning environment through environment
modeling, and carried out path planning simulation experiments using the
proposed algorithm and other evolutionary algorithms. Fig.6 shows the best
path planning results in three environments with GEI-BBO.
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Fig. 6: Best path in different environments

In environment 1, the starting point coordinate is (0,0) and the ending
point coordinate is (4,6). The obstacle consists of three circular obstacles, and
the optimal path length is 7.5465. There are 12 rectangular obstacles in envi-
ronment 2, the starting point coordinate is (0,0), the ending point coordinate is
(20,20), and the optimal path length is 28.2721. Environment 3 is composed of
more complex rectangular obstacles, starting point coordinate is (0,0), ending
point coordinate is (45,45), and the optimal path length is 64.1673. In order to
verify the feasibility of the proposed method, we have carried out a large num-
ber of simulation experiments. In three environments, each algorithm carries
out 10 simulation tests, and takes the best, worst, mean and standard devia-
tion of path length. The results are shown in Table 4. The success rate of each
algorithm in the 10 times algorithm is shown in Table 5.
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Table 4: Path planning results of different algorithms

Environment Algorithm Best Worst Mean SD
GA 9.2584 11.2608 9.8816 0.4425
PSO 7.5602 9.0484 8.7848 0.5801
environment 1  ACO 8.9149 8.9149 8.9149 0
BBO 9.3092 9.3092 9.3092 0
IWO/BBO  9.2580 9.2580 9.2580 0
GEI-BBO 7.5465 7.5465 7.5465 0
GA 29.5561 32.3786 30.7575 1.0769
PSO 28.9670 31.6581 29.7025 1.2418
environment 2  ACO 31.4247 31.5697 31.44105 0.0021
BBO 28.9453 29.4278 29.1776 0.0462
IWO/BBO  28.8787 29.3112 29.0374 0.0309
GEI-BBO 28.8721 28.9298 28.8917 0.0009
GA 64.3348 107.7602 79.1527 201.8650
PSO 64.1951 79.2291 66.8617 21.7340
environment 3  ACO 85.9004 104.1118 95.5918 35.6040
BBO 64.6743 69.2475 65.9671 2.1830
IWO/BBO  64.2394 67.4213 65.57496 0.8040
GEI-BBO 64.1673 64.1673 64.1673 0

Combining Table 4 and Table 5, we can see that GEI-BBO has good per-
formance in finding the optimal path. In environment 1, each algorithm can
find its own optimal path, but compared with GA, PSO, ACO, BBO and
IWO/BBO, GEI-BBO has the shortest path length, and the standard deviation
is 0. In environment 2, except GEI-BBO, the success rate of other algorithms
is not 1. From the optimal path length, the optimal value and mean value
of GEI-BBO are optimal. In environment 3, GEI-BBO has the shortest path
length of 64.1673, and the standard deviation is 0. Although other algorithms
can also find the approximate optimal path with GEI-BBO, they are not very
stable, and the success rate is low, among which the success rate of ACO is 0.
These data verify the effectiveness of GEI-BBO algorithm in path planning.

Table 5: Success rates of algorithms

Environment GA PSO ACO BBO IWO/BBO GEI-BBO
environment 1 1 0.9 1 1 1 1
environment 2 0.6 0.8 0.2 0.9 0.9 1
environment 3 0.2 0.5 0 0.6 0.8 1

In order to make the experimental results more intuitive, we further add

a box diagram, as shown in Fig.7. In environment 1, it can be seen that the
variance of GA and PSO data is relatively large. Although the variance of

ACO, BBO and IWO\BBO is 0, GEI-BBO has a smaller path length. In



Springer Nature 2021 B TEX template

Article Title 21

environment 2, the variance of GA and PSO is still larger, followed by BBO
and IWO\BBO. The variance of ACO is similar to GEI-BBO, but its optimal
path length is larger. In environment 3, except for ACO, the optimal path
length of the other four algorithms is similar to GEI-BBO, but the variance is
greater than GGEI-BBO, especially GA.
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Fig. 7: Best path in different environments

6 Conclusion

In this paper, we proposed a new improved algorithm of BBO for MRPP, which
combines the eigen-decomposition based migration, gradient descent and sys-
tem search strategy. This method can effectively reduce the dependence of
BBO on coordinate system and improve the local search ability. The com-
parison of 23 benchmark functions has proven the effectiveness of GEI-BBO.
Combining GEI-BBO with cubic spline interpolation function, a method and
fitness function for solving the obstacle avoidance and shortest path of mobile
robot are constructed to solve the problem of MRPP. The simulation results
also show that the proposed method has higher accuracy and success rate,
which can prove the feasibility of the algorithm.

In the future, we will study how to use the new approaches to further
enhance the performance of BBO, and apply the proposed algorithm to the
more complex global path planning for mobile robots.
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