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Abstract
Hierarchical structured data are very common for data mining and other tasks in real-life world. How to select the optimal
scale combination from a multi-scale decision table is critical for subsequent tasks. At present, the models for calculating the
optimal scale combinationmainly include latticemodel, complementmodel and stepwise optimal scale selectionmodel, which
are mainly based on consistent multi-scale decision tables. The optimal scale selection model for inconsistent multi-scale
decision tables has not been given. Based on this, firstly, this paper introduces the concept of complement and lattice model
proposed by Li and Hu. Secondly, based on the concept of positive region consistency of inconsistent multi-scale decision
tables, the paper proposes complement model and lattice model based on positive region consistent and gives the algorithm.
Finally, some numerical experiments are employed to verify that the model has the same properties in processing inconsistent
multi-scale decision tables as the complement model and lattice model in processing consistent multi-scale decision tables.
And for the consistent multi-scale decision table, the same results can be obtained by using the model based on positive region
consistent. However, the lattice model based on positive region consistent is more time-consuming and costly. The model
proposed in this paper provides a new theoretical method for the optimal scale combination selection of the inconsistent
multi-scale decision table.

Keywords Multi-scale decision table · Inconsistent multi-scale decision table · Positive region consistent · Optimal scale
combination · Rough set

1 Introduction

1.1 A brief review onmulti-scale decision tables

Rough set theory was originally proposed by Professor
Pawlak in 1982 (Pawlak 1992). Because of thematuremathe-
matical foundation and unnecessary of prior knowledge, it is
easy to use and become an effective tool for dealing with var-
ious incomplete information such as imprecise, inconsistent
information. It is a powerful data analysis method. Rough
set theory can, in the absence of prior knowledge, find out
the classification of knowledge to determine the upper and
lower approximation of the problem by describing the set of
the given problem and then, analyze and process the uncer-
tain data.
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Based on the theory of Pawlak rough set, Wu and Leung
introduced the concept of multi-scale decision table (MSDT)
from the perspective of granular computing and analyzed the
knowledge acquisition in it Wu and Leung (2011).

The concept of multi-scale is very common in our life.
We can describe a thing from multiple angles, that is, from
multiple scales. And it is also widely used in deep learning
(Bharati et al. 2020;Li et al. 2020;Qian et al. 2017;Taverniers
et al. 2021). Significantly, some applications of deep learning
models to medical imaging and drug discovery for managing
COVID-19 disease are studied by some literatures such as
(Bharati et al. 2021a, b; Khamparia et al. 2021; Mondal et al.
2021a, b). Additionally, MSDT is one of the research objects
in the field of knowledge discovery in database. So how to
extract useful information and discover new knowledge from
MSDT is worth research.

The general method of processing multi-scale decision
tables is to limited multi-scale attributes on a certain scale,
and then,we can obtain a series of single-scale decision tables
(SSDT) whose each attribute only has one scale. At last,
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we can do data mining on a single-scale decision table we
choose. In a multi-scale information table, if all the attributes
are on the finest scales, then the most information of objects
is included, but this process is of high cost. However, if all the
attribute are on the coarsest scales, then some useful infor-
mation may be lost. Therefore, one or several optimal scale
combinationswhich can reduce the costwithout losing useful
information are existed.

However, Wu and Leung pointed out that their research
is based on two assumptions (Wu and Leung 2013). One of
them is that the number of scales of each attribute must be
the same. Another one is that only the corresponding single
attributes are able to combine into a subsystem in the process
of decomposition for subsystems. Under the same assump-
tions, (Gu and Wu 2013) and (She et al. 2015) studied the
knowledge acquisition and rule induction inmulti-scale deci-
sion tables.

Later, Li and Hu extended their theory and broke these
two assumptions (Li and Hu 2017; Li et al. 2017). They
proposed lattice model and complement model to calculate
the optimal scale combination.Based on the concept ofmulti-
scale attribute significance they introduced, they proposed
stepwise optimal scale selectionmodel. For the attribute with
different significance, the scale selection should be carried
out step by step, which can effectively reduce the time of
calculating and get the best results based on the attribute
significance

Since then, the theoretical study on generalized multi-
scale decision table has alsobeen exploredby some researchers.
Xie et al. proposed three new types of rules and their extrac-
tionmethods (Xie et al. 2018). InHao et al. (2017),motivated
by the fact that sequential three-waydecisions are an effective
mathematical tool in dealing with the data with information
sequentially updated, Hao et al. used this methodology to
investigate the optimal scale selection problem in a dynamic
multi-scale decision table. And inHuang et al. (2019), Huang
et al. addressed the issue of optimal scale selection and
rule acquisition in dominance-based multi-scale intuitionis-
tic fuzzy (IF) decision tables. What is more, on the basis
of an IF inclusion measure, two novel multi-granulation
decision-theoretic models have been developed in multi-
scale IF information tables in Huang et al. (2020). In 2021,
(Wang et al. 2021) firstly investigated the belief structure
and the plausibility structure by defining belief and plau-
sibility functions from the multi-granulation viewpoint and
discuss how to construct multi-granulation rough set models
in multi-scale information systems. Then, the optimal scale
selection methods with various requirements are studied in
two aspects of optimistic and pessimistic multi-granulation
for a multi-scale decision information system.

Wu and Leung did a comparison study of optimal scale
combination selection in multi-scale decision tables whose
different attributes have different numbers of scales (Wu

et al. 2017; Wu and Leung 2020). They formulate informa-
tion granuleswith different scale combinations inmulti-scale
information systems and discuss their relationships. What
is more, the definition and properties of lower and upper
approximations of sets with different scale combination are
proposed in their paper.

The relationship between rule extraction and feature
matrix is further studied (Huang et al. 2020;Chen et al. 2019).
Finally, the matrix is used to describe the scale combination,
and the matrix method for optimal scale combination selec-
tion and the optimal scale combination keeping the positive
region unchanged in the consistent and inconsistent gener-
alized multi-scale decision information system are given,
respectively.

In Bao et al. (2021), Bao et al. defined entropy opti-
mal scale combination in multi-scale decision tables. They
proved that the entropy optimal scale combination and clas-
sical optimal scale combination proposed previously are
equivalent.

Recently, Zhan et al. (2021) establish group decision-
making (GDM) idea on multi-scale information systems
proposed by Wu and Leung from the perspective of multi-
expert group decision-making (MEGDM). It can be applied
to sorting problems on multi-scale information systems.

1.2 Themotivation of our research

As amore general case, inconsistent decision tables are more
common in daily life and knowledge discovery tasks. And
consistent multi-scale tables can be used as special cases of
inconsistent multi-scale tables.

Nevertheless, the current works on multi-scale decision
tables and also optimal scale combination selection are
mainly aimed to calculate the optimal scale combination
in consistent multi-scale decision tables. They cannot be
applied to more general scenarios. Before using, we must
judge the type of the table. And for inconsistent multi-scale
decision tables, we can only obtain an optimal scale combi-
nation. It is full of limitations if there is missing data in the
table. Motivated by these, in this paper, we focus on how to
get all the optimal scale combinations in inconsistent multi-
scale decision tables. Complement model and lattice model
based on positive region consistence are proposed, and the
algorithms of them are given as well. Compared with the
above models, our models are more generalized.

Our main contributions are summarized as follows:

– We propose complement model and lattice model based
on positive region consistent and give the algorithm for
inconsistent multi-scale decision tables.

– We conduct some numerical experiments to prove that
the models based on positive region consistence can also
deal with consistent multi-scale decision tables correctly.
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The remainder parts of the paper are organized as fol-
lows. In Sect. 2, several basic notions of Pawlak rough set,
information tables and decision tables, scale combination and
attribute significance are reviewed. In Sect. 4, the concept
of positive region consistent is introduced. And the optimal
scale combination selection models for inconsistent multi-
scale decision tables and their algorithm are proposed. Some
numerical experiments are employed in Sect. 5. Finally, we
conclude the paper with a summary and outlook the further
in Sect. 6.

2 Preliminaries

In this section, we review several basic concepts and results
of Pawlak rough set, information tables and decision tables,
scale combination and attribute significance.

2.1 Pawlak rough set

Let U be a finite and nonempty set called universe of dis-
course. If R ⊆ U × U is an equivalence relation on U ,
that is, R is a reflexive, symmetric and transitive binary
relation onU , then the pair (U , R) is called a Pawlak approx-
imation space (Pawlak 1992). The equivalence relation R
partitions the universe of discourse U into disjoint sub-
sets. Such partition is a quotient set of U and denoted by
U/R = {[x]R |x ∈ U }, where [x]R = {y ∈ U |(x, y) ∈ R} is
the R equivalence class containing x . The elements in U/R
are called elementary sets. For any set X ∈ P(U ), lower
and upper approximations are defined as follows:

Definition 1 Let U be a finite and nonempty set called
universe of discourse. If X ∈ P(U ), lower and upper
approximations of X are defined as:

R(X) = ∪{[x]R |[x]R ⊆ X}, R(X) = ∪{[x]R |[x]R ∩ X �= ∅},
(1)

where P(U ) is the power set of U . Obviously, they can be
defined by:

R(X) = {x ∈ U |[x]R ⊆ X}, R(X) = {x ∈ U |[x]R ∩ X �= ∅}.
(2)

If and only if R(X) �= R(X), X cannot be precisely defined
by R. (R(X), R(X)) is called the Pawlak rough set of X with
respect to (w.r.t.) (U , R). The sets BNR(X) = R(X)−R(X),
POSR = R(X), NEGR = U − R(X) are, respectively,
called the boundary, the positive region and the negation
region of X w.r.t. (U,R).

The accuracy of rough set can be defined as (Pawlak 1992):

αR = |R(X)|
|R(X)| , (3)

where | · | is the cardinal number of set. For the empty set ∅,
we define αR(∅) = 1. Obviously, 0 ≤ αR(X) ≤ 1.

Definition 2 (Wu and Leung 2013) Let U be a finite and
nonempty universe of discourse. P1 and P2 are two partitions
of U , For each A ∈ P1, if there exists B ∈ P2 such that
A ⊆ B, we say that P1 is finer than P2 or P2 is coarser than
P1, denoted as P1 	 P2. If A ⊂ B, we say P1 is strictly finer
than P2, denoted as P1 � P2.

2.2 Information table and decision table

Definition 3 (Wu and Leung 2011) An information table
is a 2-tuple (U , A), where U = {x1, x2, . . . , xn} is a
finite and nonempty set called universe of discourse, A =
{a1, a2, . . . , am} is a finite and nonempty set of attributes.
For any a ∈ A, there is a : U → Va , that is, for any x ∈ U ,
there is a(x) ∈ Va , where Va = (a(x)|x ∈ U ) called the
domain of a.

For each attribute a ∈ A, a is a surjective function from
U to Va , and it determines an equivalence relation on U .

Ra = {(x, y) ∈ U ×U |a(x) = a(y)}. (4)

Definition 4 (Wu and Leung 2011) A decision table is a 2-
tuple (U ,C ∪ {d}), where (U ,C) is an information table,
d /∈ C is a special attribute called decision. In this case, C is
called conditional attribute set. d is a map d : U → Vd from
U to Vd .

Similarly, we can define the equivalence relation as:

Rd = {(x, y) ∈ U ×U |d(x) = d(y)}, (5)

Then, we obtain a partition U/Rd of U . For any B ⊆ C ,
define equivalence RB as:

RB =
⋂

a∈B
Ra = {(x, y) ∈ U ×U |a(x) = a(y)∀a ∈ B},

(6)

If RC ⊆ Rd , then the decision table (U ,C∪{d}) is consistent;
otherwise, it is inconsistent.

For the inconsistent decision table (U ,C ∪ {d}), the con-
cept of generalized decision attribute is introduced by Wu
and Leung (2020). For any B ⊆ C , the generalized deci-
sion attribute of x w.r.t. B, denoted as ∂B , can be defined as
(Komorowski et al. 1999):
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∂B(x) = {d(y)|y ∈ [x]B}, x ∈ U . (7)

According to Eq.7, we know that for any decision table S =
(U ,C ∪ {d}), although S may be inconsistent, S = (U ,C ∪
∂C ) must be consistent.

Based on the single-scale decision table, Wu and Leung
proposed the concept of multi-scale decision table (Wu and
Leung 2011):

Definition 5 (Wu and Leung 2011) A multi-scale decision
table can be denoted as S = (U ,C ∪ {d}), where U is
finite and nonempty object set called universe of discourse,
A is finite and nonempty set of attribute, d is decision. Each
attribute a j ∈ C is a multi-scale attribute, that is, for the
same object in U , attribute a j can take on different values at
different scales.

For each attribute a j ∈ C , we assume that the higher
the level of scale is, the coarser the partition w.r.t. the scale
becomes. If the attribute a j has three levels of scale, its first
level of scale a1j is finer than its second level of scale a

2
j , and

its second level of scale a1j is finer than its third level of scale

a2j .

2.3 Scales combination

The general method of processing multi-scale information
tables is to limit multi-scale attributes on a certain scale, and
then, we can obtain a series of single-scale information tables
whose each attribute only has one scale. At last, we can do
data mining on a single-scale information table we choose.

The concept of scales combination and scales collection
and some properties was introduced by Li and Hu (2017).

Definition 6 (Li and Hu 2017) Let S = (U , A) be a multi-
scale information table, where attribute ai has Ii levels of
scale, i = 1, 2, . . . ,m. If we restrict attribute a1, a2, · · · , am
on their Ii th scale, respectively, we can obtain a single-scale
information table SK , where K = (l1; l2; . . . ; lm). The com-
bination (l1; l2; . . . ; lm) is called the scales combination of
S in SK . All the scales combination of S is called scales col-
lection, denoted as L = {(l1; l2; · · · ; lm)|1 ≤ li ≤ Ii , i =
1, 2, . . . ,m}.

Definition 7 (Li and Hu 2017) Let S = (U , A) be a multi-
scale information table, and L is the scales collection of S.
For K1, K2 ∈ L , if the elements of K2 are not less than the
corresponding elements of K1, then we say that K1 is weaker
than K2 or K2 is stronger than K1, denoted as K1  K2.

According to Definition 7, we know that L is an partial
order relation. Thus, (L ,) is a partial order set, which is
reflexive, antisymmetric and transitive. Furthermore, (L ,)

is a lattice in which every two elements have a unique supre-
mum and a unique infimum. Obviously, we can get the
proposition as follow.

Proposition 1 (Li and Hu 2017) Let K1, K2 ∈ L and K1 
K2, if SK2 = (U ,CK2 ∪ {d}) is consistent, then SK1 is also
consistent.

According to the Proposition 1, we can define the concept
of optimal scale combination as follow (Li and Hu 2017).

Definition 8 (Li andHu2017)LetL be a scales collection of
a consistent multi-scale decision table S, for K ∈ L , all the
K meet the condition that if for all the K ∈ L and K  K ,
SK is consistent, but SK (if there exists K ) is inconsistent are
the optimal scale combination of S.

Therefore, the consistency of multi-scale decision table
can be defined by:

Definition 9 (Wu andLeung 2011) Let S = (U ,C∪{d}) be a
multi-scale decision table, and 1m = (1; 1; · · · ; 1). If S1m =
(U , {a1j | j = 1, 2, . . . ,m} ∪ {d}) whose all the attributes are
on their finest level of scale is consistent, then the multi-scale
decision table S is consistent.

Let L be the scales collection of (U ,C ∪ {d}). For an
arbitrary K ∈ L , the corresponding equivalence relation
RAK can be defined as

RAK = (x, y) ∈ U ×U |ak(x) = ak(y),∀a ∈ A,∀k ∈ K .

(8)

U can be partitioned by RAK into a family of equivalence
classes as follows

U/RAK = [x]AK |x ∈ U , (9)

where [x]AK = y ∈ U |(x, y) ∈ RAK .
According to Eqs.8 and 9, we can know the relation

between equivalence relation and subsets of attributes.

Proposition 2 (Li and Hu 2017) Let S = (U ,C ∪ {d}) =
(U , {akj | j = 1, 2, · · · ,m, k = 1, 2, . . . , I j } ∪ {d}) be a
multi-scale decision table. L is the scales collection of S.
For K0 = (k1; k2; · · · ; km) ∈ L and an arbitrary subset
C1 ⊆ C, there exists K1 ⊆ K0 such that the indexes of K1 in
K0 are the same as those of C1 in C. Similarly, there exist a
sequence Cm ⊆ · · · ⊆ C2 ⊆ C1 ⊆ C0 and the correspond-
ing indexes sets Km ⊆ · · · ⊆ K2 ⊆ K1 ⊆ K0. The following
equations hold
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R
C

K1
1

⊆ R
C

K2
2

⊆ · · · ⊆ RCKm
m

, (10)

[x]
C

K1
1

⊆ [x]
C

K2
2

⊆ · · · ⊆ [x]CKm
m

, ∀x ∈ U , (11)

U/R
C

K1
1

	 U/R
C

K2
2

	 · · · 	 U/RCKm
m

. (12)

3 Complement model and lattice model

In order to extend the application of multi-scale decision
table, Li and Hu (2017) proposed complement model and
lattice model.

3.1 Complement model

Let S = (U ,C ∪ {d}) be a multi-scale decision table, and
S+ be its complement system. Let Ii , i = 1, 2, · · · ,m be the
number of levels of scales of attribute ai , respectively, and
they are not necessary to be the same. For someattributeswith
less number Ii , we complement them with several known
levels of scales to obtain a new multi-scale decision table,
whose attributes have the same number of levels of scales.

Let I = max{I1, I2, · · · , Im}, that is, the maximum of Ii
and p be the index of attribute with the largest number of
levels of scales. In case of multiple occurrences of the maxi-
mum values, the index corresponding to the first occurrence
is returned. Firstly, the concept of scale vector is introduced.

Definition 10 (Li and Hu 2017) Let S = (U ,C ∪ {d}) be a
multi-scale decision table. Attribute ai ∈ C has Ii levels of
scales. Ci = (1, 2, . . . , Ii ) is called the original scale vector
of ai , and C

+
i is the corresponding complement scale vector.

In order to ensure that the number of levels of scales of all
the attribute are all the same in S+, other complement scale
vectorC+

i (i �= p) should be formed as (li1, li2, . . . , Ii j , li I ),
where 1 ≤ li j ≤ Ii and li j ≤ lik when j ≤ k. Moreover, to
include more information about ai , the original scale vector
Ci should be covered by C+

i . Thus, C
+
i should satisfy the

following conditions:
(C1) li1 = 1, li I = Ii
(C2) dim(C+

i ) = I
(C3) 0 ≤ li, j+1 − li j ≤ 1,∀1 ≤ j ≤ I − 1
Therefore, the number of possible choice for scale vector

C+
i of ai is equivalent to choose I − Ii from Ii with replace-

ment (Li and Hu 2017). According to Brualdi (2010), there
are

( I−1
Ii−1

)
choices of C+

i . Hence, we can get
∏m

i=1

( I−1
Ii−1

)

different new multi-scale decision tables.
These newmulti-scale decision tables can be decomposed

into I decision tables with the same decision attribute where
I is the number of levels of scales. We can choose the table
with optimal scales combination (Wu and Leung 2013).

3.2 Lattice model

Let S = (U ,C ∪ {d}) be a multi-scale decision table, and
Ii (i = 1, 2, · · · ,m) be the number of levels of scales of ai
which are not necessary to be the same.L is scales collection
of S, and |L | = ∏m

i=1 Ii . If S is consistent, then there
exists the scales combination K which is the optimal scales
combination of S. Lattice model is aimed to select all the
optimal scales combination.

For a given multi-scale decision table, lattice model can
be described via the following procedure:

1. According to Definition 6, scales collection L of S can
be calculated.

2. Based on the consistence and the partial order relation
between elements in L of S, the set of optimal scales
combinations OSC can be obtained according to Defini-
tion 8.

3. In the subsystem SK confirmed by the optimal scale com-
bination K ∈ OSC , knowledge acquisition and other
tasks can be done.

4 Optimal scale combination selection
models for inconsistent multi-scale
decision tables

4.1 Consistence of positive region

Let S = (U ,C ∪ {d}) be a multi-scale decision table, where
U = {x1, x2, . . . , xn}, C = {a1, a2, . . . , am} and Ii is the
number of levels of scales of ai , (i = 1, 2, · · · ,m). If
1m  K1  K2  (I1; I2; . . . ; Im) and SK1 is an incon-
sistent decision table, according to Proposition 1, SK2 is also
inconsistent. Hence, if S is inconsistent, that is S1m is incon-
sistent, then SK is also inconsistent for any K ∈ L .

For K ∈ L , there is an equivalence relation as follow:

RCK = {(x, y) ∈ U ×U |ak(x) = ak(y),∀a ∈ C,∀k ∈ K }.
(13)

For X ∈ U , the upper and lower approximations of X are
shown as:

RCK (X) = {x ∈ U |[x]CK ⊆ X}, (14)

RCK (X) = {x ∈ U |[x]CK ∩ X �= ∅}, (15)

where [x]CK = {y ∈ U |(x, y) ∈ RCK }.
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The positive region under scale combination K in S is
defined as (Wu and Leung 2013; Li et al. 2017):

POSCK (d) =
⋃

X⊆U/d

RCK (X), (16)

where U/d = {D1, D2, ..., Dr }.

Algorithm 1: Complement model based on positive
region consistence
Input: any multi-scale decision table S = (U ,C ∪ {d}) and the

numbers of levels of scales(I1, I2, ..., Im)

Output: the set of the positive region optimal scales
combinations

1 I = max(I1, I2, ..., Im);
2 m =len(I1, I2, ..., Im);
3 for i in range(1,m + 1) do
4 obtain a set of complemented scale vectors Ai of ai ;
5 end
6 SC = set(); // SC is the set of all the scales combination;
7 for (e1, e2, ..., em) in A1 × A2 × ... × Am do
8 //A1 × A2 × ... × Am is the Cartesian product;
9 for i in range(I ) do

10 sc = (e1[i], e2[i], ..., em [i]);
11 //(e1[i], e2[i], ..., em [i]) is a scales combination;
12 SC = SC ∪ {sc};
13 end
14 end
15 CSC = set(); // CSC is the set of all the positive region scales

combination ;
16 for sc in SC do
17 if Ssc is Positive Region Consistent then
18 CSC = CSC ∪ {sc};
19 end
20 end
21 OSC = CSC ; // OSC is the set of all the positive region optimal

scales combination;
22 for osc in OSC do
23 for csc in CSC do
24 if osc  csc then
25 OSC = OSC − {osc};
26 break;
27 end
28 end
29 end
30 return OSC ;

Definition 11 (Li et al. 2017) Let S = (U ,C ∪ {d}) be a
multi-scale decision table, whereU = {x1, x2, . . . , xn},C =
{a1, a2, · · · , am} and Ii is the number of levels of scales
of ai , (i = 1, 2, . . . ,m). For K ∈ L , if POSCK (d) =
POSC1m (d), S is said to be positive region consistent. If SK

is positive region consistent and SK
′
(if there exists K ′,K 

K ′ and K ′ ∈ L ) is not positive region consistent, then K is
the positive region scale combination of S.

Algorithm 2: Lattice model based on positive region
consistence
Input: any multi-scale decision table S = (U ,C ∪ {d}) and the

numbers of levels of scales(I1, I2, ..., Im)

Output: the set of the positive region optimal scales
combinations

1 m =len(I1, I2, ..., Im);
2 for i in range(1,m + 1) do
3 Ci = (1, 2, ..., Ii );
4 end
5 SC = set(); // SC is the set of all the scales combination;
6 for (e1, e2, ..., em) in C1 × C2 × ... × Cm do
7 //C1 × C2 × ... × Cm is the Cartesian product;
8 SC = SC ∪ {(e1, e2, ..., em)};
9 //(e1, e2, ..., em) is a scales combination;

10 end
11 CSC = set(); // CSC is the set of all the positive region scales

combination ;
12 for sc in SC do
13 if SscPositive Region Consistent then
14 CSC = CSC ∪ {sc};
15 end
16 end
17 OSC = CSC ; // OSC is the set of all the positive region optimal

scales;
18 for osc in OSC do
19 for csc in CSC do
20 if osc  csc then
21 OSC = OSC − {osc};
22 break;
23 end
24 end
25 end
26 return OSC ;

The algorithmof judgingwhether or not a given subsystem
of a multi-scale decision table is positive region consistent
has been given by Li et al. (2017).

4.2 Complementmodel and lattice model based on
positive region consistence

We extend the application of complement model and lattice
model in this subsection.

The complement model and lattice model proposed by
Li and Hu are aimed to process the consistent multi-scale
decision table. Therefore, we can combine positive region
consistence with these two models to obtain the complement
model and lattice model based on positive region consistence
which can deal with inconsistent multi-scale decision tables.

In order to deal with multi-scale decision table by using
complementmodel and latticemodel basedonpositive region
consistence, we only need to replace the judgement of con-
sistence of subsystem with the judgement of positive region
consistence in complement model and lattice model.

And for K ∈ L , “SK is consistent” is included by
“SK is positive region consistent” (Li et al. 2017). Hence,
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Table 1 An inconsistent multi-scale decision table

U a11 a21 a12 a22 a32 a13 a23 a33 a14 a24 d

x1 0 0 2 2 2+ 1 1 1 3 2+ 1

x2 0 0 0 0 0 0 0 0 1 1 1

x3 1 1 3 3+ 2+ 2 2 2+ 1 1 1

x4 0 0 2 2 2+ 1 1 1 2 2+ 1

x5 1 1 4 3+ 2+ 2 2 2+ 2 2+ 1

x6 0 0 2 2 2+ 1 1 1 2 2+ 2

x7 0 0 2 2 2+ 1 1 1 0 0 1

x8 0 0 3 3+ 2+ 1 1 1 3 2+ 1

x9 0 0 0 0 0 2 2 2+ 0 0 2

x10 0 0 1 1 1 2 2 2+ 0 0 2

x11 0 0 2 2 2+ 2 2 2+ 1 1 2

x12 0 0 2 2 2+ 2 2 2+ 1 1 2

x13 1 1 2 2 2+ 3 3+ 2+ 1 1 3

x14 2 2+ 1 1 1 3 3+ 2+ 1 1 3

x15 0 0 1 1 1 1 1 1 0 0 3

x16 1 1 1 1 1 2 2 2+ 0 0 3

x17 3 2+ 2 2 2+ 2 2 2+ 0 0 3

x18 3 2+ 3 3+ 2+ 4 3+ 2+ 0 0 3

x19 2 2+ 1 1 1 2 2 2+ 0 0 3

x20 1 1 3 3+ 2+ 3 3+ 2+ 1 1 3

complement model and lattice model are included by the
complementmodel and latticemodel basedonpositive region
consistence. The newmodels can deal with all kinds ofmulti-
scale decision tables.

Then,we propose the algorithmof complementmodel and
lattice model based on positive region consistence.

5 Numerical experiments

In order to verify the feasibility of complement model(CM-
PR) and lattice model(LM-PR) based on positive region
consistence, some numerical experiments are employed in
this section. And we compare the results of them with the
result of stepwise optimal scale selection based on positive
region consistence(SOSS-PR) proposed by Li et al. (2017).

Example 1 Table 1 is an inconsistent multi-decision table
S = (U ,C ∪ {d}), where U = {x1, x2, · · · , x20}, C =
{a1, a2, a3, a4}. We can notice that x4 and x6 are indistin-
guishable w.r.t. RC , but d(x4) �= d(x6). The results obtained
by using CM-PR, LM-PR and SOSS-PR, respectively, are
shown in Table 2.

In order to evaluate the above algorithmsmore objectively,
two data sets are collected from the University of California,
Irvine (UCI)Machine Learning Repository (Lichman 2013).
These two decision tables are single-scale decision tables.

Thus, we use the method by Li and Hu (2017) to obtain
their corresponding multi-scale decision tables. There are
four steps in that method, but we only do the first three steps.
The decision value of object x in multi-scale decision table is
not change to ∂C(1;1;...;1) (x), that is, it keeps the original deci-
sion value. Then, the multi-scale decision tables we obtain
are not inconsistent. And the details of them and the results
are shown in Tables 3, 4, respectively.

Through the numerical experiments, it can be found that
the optimal scale combination of CM-PR is weaker than that
of LM-PR and the result of SOSS-PR is one of the results of
LM-PR. Moreover, the running time of SOSS-PR is shorter
than that of LM-PR. These conclusions are similar to the
conclusions of the model deal with consistent multi-scale
decision tables summarized by Li and Hu (2017) and Li et al.
(2017).

In order to test the performance of CM-PR and LM-PR
in consistent multi-scale decision tables, we use complement
model, lattice model, stepwise optimal scale selection, CM-
PR, LM-PR, SOSS-PR to deal with some consistent multi-
scale decision tables, respectively. Tables 5, 6 and 7 are three
consistent multi-scale decision tables collected from Li and
Hu (2017). The results are shown in Tables 8, 9.

For Table 5, the set of optimal scales combination via com-
plement model and CM-PR is {(3;2;3;2),(3;3;3;1)}, the set
of optimal scales combination via lattice model and LM-PR
is {(4;3;1;2),(4;2;2;2),(1;3;3;2),(4;3;2;1),(3;2;3;2),(3;3;3;1),
(4;1;3;2)}, and the optimal scales combination via stepwise
optimal scale selection and SOSS-PR is (4;3;1;2).

For Table 6, the set of optimal scales combination via
complement model and CM-PR is {(2;1;3;3;3),(2;2;2;2;2),
(1;2;3;3;3)}, the set of optimal scales combination via lat-
ticemodel andLM-PR is {(2;2;4;1;3),(1;2;4;3;3),(2;1;4;3;3),
(1;2;3;3;4), (2;2;4;3;2), (2;2;3;1;4),(2;2;2;3;3), (2;1;3;3;4)},
and the optimal scales combination via stepwise optimal
scale selection and SOSS-PR is (2;2;4;3;2).

For Table 7, the set of optimal scales combination via
complement model and CM-PR is {(2;2;2;2;4)}, the set of
optimal scales combination via lattice model and LM-PR is
{(2;2;2;2;4)}, and the optimal scales combination via step-
wise optimal scale selection and SOSS-PR is (2;2;2;2;4).

The results are shown in Tables 8, 9
Moreover, for the data sets described in Table 3, we use the

method proposed by Li and Hu (2017) to obtain their corre-
sponding consistent multi-scale decision tables. And optimal
scales combination on these two consistent multi-scale deci-
sion tables using threemodels based on consistence and three
models based on positive region consistence are shown in
Tables 10, 11, respectively.

Compared Table 8 with Table 9 and compared Table 10
with Table 11, some facts are verified. The running times of
complement model and CM-PR have no static relationship
and the running timeofLM-PR is about two times longer than
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Table 2 The results of Table
1(The models in table are based
on positive region consistence)

Table CM-PR LM-PR SOSS-PR

OSC1 Running time(s) OSC2 Running time(s) OSC3 Running time(s)

4–1 (2;2;2;1) 0.0156 (2;3;2;1) 0.1249 (2;3;2;1) 0.0625

Table 3 The details of
inconsistent multi-scale decision
tables

Data sets Instances Features I1 × I2 × ... × Im Classes

Auto-MPG 392 7 2 × 1 × 2 × 3 × 3 × 3 × 2 3

Seeds 210 7 2 × 2 × 3 × 3 × 2 × 3 × 3 3

Table 4 The results of data sets(inconsistent)(The models in table are based on positive region consistence)

Data sets CM-PR LM-PR SOSS-PR

OSC1 Running time(s) OSC2 Running time(s) OSC3 Running time(s)

Auto-MPG (1;1;2;2;2;2;1) 0.8904 (1;1;2;3;3;2;1) 17.0384 (1;1;2;3;3;2;1) 1.7604

Seeds (1;1;1;1;1;1;1) 0.5001 (2;1;1;3;1;3;3) (2;2;1;3;1;3;2) 27.3886 (2;2;1;3;1;3;2) 1.0316

Table 5 An multi-scale decision table based on a general information system

U a11 a21 a31 a41 a12 a22 a32 a13 a23 a33 a14 a24 d

x1 1 E S Y 1 E Y 1 S Y 1 S +

x2 2 G S Y 2 E Y 1 S Y 1 S +

x3 3 G S Y 3 G Y 2 S Y 2 S +

x4 4 F M N 4 F N 3 M N 3 M −
x5 5 B L N 5 F N 4 L N 4 L +

x6 6 B L N 6 B N 5 L N 4 L +

x7 4 F M N 4 F N 1 S Y 1 S −
x8 5 B L N 5 F N 1 S Y 1 S −
x9 6 B L N 6 B N 2 S Y 2 S +

x10 4 F M N 4 F N 3 M N 1 S −
x11 5 B L N 5 F N 4 L N 1 S +

x12 6 B L N 6 B N 5 L N 2 S +

that of latticemodel. The running timeof SOSS-PR is slightly
slower than that of stepwise optimal scale selection. When
dealing with the consistent multi-scale decision table, the
model based on the positive region consistence has the same
results as the model based on consistence. Thus, CM-PR,
LM-PR and SOSS-PR are also able to deal with consistent
multi-scale decision tables efficiently.

In a word, for the general multi-scale decision tables, we
can directly use the model based on positive region consis-
tence to deal with them. For single-scale decision tables, we
can only do the first three steps in the method proposed by
Li and Hu (2017) to obtain their corresponding multi-scale
decision tables. Generalized decision values are not need to
calculate. Finally, the same results can be obtained by using
themodels based on positive region consistent.Moreover, the
optimal scales combination obtained after converting single
scale decision table to multi-scale decision table often has

excellent performance in classification experiments (Li et al.
2017).

6 Conclusions

Based on themodels and theories proposed byLi andHu, this
paper introduces some new methods which are more gen-
eralized to calculate all the optimal scale combinations in
inconsistent multi-scale decision tables. It is also an expan-
sion of the multi-scale decision tables studied by Wu and
Leung, breaking their two strong assumptions.

Some numerical experiments are employed to verify that
the new models have the same properties as the comple-
mentmodel and latticemodel in dealingwith the inconsistent
multi-scale decision table. And for consistent multi-scale
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Table 6 An multi-scale decision table based on an interval information system

U a11 a21 a12 a22 a13 a23 a33 a43 a14 a24 a34 a15 a25 a35 a45 d

x1 [3.0,5.0] B [1.9,2.0] A [0.9,4.5] C M Y [0.9,4.5] C M [1.8,2.3] A S Y −
x2 [1.4,2.5] A [3.8,4.4] B [3.8,4.4] B S Y [1.7,2.5] A S [4.1,4.4] B S Y +

x31 [1.9,2.2] A [3.0,5.0] B [3.8,4.4] B S Y [1.6,2.0] A S [1.2,4.2] C M Y −
x4 4.0 B [1.3,3.7] C [0.9,4.5] C M Y 4.0 B M [1.4,2.3] A S Y +

x5 4.0 B [1.3,3.7] C [1.3,2.5] A S Y 4.0 B M [7.4,7.8] E M Y −
x6 [1.1,2.3] A [3.2,4.5] B [1.6,2.2] A S Y [1.3,2.2] A S [1.8,2.3] A S Y −
x7 [3.2,4.6] B [1.8,2.3] A [1.3,2.5] A S Y [1.2,4.2] C M [4.2,6.7] D M Y +

x8 [3.8,4.3] B [1.4,2.5] A [5.2,6.3] D M Y [1.3,3.9] C M [4.6,4.9] B S Y −
x9 [1.3,3.9] C [1.4,2.5] A [3.4,7.3] G L N [1.6,2.6] A S [8.2,9.1] F L N +

x10 [1.3,2.1] A [3.0,4.5] B [7.4,7.8] E L N [3.4,4.5] B M [5.2,6.3] S L N −
x11 [3.2,4.6] B [0.9,4.2] C [3.8,4.4] B S Y [4.6,4.9] B M [3.4,4.1] B S Y −
x12 [1.8,2.0] A [3.0,5.0] B [7.4,7.8] E L N [3.0,5.0] B M [3.4,7.3] G L N −
x13 [1.2,4.2] C [1.8,2.3] A [8.2,9.1] F L N [1.7,2.3] A S [7.1,7.3] E L N +

x14 [1.3,2.1] A [3.8,4.4] B [8.2,9.1] F L N [3.8,4.4] B M [4.2,6.7] E L N −
x15 [0.9,4.5] C [1.9,2.0] A [7.4,7.8] E L N [1.2,2.8] A S [4.6,8.9] G L N +

Table 7 An multi-scale decision
table based on an intuitionistic
information system

U a11 a21 a12 a22 a13 a23 a14 a24 a15 a25 a35 a45 d

x1 (0.4,0.2) A (0.5,0.2) B (0.4,0.3) A (0.4,0.6) A (0.7,0.2) C M Y −
x2 (0.5,0.2) B (0.7,0.2) C (0.7,0.2) C (0.5,0.4) B (0.3,0.4) A S Y +

x3 (0.5,0.2) B (0.7,0.3) C (0.8,0.2) C (0.5,0.4) B (0.1,0.8) E M Y +

x4 (0.4,0.6) A (0.5,0.2) B (0.4,0.5) A (0.3,0.4) A (0.6,0.4) B S Y −
x5 (0.6,0.1) B (0.8,0.2) C (0.8,0.2) C (0.6,0.2) B (0.5,0.4) B S Y +

x6 (0.6,0.2) B (0.4,0.3) A (0.8,0.2) C (0.6,0.1) B (0.4,0.3) A S Y −
x7 (0.3,0.5) A (0.6,0.4) B (0.3,0.3) A (0.5,0.2) B (0.1,0.7) D L N −
x8 (0.3,0.6) A (0.5,0.4) B (0.3,0.5) A (0.6,0.1) B (0.2,0.8) E L N −
x9 (0.7,0.2) C (0.3,0.3) A (0.4,0.5) B (0.4,0.5) A (0.1,0.8) E L N +

x10 (0.7,0.1) C (0.4,0.5) A (0.4,0.1) B (0.3,0.5) A (0.1,0.9) F L N +

x11 (0.5,0.1) B (0.3,0.3) A (0.7,0.1) C (0.6,0.2) B (0.2,0.7) D M Y −
x12 (0.6,0.2) B (0.4,0.5) A (0.8,0.1) C (0.5,0.1) B (0.6,0.3) B S Y −

Table 8 The results of models based on consistence

Table I1 × I2 × ... × Im Complement model Lattice model Stepwise optimal scale
|OSC1| Running time |OSC2| Running time |OSC3| Running time

5 4 × 3 × 3 × 2 2 0.0343 7 0.1062 1 0.0343

6 2 × 2 × 4 × 3 × 4 3 0.0375 8 0.2649 1 0.0421

7 2 × 2 × 2 × 2 × 4 1 12.3857 1 0.0891 1 0.0328

Table 9 The results of models based on positive region consistence

Table I1 × I2 × ... × Im CM-PR LM-PR SOSS-PR
|OSC1| Running time(s) |OSC2| Running time(s) |OSC3| Running time(s)

5 4 × 3 × 3 × 2 2 0.0562 7 0.2031 1 0.0484

6 2 × 2 × 4 × 3 × 4 3 0.0609 8 0.5089 1 0.0515

7 2 × 2 × 2 × 2 × 4 1 12.2326 1 0.1594 1 0.0375
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Table 10 The results of data sets(consistent)(The models in table are based on consistence)

Data sets Complement model Lattice model Stepwise optimal scale

OSC1 Running time(s) OSC2 Running time(s) OSC3 Running time(s)

Auto-MPG (1;1;2;2;2;2;1) 0.4514 (1;1;2;3;3;2;1) 8.2009 (1;1;2;3;3;2;1) 1.3350

Seeds (1;1;1;1;1;1;1) 0.2168 (2;1;1;3;1;3;3) (2;2;1;3;1;3;2) 10.5442 (2;2;1;3;1;3;2) 0.6372

Table 11 The results of data sets(consistent)(The models in table are based on positive region consistence)

Data sets CM-PR LM-PR SOSS-PR

OSC1 Running time(s) OSC2 Running time(s) OSC3 Running time(s)

Auto-MPG (1;1;2;2;2;2;1) 0.8814 (1;1;2;3;3;2;1) 17.4130 (1;1;2;3;3;2;1) 1.7846

Seeds (1;1;1;1;1;1;1) 0.4081 (2;1;1;3;1;3;3)
(2;2;1;3;1;3;2)

22.2005 (2;2;1;3;1;3;2) 0.8357

decision tables, the model based on positive region consis-
tence can also get the same results.

In fact, “the consistence of the single-scale subsystem” is
included by the “positive region consistence of it.” Therefore,
the model based on positive region consistent can efficiently
solve the problem of optimal scale selection in the consistent
and inconsistent multi-scale decision tables.

However, the lattice model based on positive region con-
sistence which can always calculate all the optimal scale
combinations is more time-consuming and costly. So future
research scopes will also include how to optimize the algo-
rithm of lattice model and reduce the time complexity so that
it can perform well in dealing with large data sets.
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