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Operation properties and («, §)-equalities of complex

intuitionistic fuzzy sets *
Zengtai Gong®'  Fangdi Wang®?

“College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, 730070, PR China
*Basic Subjects Department, Lanzhou Institute of Technology, Lanzhou, Gansu, 730050, PR China

Abstract: A complex intuitionistic fuzzy set is an innovative uncertainty set whose membership and
non-membership functions take values in the unit circle in the complex plane. This paper investigates
various operation properties and proposes a new distance measure for complex intuitionistic fuzzy sets.
The distance of two complex intuitionistic fuzzy sets measures the difference between the grades of two
complex intuitionistic fuzzy sets as well as that between the phases of the two complex intuitionistic
fuzzy sets. This distance measure is then used to define («, 8)-equalities of complex intuitionistic fuzzy
sets which coincide with those of intuitionistic fuzzy sets already defined in the literature if complex
intuitionistic fuzzy sets reduce to traditional intuitionistic fuzzy sets. Two complex intuitionistic fuzzy
sets are said to be (o, 8)-equal if the distance between their membership degree is less than 1 —« and the
distance between their non-membership degree is less than 3. Meanwhile we shows how various operations
between complex intuitionistic fuzzy sets affect given (o, 8)-equalities of complex intuitionistic fuzzy sets.
Finally, complex intuitionistic fuzzy relations are discussed and some examples are given to illuminate
the results obtained in this paper.

Keywords: Complex intuitionistic fuzzy set; distance measure; («, 8)-equality; complex intuitionistic
fuzzy relations; operation

1 Introduction

Atanassov [4, 5] introduced the concept of intuitionstic fuzzy set characterized by a membership func-
tion and a non-membership function, which is a generalization of fuzzy set [28]. The intuitionstic fuzzy
sets overcome the restrictions of fuzzy sets in handling conflicting information concerning membership
of objects and have numerous applications in modeling imprecision [17], pattern recognition [27], com-
putational intelligence [13], decision making [25], medical diagnosis problems [26] and medical image
segmentation [6, 15]. It is well known that the range of each membership function and non-membership
function are limited to the interval [0, 1], and their sum is also belongs to the interval [0, 1], i.e., they all
belong to the real numbers.

The question presented by Daniel Ramot and other researchers was that, what will be the result, if we
change the co-domain in the fuzzy sets to complex numbers instead of real numbers? In 2002, Ramot et
al. [23] proposed an important concept and called it complex fuzzy set, where the membership function
u(x) instead of being a real valued function with the rang of [0, 1] is replaced by a complex-valued function

of the form
/-Ls(x) =Tg (33) : eiws(m) (7' =V _1)a
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where r,(2) and wg(z) are both real valued function and r4(z) € [0,1], us(z) has a value in the range
of complex unit circle. However, this concept is different from fuzzy complex number introduced and
discussed by Buckley [7, 8, 9, 10] and Zhang [29]. Essentially as explained in [23] the complex fuzzy set
still remains the characterization of the uncertainly through the amplitude of the grade of membership
having a value in the range of [0, 1] whilst adding the membership phase wg(x). As explained in Ramot
et al. [23], the key feature of complex fuzzy sets is the presence of phase and its membership. This
gives those complex fuzzy sets wavelike properties which could result in constructive and destructive
interference depending on the phase value. Thus property distinguishes these complex fuzzy sets from
conventional fuzzy sets, fuzzy complex sets, and type 2 fuzzy sets [14, 16, 28, 29]. Several examples are
given in [23] which demonstrate the utility of these complex fuzzy sets. They also define several important
concepts such as the complement, union, intersection and complex fuzzy relations for such complex fuzzy
sets. On the basis of Ramot’s works, some researchers continued to study in the theory and applications

of fuzzy complex analysis [18, 19, 30].

As the extension of the intuitionstic fuzzy sets, in 2012, Alkouri and Salleh [1] proposed a new
innovative concept and called it complex intuitionistic fuzzy sets, where the membership function u(x)
and non-membership function v(x) instead of being real valued functions with the rang of [0, 1] are

replaced by complex-valued functions of the form
pa@) =7, (0) - €®ual® =y

and

VA(Z‘) ZSA(x)'ei@VA(I) 1=v-1,

where 7, (z) and s,(x) are real-valued functions and both belong to the interval [0, 1] such that 0 <
ra(z)+s,(xr) <1,alsow, () and @, , (x) are real-valued functions. They also discussed the basic oper-
ations on complex intuitionistic fuzzy sets, developed a formula for calculating distance among complex
intuitionistic fuzzy sets and gave its application in a decision making problem [2, 3]. Rani and Garg [24]
proposed a series of distance measures for complex intuitionistic fuzzy sets and applied them in pattern

recognition and medical diagnosis problems.

On the other hand, with an attempt to show that “precise membership values should normally be of
no practical significance”, Pappis [22] introduced firstly the notion of “proximity measure”. Hong and
Hwang [21] then presented an important generalization. Further, Cai [11, 12] introduced and discussed
d-equalities of fuzzy sets and their properties. As the extension of the J-equalities of fuzzy sets, the
d-equalities of complex fuzzy sets was discussed by Zhang et al [30]. Meanwhile, in 2013, Gong et al. [20]
investigated the (o, 8)-equalities of intuitionistic fuzzy sets by the dual triangle norms. In this paper, we
build on the results obtained in Gong’s paper by introducing some operations on complex intuitionistic
fuzzy sets and their properties and then investigate the important concept of (o, 8)-equalities which
allows us to systematically develop measures of distance between, equality and similarity for complex
intuitionistic fuzzy sets.

This paper is a continuing work of the papers of Alkouri and Salleh [1, 2, 3] and Gong et al. [20].
The rest of the paper is organized as follows: In Section 2, after reviewing the concept of complex
intuitionistic fuzzy set, some operations of complex intuitionistic fuzzy sets are introduced, and their
properties are discussed. Section 3 investigates («, §)-equalities of complex intuitionistic fuzzy sets and
discusses (o, 3)-equalities for various implication operators. Complex intuitionistic fuzzy relations are
discussed in Section 4 and some examples are given to illuminate the results obtained in this paper in

Section 5. Conclusion is given in the Section 6.



2 Operations of complex intuitionistic fuzzy sets

Definition 2.1 ([1]) A complex intuitionistic fuzzy set A, defined on an universe of discourse U, is
characterized by membership and non-membership functions u, (z) and v, (x), respectively, that assign
any element z € U a complex-valued grade of both membership and non-membership in A.

By definition, the values of i, (z), v, (z), and their sum may receive all lying within the unit circle
in the complex plane, and are on the form

pa(@) =7, (z) e“na®

for membership function in A and
Va (‘T) =54 (CL‘) va @)

for non-membership function in A, where i = /—1, each of r, (z) and s, (z) are real-valued functions and
both belong to the interval [0, 1] such that 0 < 7, (z) + s, (z) < 1, also €"“ua (™) and ¢®.4 () are periodic
function whose periodic law and principal period are, respectively, 27 and 0 < w,, (2),w, , () < 27, i.e.,
O a(x) = w,,(2) +2kn, ©,,(x) =w,,(z) + 2kn, k = 0,%£1,£2,..., where w_,(z) and w, , () are the
principal arguments. The principal arguments w, , (z) and w, , (x) will used in the following text.

Let IF*(U) be the set of all complex intuitionistic fuzzy sets on U. The complex intuitionistic fuzzy
set A may be represented as the set of ordered pairs

A= {{e, iy (), va (@) 2 € U,
where p, (2): U = {ala € C, |a| <1}, v,(x): U = {a'|d" € C, |a'| <1}, and |u, (z) + v, (z)| < 1.

Definition 2.2 (1) A quasi-triangular norm 7 is a function [0,1]? x [0,1]?> — [0,1]? that satisfies the
following conditions:

() T((1,1), (1,1)) = (1,1);

() T((a,), (06)) = T((b.), (@, ));

(i) T((a,a’), ( )) T((e,¢),(d,d)) whenever a < ¢, a <c¢ andb>d, b >d;

(iv) T(T((a,a’), (b,0)), (¢,¢)) = T((a,a'), T((b,b), (e,¢))).

(2) A triangular norm T is a function [0, 1] x [0, 1] — [0, 1]? that satisfies the conditions (i)-(iv) and
the following condition:

(v) T((0,0),(0,0)) = (0,0).

We said T is an s-norm, if a triangular norm 7T satisfies

(vi) T((a,a’), (0,0)) = (a,a’).

We said T is a t-norm, if a triangular norm 7" satisfies

(vii) T((a,a), (1, 1)) = (a,a).

(3) We said a binary function 7'

T IF*(U) x IF*(U) — IF*(U)

_ i sup TZ(W (93)70-’“3 (2))

T(A,B) <SHET1(MA (@), pp (2))-€ =<V

e

is a triangular norm if 77 is a triangular norm and T5 is a quasi-triangular norm; we said 7" is an s-norm

’

. inf Th(w W
, inf T1(v, (x ), v, (2))-e 2eb T2 va @ eun 2y
Te

if T) an s-norm; we said T is a t-norm if 7} a t-norm.

Definition 2.3 (Complex Intuitionistic Fuzzy Union) Let A = {{x,u,(x),v,(x)) : * € U} and B =
{{z, py(2z),v,(x)) : € U} be two complex intuitionistic fuzzy sets on U, p,(z) = r,(z) - e“ual®
wy(x) = rg(x) - s (@) v (x) = s,(x) - e“val® and v, (z) = s,(z) - €5 their membership and
non-membership functions, respectively. The complex intuitionistic fuzzy union of A and B, denoted by
AUB = {{z,u,,z@),v,, ;) :x €U}, where

Hoaos (@) = 74y (@) - €“na0m @ = max(r, (z), 7, (2)) - ¢ ™ @ua (@0 () (2.1)



and
Vaon (@) = 8,05 () - €“va0m @ = min(s, (2), 5, (x)) - & M0 E0a @5 @), (2.2)

Example 2.1 Let
A— (0.5-¢11-27 0.4.¢10-87) n (0.4-¢19-57 0.6.¢i1-37) " (0.3-¢127 0.5.¢71-57)

T Yy z !
{0.6-¢1027 (.3.¢i1-87 0.2-¢10:57 0.6.£10-57 0.7-¢i™,0.1.£10-97
B = T + y + z ’
_{0.6-¢'1:27 0.3.¢10:87) (0.4-¢10-57 0.6.¢10-57) (0.7-€27 0.1.¢70-97)
then AUB = 2 + m + = . &

Theorem 2.1 The complex intuitionistic fuzzy union on IF*(U) is an s-norm.

Proof Properties (i), (ii), (v) and (vi) can be easily verified from Definition 2.3. Here we only prove
(iii) and (iv).

(iii) Let A, B, C and D be four complex intuitionistic fuzzy sets on U () =1, (x)-e
By (@) = ry (@) - enn g (2) = ro (@) - 0@, (@) = 7y (2) - €00 Va(@) = 5, (@) - eton @),
vy(x) = s,(x) - e, p () vo(x) = s.(x) - ee (@) and v, (x) = s,(z) - e
and non-membership functions, respectively. Suppose |u, (z)] < |p(2)], w,,(2) < w,.(2), |v,(z)] >
e ()], w,4(2) = w,o (@) and |pg (2)] < [pp, (2)], w,5(2) Sw,,(2), [V, (2)] > v (@)], w,p(7) > w,,(2),
for any x € U. We have

LN (ac)7

w

(*) their membership

|Haos (2)] = max(r, (2), 7, () <max(re(z),r,(2)) = |peop ()],

W, auB) (‘r) = max(w“A (.23), W, B (JJ)) < maX(ch (‘r)7wHD (.13)) =W, cup) (.ﬁ),
and

‘VAUB(Z‘)| = min(sA (x)’SB(x)) 2 min(sc(x)aSD (33)) = |VCUD(':U)|7

W, aum () = min(w, , (2),w,, () > min(w, (z),w,, () = W, cop (@)-
(iv) Suppose A, 'B and C be three complex intuitionistic fuzzy sets on U, p,(z) = r,(z) - €“ua @
o (&) = 7 (@) - €908 (1) = o (1) - 00D v, () = 5, (2) - €04 ®, 1, (2) = 5, (2) - €m® and
v (x) = s.(x) - “ve(®) their membership and non-membership functions, respectively. Then
Heausyue (z) = TauByuc (z) - e mavmLe) = maX(TAuB (z),re(x)) - e X @uaom (e ()
max(max(r., (2), 5 (1)), 7 (1) - € M ()40, 2 5, (2

i max(qu (w),max(wMB (:E),w“c (z))

w

max(r, (x), max(r, (z),r,(x)) - e
= Hiusuo (SL’)

Vrsmoe (®) = 8 aumue (@) - e rawmuo @) = min(s , (2), 5 (2)) - ™ vaum (e ()
= min(min(s,q (.13), Sp (l‘)), Sc (.23)) ' ei min(min(w, , (@).w, 5 (2)),0, ¢ (2))
= min(s, (z), min(s, (z), s, (x)) - €™, 4 @) min(w, 5 (@).0, o (2))

=V

O

AU(BUC) (:L')

Corollary 2.1 Let C, € IF*(U), a € I, pu (v) =7, (T)- e™“uca ®) and Ve, (2) = s, (2) e (*)
its membership and non-membership functions, respectively, where I is an arbitrary index set. Then
Uacr Ca € IF*(U), and its membership and non-membership functions are

1SUP, e WL, (z)

Hocrea (33) =Suprg, (SC) e
ael

and

inf ‘
s (l‘) _ éIéfIS . (I) et Maerw, o, (r)



Definition 2.4 (Complex Intuitionistic Fuzzy Intersection) Let A = {(z,pu,(z),v,(z)) : © € U} and
B = {(z,p,(x),v,(x)) : & € U} be two complex intuitionistic fuzzy sets on U, p, (z) = 7, (x) - €"“na @),
oy, () =7, (x) 8@y (z) =5, (x)-€“va® and v, (z) = s, (2)-e“»2 @ their membership and non-
membership functions, respectively. The complex intuitionistic fuzzy intersection of A and B, denoted
by ANB = {{z,p (@), v, 5 (x)) : x € U}, where

foans (@) = 7405 (@) - €xanm @ = min(r, (2), 7, (2)) - ¢ ™0 @na (02,5 () (2.3)
and
Vs () = 8,405 () - €“vanm @ = max(s,, (z), 5, (2)) - €M @ua (@5 @) (2.4)

Example 2.2 Let
. (0.5-¢7127 .4.¢70-87) (0.4-¢10-57 0.6.¢i1-37) (0.3-¢127 0.5.¢71:57)
A= + + )

xX z
(0.6-670:27 (.3.¢i187 0.2-¢70-5% () 6.¢?0-57 0.7-¢"™,0.1-10-97
B + +
- T z ’
(0.5.¢10°27 (.4.¢i1:87) (0.2-67057 0.6.¢11:37) (0.3-¢',0.5.¢11:57)
then AN B = = + . + - . &

Theorem 2.2 The complex intuitionistic fuzzy intersection on IF*(U) is a t-norm.

Proof Properties (i), (ii), (v) and (vii) can be easily verified from Definition 2.3. Here we only prove
(iii) and (iv).
(iii) Let A, B, C and D be four complex intuitionistic fuzzy sets on U () =7, (x) - e“na @),

o () = 1y (&) - ) (@) = ro(@) - €0, (@) = 1y (o) - 0, (@) = (@) - @),

ve(z) = s,(x) - €@ v () = s.(x) - e“vc@ and v (x) = sD(x) - eup (@) their membershlp

and non-membership functions, respectively. Suppose |u, (z)] < |u(2)], w,, () < w,.(2), v, (z)] >
(z

Ve (@)], w4 () 2 w,c () and |p, (2)] < |pp (2)], 0,5 (1) S w,p (@), [V (2)] > v )I o5 () 2w, p (),

for any z € U. We have
|Hanp (@)] = min(r, (z),r, () < min(re (z),r, () = |peqp (€)1,

W, (anB) (z) = min(w;m (z), W.p (z)) < min(wuc (z), W.p (z)) = W, (cnp) (z),

and
‘VAQB ($)| = maX(SA (CL‘), Sp ($>) > max(sc (CL’), Sp (CL‘)) = |chD (.%')|,

Wy anB) (x) = max(qu (x)kuB (m>) > max(wuc (.’L‘), W, p (CIL‘)) =W, cnp) (x)
(iv) Suppose A, 'B and C be three complex intuitionistic fuzzy sets on U, p,(z) = r,(x) - e“ua (1)7
pp (@) =715 (2) - eur @ () =7 () ey (@) =5, (2)  €9a @, v, (2) = 5, (2) - e*vr () and
v.(x) = s, (x) - “ve(® their membership and non-membership functions, respectively. Then

Hanmyne () = Toanpne (@) - € “nanmno @ —min(r,  (2),r (2) - ™" Cuanm (0 ()

= min(min(rA (gg)7 Ty (x)), e (x)) et min(min(w, , ()., 5 (%))W, (@)
= min(r, (), min(r, (2), 7 (1)) - ¢ P 2D ()15,
= Hineno (x) A
Wy anmneoy (@) _ maX(SAUB (x)’ S (x)) e’ max(w, 4, gy (#)w, ¢ (€))

) zmax(max(qu(r),wyB (z)),wuc (z))

Vians)nc (z) = ScanB)nc (z)-e
= max(max(s, (), 5, (2)), sc(z)
zmax(sA(m) max(s ( ) ( )) zmax(w (J:),max(wuB(z),wVC(z))

= VAm(BmC)(x)' U

Corollary 2.2 Let C, € IF*(U), a €1, . (z) =7, () ce™uca ™ and Ve, () = 5. (x)- evea (@) s

membership and non-membership functions, where I is an arbitrary index set. Then (,.; Co € IF*(U),

and its membership and non-membership functions are
iinfaer W, (z)

ﬂmaelca (x) = géfl Teg (:E) e



and
((p) =supsg, (.’E) . ei SUPaer Wy oy, (1)

n c
e1Ca
« acl

(z)

Corollary 2.3 Let Cop € IF*(U), o € I, 8 € Iy, fe,, (x) = Teos (x) - ¢“ncas'™ and Ve, () =

So (x)- e “rCap (@) its membership and non-membership functions, respectively, where I; and I> are two

c(xﬂ

arbitrary index sets. Then U,c;, Nper, Caps Naer, User, Cap € 1F*(U), and their membership and

non-membership functions are

isupaEI1 infger, W, s (x)

x) = sup inf r xT)-e “Co

Honer, naerycas (F) = S0P J0f 7o (2) ,

tinfaery SUPger, W, (z)

te . o (xz)=inf supr, (x)-e ap
acly - Belx™~ap aEIlﬁe] Cap

and

iinfoer, supgey, w (x)

Vv, o (z)=inf sups, (x)-e TR TCap
a€li''Belx~ap acl; Bels Cag

iSUpaell infger, W, (z)

v o (x)=sup inf s, (z)-e wp
NaeryYpeiaCap acl, BED Cap

Corollary 2.4 Let Cy € IF*(U), k=1,2,..., po, (v) =7, (z)-e“rer ™ and Ve, () = 5, (z)-€e“von
its membership and non-membership functions, respectively. Then

MTHOOC'” ﬁ Ej Ck, hmn_mo Ej ﬁ k S IF* )
n=1k=n n=1k=n

and their membership and non-membership functions are

(z) = inf supr, (z)- ¢! infnz1 8Pk 0,0, (@)

m714>oock n>1 k>n

I

isup, inf w T
lu’lixnn%oock (I) = sup inf To Cy (:E) e Prz1h2n “ck( )a
T n>1k2n
and
isu inf w T
() =sup inf s k(:l:) . g SiPnz1Mkzn vey (2)

Timp — 00 C, n>1k>n ’

iinf su w T
o (@)= inf sups. (z)-e n218UPk>n e ( ).
k k

n2lg>n

lmy, 0

Definition 2.5 (Complex Intuitionistic Fuzzy Complement) Let A = {{(z, p,(2),v,(z)) : x € U} be a
complex intuitionistic fuzzy set on U, pu, (z) =7, (z)-¢™»4® and v, (z) = s, (z)-€™“»4 @) its membership
and non-membership functions, respectively. The complex intuitionistic fuzzy complement of A, denoted
by A and defined by following ways:

(1) 7 = {2 v, (2), 1, (2))

(ii) A = {{z, p,(z),v,(x))}, where p (z) =71 (2)- e“nal®), vi(r)=s,(x)- ¢®.a® and r

L) =1-
W, () w, 4 (@)
r,(z), sg(m)zl—sA(x),wM(x): 21 —w, () = —w,, (), andw ,(z) =< 21 —w,,(z) = —w,, ().
w, (@) +m W, (7) +

The following example use the first way of Definition 2.5 to calculate the complement of the complex

intuitionistic fuzzy set A. Note that if the second way is used, the corresponding results also can be

obtained.
0.5.¢11:27 (.4.¢10-87 0.4.¢10-57 (.6.¢i1:37 0.3.¢127 (.5.¢i1:57
Example 2.3 Let A = (&3¢ "7.04e"77) | (04e 77067 7 7) 4 (0.3¢77.05¢" 7)
then 7 — (0.4-¢70°87 0 5.¢11:27) n (0.6-¢°137 0.4.¢70-57) n <0V5_611.57r70'3_€127r>' o

T Y z



Proposition 2.1 Let A, B and C be any three complex intuitionistic fuzzy sets on U, then the following
propositions hold:
(i) AUA=A, ANnA=A4
(i) AUB=BUA, ANB=DBnA4;
(iii)) (AUB)NC=(ANnC)Uu(BNn(C), (AnB)UC =(AUuC)Nn(BUCQC);
(ivy An(BNnC)=(AnB)nC, Au(BUC)=(AUB)UC;
(v) (ANB)=AUB, (AUB)=ANB:;
(vi = A.

Proof Here we only prove (iii), (iv), (v) and (vi). Let A, B and C be three complex intuitionistic fuzzy
sots on U, 1, () = 1,(2) - €452, 1, (2) = 1, (2) - €5 ®, g (1) = 10(2) - €50, v, () = 5, ()
e“va® y () = s,(x) - v ™ and v, (z) = s.(x) - €“vc(® their membership and non-membership
functions, respectively. The complement of A and B are A = (z,v, (), 1, (z)) and B = (2, v, (1), u, (),
respectively. Then

(iii) First of all, we prove that (AUB)NC = (AN C)U(BNC), since
m) . eiwu((AuB)ﬁC) (@) _ min(rAUB (33)7 e (x)) . eimin(wu(AuB) (@)w,c ()
D)1 (@), o () - €TI0 (0, () 0,0 ()

$)7 re (.Z')), min(rB (.’IJ), T ({E))) . ei max(min(wMA (:r),wuc (a:)),min(wuB (a:),wuc (z)))

Keauyne (aj) =T auB)nc (

= min(max(r

.

= max(min(r

. eiwu((AﬂO)u(BﬁC’))(x) —

=T ancyusne) (z) = Hancyusno) ().

(aumyne (@) - "riaumne) (7) — max(s, ,(x),s,(z)) - et Max(W, 4y (2)w, 0 ()
= max(min(s,, (z), s, (2)), s, (x)) - et maxmin(w, , (@), ;5 (#)w, ¢ ()

_ mln(max( ( ) ( )) max( (ZC), Se (LE))) . ei min(max(qu (a;),wuc (a:)),max(wVB (w),wuc (x)))

VauBync (r) =s

Y ((ANC)U(BNC)) (2) — v

S(AﬁC)u(BﬂC)(I) ) (AnC)u(BNC ().

It implies that (AUB)NC = (ANC)U (BN QC).
Similarly, we can prove that (AN B)UC = (AUC)N(BUC).
(iv) First of all, we prove that AN(BNC) = (A N B) N C, since
<<>%m<»é““M“WmNW
a (@),

mm(wuB (1),01“(; (%))

— ()
_rm(mc)(x) e'“nan(Bnoy)

= min(r, (), min(r, (), 7. (z))) - € ™"
e (), 73 ()7 0) 0 1 )
(x) . eiwu((Ar‘nB)ﬁC)( ©) _ = Wianmne (g;)
Variney (@) = S anany (@) - €900 ) = max(s (1), 5.0 (2)) - €
= maX(SA (ZL’), max(sB (ZL’), Sc (IE))) et max(w, , (@) max(w, p (@), ¢ (2)))
s (.%), S, (x))’ 5c (x)) . eimax(max(qu(x),wuB(m)),wuc(m))

Y ((ANB)NC) (z) _ = v

Hancene) (x)

=T anB)nc

imax(w,, , (‘T)’wu(BmC) (z))

= max(max(

S(AnB)nc (w) : (AnB)NC (x)

It implies that AN (BNC)=(ANnB)NnC.

Similarly, we can prove that (AUB)UC = AU (BUC).

(v) First of all, we prove that (AN B) = AU B, since
/JJW('I) = VAmB(x) = SannB ('1:) - Cvians)

— max(sA (x)’ Sp (I)) . ei maX(UJUA(waHB (z))

()

=ty 5 (T)

(AnB) (l’) /»LAQB(I') = TAmB(z) e u(AmB)(I)
= min(r, (x),r,(z)) imin(w, 4 (2),w, 5 (@)
= Vg5 ().

It implies that (AN B) = AU B.
Similarly, we can prove that (AU B) =
(Vi) p(@) = vy (2) = p,(2) and v_(z) = py(x) =v,(2), e, A=A O

EN(



Definition 2.6 (Complex Intuitionistic Fuzzy Product) Let A and B be two complex intuitionistic fuzzy
sets on U, p,(z) = r (z) - e“na® 1 () = s, (x) - €“a@® p(2) = ry(z) - 8@ and v, (z) =
s, (1) e“vn (*) their membership and non-membership functions, respectively. The complex intuitionistic
fuzzy product of A and B, denoted by Ao B = {{z,p,, (%), v,,,(x)) : © € U}, where

?7 AoB

uA<1) w,B (@)

faon (@) =745 (@) - €“nrom @ = (1 (@) 7, (2)) - 272 ) (2.5)

and

Vaop (T) = 8,4,5() - Wu(aom) ()

w (z)  w (z) w (z) w (x)
( V?ﬂ- + V2B" _vA ._vB )

— 127
- (SA (l‘) + 55 (.13) —S5a (J?) "Sp (.Z‘)) € 2 2 (26)
Example 2.4 Let
0.5-¢'127 (. 4.i0-87 0.4-¢70-57 (. 6.i1-37 0.3-¢%27 0.5.¢i1-57
P ) , ) 4 03670507
0.6-¢10-27 (0.3.i1:87 0.2:¢10-57 (0.6.70-57 0.7-¢™ 0.1.¢10-97
B! K ) | L ) | QT 01e0
0.3.¢10-127 () 58.i1.887 0.08-70-1257 () 84.¢i1.4757 0.21-€7™ 0.55.¢11:7257
then Ao B = L3¢ 2T058 M%) | (0,086 B 080T | (0216055 T o

Theorem 2.3 The complex intuitionistic fuzzy product on IF*(U) is a t-norm.

Proof Properties (i), (ii), (v) and (vii) can be easily verified from Definition 2.3. Here we only prove
(iii) and (iv).
(iii) Let A, B, C and D be four complex intuitionistic fuzzy sets on U, p,(z) = r,(z) - e“na@,

Ha (@) = ro(@) - een @ g (@) = ro (@) - e ne @, (2) = vy (2) - €m0 @, v, (1) = 5, (2) - €0a ),
vo(z) = s,(x) 5@ v () = s.(x) - e“vc@ and v (a:) = 5, (z) - €“»0® their membership
and non-membership functions, respectively. Suppose |u, (z)] < |p(2)], w,, () < w, . (2), |V, ()] >

e ()], w,a(7) 2w, (z) and [p, (2)| < |pp (2)], w,p(7) Sw,, (2), vy (2)] 2 vy (7)), w5 (2) = w,, (2),
for any € U. We have
Baos (X)] = [ra(@)] - [rp (@)] < ro ()] - |rp (@)] = |peop ()],

90®) 2 )) _y 80) £ 0)

WH(AOB)(:I;) = 27T( o o o o ) = w“(COD)(ZL‘)7

and
Vaos (@) = |5, (@) + |55 (2)] = [s4(2)] - [s5(@)] = |sc (@) + |55 (@)] = |sc (@)] - |sp (2)] = [Veon (@),

w,(2) w5 w,(7) w,(@) we(@) wp@) weolr) wy(@),
2 or 21 on ) 2 2m(= 2w or  2r  °on; )*WWCOD)(:C)'

W, (408 (z) = 2m(

(iv) Suppose A, B and C be three complex intuitionistic fuzzy sets on U, u,(z) = r,(z) - e“na @
po (@) =1y (@) @y (@) =ro(2) - e @ v, (@) = s, (@) €9a®, v, (@) = s, (2) - v @) and
vy (x) = s, () - €“vc @) their membership and non-membership functions, respectively. Then
>(m> w, o (@)

T)

w
iw . u(aoB) )
127 ( o

R W R CRE

ar(p® 2up @),

< & e (@

= ((TA(x) "T'p (33)) : Tc(m)) et " )
A @) QW(L(I) ‘”uCﬂ(m))

= (r, (@) (ry(z) - ro(2))) - 27757 o )
= lqu(BoC)

(
(x).

HiaoByoc (.’L‘) =T aoB)oc ('T) e

V(AoB)oC (IE) - (AoB)oC (IE) ' 6 U((AOB>OC) (a:)

= (SAoB (:E) +sc (IB) - SAOB('T) So (.’ﬂ )
= (54 (@) + 55 (2) =5, (2) - )(x F50(@) = (54(2) +55(2) = 5,(2) - 55(2)) - 50 (2)):

w, (x) w, (x) w, (x) w, (x) w, (x) w, (x) w, g
i27r(27r( A + 2B7r i )+ VC’('T) 2n( 2A7r + ZBﬂ' — éqﬂ' | 2B7r

(2)
iam(Dtaem) )

w,o@)  “yaoB)®) w, o @)
- 27 T 2w )

27

S
va(®
2

2w

N

) w, e (@)
=)

e PLd



I
—
V)

hS
8
~
+
»
o
—
&
+
»
Q
8
~—
\
»
o
8
~—
Q
—
&

—5,(1) - (55 () + 50 () — 55 (2) - 50 (2)))-
) an(Bep B tug®  up D Mg w6 g g
27 27 2m

) an(Bep® | g @)

) w, (@
61271'( S
_ iw (@)

- SAO(BOC') ('T) e v(ao(Be))

O

=V oBoc) (I)

Corollary 2.5 Let C, € IF*(U), a € I, i (v) =7, (T)- e"“nca ™) and Ve, (1) = s, () - ¢ ven (@)
its membership and non-membership functions, where I is an arbitrary index set. Then [] ., Co =

Cio0Cy0---0C, € IF*(U), and its membership and non-membership functions are

w0 @) 240, @) w0, )
Unaelca (Jﬁ) = (Tcl (.73) “To, (Jﬁ) o To, (.I)) -e”? (= e )
and
Vipes ea () = [0, (@) 50, (@) + - 4 5 (2) =+ (=1) (s, () - 8¢, () - - 50, ()]

. wuoq (@) wue, (@) w () —ne—l wyo (@) woy (@) w,o, (@)
B b e B )

(27r)2 27 27w 27

=t

Definition 2.7 (Complex Intuitionistic Fuzzy Cartesian Product) Let A,,, n =1,2,..., N be N complex

intuitionistic fuzzy sets on U, p, (z) =r, (z)- e“nan (@) v, () =s, (x)- ¢"“van® their member-
ship and non-membership functions, respectively. The complex intuitionistic fuzzy Cartesian product of
Ap, n=1,2,...N, denoted by Ay x Az X -+ X AN = {(¥, fy ayroay (T) (x)) 1z € U},

where

VA xagx - xAy

iw (z)
_ . ApXAgX- XA
IU’A1><A2><~»><AN(‘/L.)_rAlezxmxAN(x) e nlArxAzx X AN)

= min(r, (2),7,, (@), 1, (@) e ™ g (0@ (@) (2.7)
and
iw (z)
ValxAgx - xAyx (l‘) = Sa xAgx- XAy ('r) e VAL AN)
= max(SAl ($)7 Sa, (x), SIS SAN (x)) . ei max(wVAl (x)kuAz (at)v“'kuAN (m)) (28)

Example 2.5 Let
A (0.5-¢1127 0.4.¢10-87) n (0.4-€19-57 0.6.¢i1-3m) " (0.3-¢127 0.5.¢71-57)

x Z )
B_ (0.6-670°27 03,0187 n (0.2.670°57 0.6.£10-57) n (0.7-67™,0.1.610-97)
- T z ’
i0.27 il.87 i0.57 i0.87 ir i0.97
.5 4 2. .6 .5 4
then A x B — (0.5-e ("L,z) e ) (0.2-e (w,g)G e ) (0.5-e (fz)e )
n <0.4‘e1'0.27r,,0.6.ei1,81r> <0V2.e'£0,57r7,0.6'ei1.37r) <O.4'ei0.57;70_6.ei1.37r>
) ) )
n (0.3¢10-27 () 5187y n (0.2¢10-57 0.6¢11-5™) n (0.3¢77,0.5¢4157) o
(z,7) (z.v) (2,2) :

Definition 2.8 (Complex Intuitionistic Fuzzy Probabilistic Sum) Let A and B be two complex intu-
itionistic fuzzy sets on U, pu, (z) =7, (x) - s @ v (2) = s, (2) - *va® p_(z) =1, (z)-e“ss and
v,(z) = s,(z) - €5 their membership and non-membership functions, respectively. The complex
intuitionistic fuzzy probabilistic sum of A and B, denoted by ATB = {o,p,. (), v, (x) 2 €U},

where
w o (z)
oy (@) = 7, (0) - i
wa@ w p@) w (@) w o)

= (ra (@) 475 (@) = 7, (2) -7y () - €27 B T ) (2.9)
and

v.. (x)=s_ (z)- eviarm ) = (s (x) - s,(x)) ~ei2”(%2A7ﬂ(w)'%2Lw(w)) (2.10)

ATB T “aAFB —\°a B . .



Example 2.6 Let
0.5-¢11:27 0.4.£10-87 0.4-€10-57 0.6.i1-37 0.3-127 0.5.1157
A= B )4 4 - by 4 0 )7

B_ (0.6-¢70-27 (.3.¢11:87) n (0.2-¢19-57 0 6.¢10-57) n (0.7-¢,0.1.¢10:97)
- T z ’
~ 0.8.¢11:287 () 19.0i0-727 0.52.0i0-8757 () 35.,i0.3257 0.79-¢2™ (.05.¢i0-675™
then AFB = {&&e 1042 7)  (082e 7080 7) 4 (079e T00e D), O

Theorem 2.4 The complex intuitionistic fuzzy probabilistic sum on IF*(U) is an s-norm.

Proof Properties (i), (ii), (v) and (vi) can be easily verified from Definition 2.3. Here we only prove
(iii) and (iv).

(iii) Let A, B, C and D be four complex intuitionistic fuzzy sets on U, u,(x) = r,(x) - e
o (2) = 1 () - €00, g (1) = e (@) - €00,y (2) = (o v (@) = s (@) s eea®,

VB("L‘) = SB(JC) . eiw"B(x)7 Vc(x) = Sc(x) - eve®) and VD('I:)

W, g (2)7

)
= 5,(x) - €@ their membership
and non-membership functions, respectively. Suppose |u, (7)] < |uq(2)], w,, () < w,.(2), v, (2)] >

e (@)], w, 4 (2) 2 w,c () and |p, (2)] < [pp (2)], w, 5 (2) Sw,p (), (v (@)] 2 vy (2)], w,5(2) 2 w,,(2),
for any = € U. We have

W yep @) = [ra @)+ [ (@) = |ry(@)] - |rp (@) < fro (@) +[rp (@) = re (@)] - [rp (@) = |1, (@)1,

(wuc(x) W, (%)

(z) = %(ww(x) W5 (T) W, () W,p (:B)) W, (2) .w“D(x)) B

w - ()= + <27 — =w __(2),
#(A+EB) 2 2 2 2 2w 2w 2 2 n(C@+D)
and
Vo p (@) =[5, (@) 55 (2)] > [so ()] - |8, (@) = |V, , (@)1,
o Wou(®@) w,,(@) wol(®) w,p(@),
W, arp (@) = 2“(7 : T) 2 QW(T S ) =W, i (@)

W, g (w)7

(iv) Suppose A, B and C be three complex intuitionistic fuzzy sets on U, u,(x) =r,(z) - e
po (@) =r5(2) @ (@) =ro(2) e @ v (@) =5, (@) €a @ v, (@) = 5, (2) - v @ and

v, (x) = 5. (x) - €“vc(®) their membership and non-membership functions, respectively. Then
_ ()

B T(AlB)lc(

:(TA;B(I)+TC(‘T)7 ATB
(ra(z) + 7y () — ( )-

wua@ @, p@ A(“"). ;LB( Wpa@ @, p@E) @ @) v g
i27r(27r( 27 27 27 27 )_;,_ F‘C(m) (ot —on o o ),qu(I))
o o o o

= (ra(@) +ry(@) +re(@) —ry (@) re(2) =, (2) - (rp(2) + 7o (2) =1y (2) -0 (2)))-

w o (z) w ) an w,5(@) w,0@) w, gE) w @

() z) - e natmio
Pazpic

2 w;A(A-T—B)<m) wuc(m),wu(A-T-B)(M “uc (@)

(x) 7o (x)) - (a5 o o)

-

(@) +ro(@) = (ry(@) +rp (@) =7, (2) -1y (7)) - 7 (7))

w

2m( “A<l> 21(wu§ﬂ-(z + “C( — NQB.,\- . Mc( ) ;LA(J' o7 HQC.,\. T ox T orx )
! ” " P P
= Tarmio (z) - 6M“<A1<Bic>>(‘”)
- MA-T—(B.T_C) (1’)
‘ @ T (@)
iw ~ - (x) e ain @ o
V(A:LBHA'C (x) - S(AJ;B)J;C (x) e e = (SAJ?B (-T> " Se (SU)) . et2m( 27 )
27"(UJ’L(Z)'WVL(E)) w, o (@)
= ((s,(x) - 5,(x)) - 5.(x)) - 27 e B v
. w4 () 2W(Lw<ﬂ")_w4y(;&)
— (5, (@) - (5, () - 50 (2)) - 2T T
- VA+(B+C) ('T) .

Corollary 2.6 Let C, € IF*(U), a € I, u.,_(z) =1, (x) e“rca @) and v, (2) = ¢, (x) - €“vea @) g
membership and non-membership functions, where I is an arbitrary index set. Then C FCF - FC, €

IF*(U), and its membership and non-membership functions are

Beroninge, @) = e, (@) + o, (@) + - e (@) =+ (1) g, (@) e, (2) -1, ()]
i27\-[( wug}r(m) +w”€i(m)+-<-+w“g‘; (m))—<~-+(7(;)7::2 1 ( MC1 (T)‘wug"zr (m) N Nca (z) )]
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and

“uoy ) Wy, (@) wyog (@) )

27 (—5 pX 27

Vclicf?-».;ca (:L’) = (301 (:L’) “Se, (CC) T Sey, (x)) €
Definition 2.9 (Complex Intuitionistic Fuzzy Bold Sum) Let A and B be two complex intuitionistic
fuzzy sets on U, pu, (z) =7, (z) - €“na@ v (@) = s, (x) - €“va® p_ (2) =71, (x) “n2@ and v, (z) =
s, (1) e“vn (*) their membership and non-membership functions, respectively. The complex intuitionistic
fuzzy bold sum of A and B, denoted by AUB = {(z, ., (x),v,,,(x)) : x € U}, where

» T AUB
Poaop(@) =71, ()" e“utavm @ — pin (Lr, () +r,(z)) - et min 2mw, 4 (@) 4w, 5 (@) (2.11)
and
Veop (@) =5, ,(x)- e™uaos) @ — pax 0,7, () +ry(z)—1)- et max (0w, 4 (@) 4w, p (2)=2m) (2.12)

Example 2.7 Let
A— (0.5-¢11-27 0.4.¢10-87) " (0.4-¢10-57 0.6.¢i1-37) " (0.3-¢127 0.5.¢71-57)

T z ?
B (0.6-¢10-27 0.3.¢71-87) n (0.2.€19-57 (.6.¢70-57) " (0.7-¢1™,0.1.¢10-97)
o T . Y v E ’
. _ (Lef147 0.10-6m) (0.6¢'™,0.2.¢707) (1-€727 0.¢10-47)
then AUB = p + m =+ S . &

Theorem 2.5 The complex intuitionistic fuzzy bold sum on IF*(U) is an s-norm.

Proof Properties (i), (ii), (v) and (vi) can be easily verified from Definition 2.3. Here we only prove
(iii) and (iv).

(iii) Let A, B, C and D be four complex intuitionistic fuzzy sets on U, u,(z) = r, () - “na(®
pa(@) = o) - €“ur (@) = ro (@) - e ™,y (2) = rp(2) - 0@ v (2) = s, (x) - eal),
vy(z) = s,(x) - €@ v () = s.(x) - e“vc@ and v, (z) = s,(z) - €“vp@ their membership
and non-membership functions, respectively. Suppose |u, (7)] < |uq(2)], w,,(v) < w,.(2), v, ()] >
Ve ()], wou(2) 2 w0 (2) and |, ()] < |pp ()], w,5(2) Sw, 5 (2), Vs (2)] 2 vy ()], w5 (2) 2w, (2),

for any z € U. We have

|.u“AuB (1‘)| = min(l,TA(zzr) + TB(I)) < min(l,rc(a:) +7r, (I)) = |HCQD (I)|a

W, aom (T) =min2r,w,, (2) + w,, (7)) < min2m,w,. (2) +w,, (@) =W, cop (@),

and
V0 (@)] = max(0, 5, (@) + 5, (2) — 1) = max(0, 5, (2) + 5, (&) — 1) = [y, (@),

W, anm (2) = max(0,w,, (z) +w,,(z) — 27) > max(0,w,. (¥) + w,, (2) = 27) =W, o0 p (T).

iw, ,(x)

1v) Suppose A, an e three complex intuitionistic tuzzy sets on U, p,(x) = r,(x) -e "~ ,
iv) S A, B and C be th lex intuitionistic f U, p, \

s (@) =75 (2) - 0n i (0) = e () e (0) = 5, (1) - @0a @),y (0) = 5, (2) - €0n @) and
vo(x) = s, (x) - e“ve(®) their membership and non-membership functions, respectively. Then

7) = 7o (1) €000 ) = min(Lr (1) £ 7o (@) - o T o 0T e ()

= min(1, min(1,r, (z) + r,(x)) + r (x)) - i min(@mmin(2mw, , (0)+w, 5 @)+, (@)
=min(1,r, (z) + min(1,r,(z) + r,(2))) - et min(2mw, 4 (2)+min(2mw, b (2)+w, o (2))

_ min(l, r, (.’ﬂ) + - (x)) ) 61 mm(27r WA (z)+w

= Pausocy (z).

'LL(AL'JB)UC(

W(BUC) (@)

elwu((AUB)UC)( z) maX(O,SAU l’) ( ) ).ezmax(O,w (AUB)(z)erVc(z)f%r)

Viausyoc (gj) = S aumuc (I) (
) imax(0,max(0,w, , (z)+w, 5 (¢)—27) 4w, (x)—27)
):
(

= max(0, max(0, s, () +s, () =1)+s. () -
= max(0, s, (x)+max(0, s, (x)+s. (z ) 1)—-1
_ maX(O, s, (.73) + . (l‘) _ 1) i max(2m, W, A z)+w

(&
el max(0,w,, , (z)+max(0,w, 5 (z)+w, o () —27)—27)
2m)

»(BUC) ()=

= Vaumoo (z). 0

11



Corollary 2.7 Let C, € IF*(U), a €1, u, (x) =7, () ce™uca @ and Ve, () = s, ()" evoa (@) its
membership and non-membership functions, where I is an arbitrary index set. Then C;UC,U ---UC, €

IF*(U), and its membership and non-membership functions are
Lo, oopo. oo, () = min (1, Teo, () + Te, (x) +-- -+ Te. (2)) - ot min 2mw, o (@) tw, o) (D)4 tw, o ()
and

Ve, oop0. 00, () =max (0,7 () + 1o, () +- -+ 71 (2) = 1) e max (0w, o (@) 4w, o, (@) 4 tw, ¢, (2)=2m)

Definition 2.10 (Complex Intuitionistic Fuzzy Bold Intersection) Let A and B be two complex intu-
itionistic fuzzy sets on U, p, (z) =7, (x) - €“a® v (2) = s, (2) - “va@ p_(z) =1, (x)-e“s5 and
v, (z) = s,(z) - €“vs® their membership and non-membership functions, respectively. The complex
intuitionistic fuzzy bold intersection of A and B, denoted by ANB = {(z,u,.,(x),v,.,(x)) : @ € U},
where

Poarg(@) =71, ()" e™ucanm @ = max 0,7, (z)+7r,(x)—1)- et max (0w, 4 (@) 4w, p (2)=2m) (2.13)

and
Ving (.23) =Sanm (Qf) : eiwl’(AhB)(m) = min (17 Sa ($) + 5p (1‘)) el min (27, 4 (z)-HUVB(z))' (214)

Example 2.8 Let
A (0.5-¢11:27 0.4.£10-87) n (0.4-€19-57 0.6.¢i1-37) n (0.3-¢127 0.5.¢71-57)

T z ’
(0.6-670:27 (.3.¢i1-87 0.2-¢%0:57 (.6.¢70-57 0.7-¢'7,0.1.10:97
B = T + y + z ’
oy (0.1-607 0.7.¢927) (0107 1.¢91:87) (0-¢'™,0.6-¢727)
then ANB = = + m + 2 . &

Theorem 2.6 The complex intuitionistic fuzzy bold intersection on IF*(U) is a t-norm.

Proof Properties (i), (ii), (v) and (vii) can be easily verified from Definition 2.3. Here we only prove
(iii) and (iv).

(iii) Let A, B, C and D be four complex intuitionistic fuzzy sets on U, p,(z) = 7, (x) - € “na(®
Hp (33) = TB(‘T) ’ 6ZW“B(I)5 :uc(‘r) = Tc(m) : ezwuc(w)’ Hp (1‘) =Tp (1‘) : ezqu(w)7 Vs (1‘) = Sa ([E) : einA(m)7
vo(x) = sy(x) - s @ v (x) = s,(x) - e“ve® and v, () = s,(z) - €“vp® their membership
and non-membership functions, respectively. Suppose |p, (z)| < |po(2)], w,, () < w, o (2), |V, (2)] >
Ve ()]s o (2) 2 w0 (2) and |, ()] < |pp (), @,5(2) Sw, 5 (2), Vs (@) 2 vy ()], w5 () 2w, (2),
for any € U. We have

‘:uAﬁB ($)| = maX(O, Ta (ZIJ) + 7y (Jﬁ) - 1) < HlaX(O,T‘C (1‘) +7rp (JZ) - 1) = |/J’0ﬁD ($)|,

W, amm (@) = max(0,w,, () + w,, (z) — 27) < max(0,w,. () + w,, (z) —27) =w, ..p, (@),

and
V4o (@) = min(l, s, (z) + s, (x)) = min(1, s, (2) + 5, (x)) = v, ()],

W, amm () = min(2m,w,, () +w,,(r)) > min(2T,w, () +w,,(z)) = W, omp) (z).

iv) Suppose A, B and C be three complex intuitionistic fuzzy sets on U, i, (z) = r, () - €“na(®
. . A A
py(x) =7, (x)- equB(ﬂf), fie (z) = o () - ewuc(x),
v, (z) = s, () - e“ve®) their membership and non-membership functions, respectively. Then
c c
Hanmnc (I) = TanB)ne (x)'elw“((AﬁB)ﬁc) @) _ maX(O, T snp (x)+rc (l’)_l)'eZ max(0,w,, 45y (@) tw, o (w)—2m)
= maX(O7 maX(O, T, (x) +r, (x) — 1) +r, (x) o 1) e max(0,max(0,w, , (2)+w, g (2)=2m)+w,,  (x)—2m)
max (0,7, (z) +max(0,7, () +7r.(x)—1)—1)- i max(0w, 4 (@)Fmax(0.w,,  (2)+e, (€)—2m)—2r)

)

Vy (I) =S4 (:E) ceua (ac), Vg (1‘) = Sp (.CE) . einB(x) and
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— max(0,r, (z) + 7., () — 1) - € max(2mw, 4 (2) 0, (g (#)=27)

= Hansno (z)

V(AﬁBmc(x) = S anmne (z eiwu((AﬁB)ﬁC) (z) _ min(1, E (z) + 5. (x)) - ei min(2m,w, g (@) 4w, o (2))

) .
— min(l,min(l, s, (13) + Sy (l’)) + 5e (I)) . ei min(27r,min(27r,wVA(x)-&-wVB (w))-‘rwuc (x))
= min(1, s, (z) + min(1, s, () + 5. ())) - MNCTw, 4 (@) FWMInCTw, 5 (@) 4w, o (2)))
imin(27r,qu(z)+wV

=min(1,s,(z) +s,..(z)) e B (@)

=v x). O

Aﬁ(BhC)(

Corollary 2.8 Let C, € IF*(U), a €1, p._(x) =1, (z) ce™nea @) and Ve, () = 5. (x)- ervea (@) itg
membership and non-membership functions, where I is an arbitrary index set. Then C1NCoN---NC, €

IF*(U), and its membership and non-membership functions are

(¢) = max (0,7, (x) + 10, () + -+ 1g () = 1) - M Oue, (Hpe, (DF e, (0720

Heoinegmnoa

and

Vo, monn e (l’) — min (1’ re, (x) + re, (1‘) Feotrg, (m)) ) ei min (27w, o (B)+w, o, @)+ 4w, o (z))

Definition 2.11 (Complex Intuitionistic Fuzzy Bounded Difference) Let A and B be two complex intu-
itionistic fuzzy sets on U, p, (z) =7, (x) - s v (2) = s, (2) - “va@ p_(z) =1, (x)-e“s5 and
v, (z) = s, (x)- s @) their membership and non-membership functions, respectively. The complex in-
tuitionistic fuzzy bounded difference of A and B, denoted by A|—|B = {(z, pu,,_ 5 (®), v, _ () 12 € U},
where

fap(@) =7, (@) - € reai=1m @ = max (0,7, () — 1, (2)) - € ™ Oa (D)7, () (2.15)
and
VA\—\B(x) = SA\—\B(x) : ein(Alle) ® — min (1,1 — Sa (37) + 55 (x)) Lt min (2m2m—w, 4 (B)Fw, 5 (@), (2'16)

Example 2.9 Let
A (0.5-¢71:27 0.4.¢10-87) n (0.4-¢70°57 06137y n (0.3-6727 0.5.¢1157)
- T z ’
B_ (0.6-670°27 0.3.¢1-87) n (0.2.670-57 0.6.¢10-57) n (0.7-67™,0.1.¢10-97)
- T y z ’
0-ei™ 0.9.¢27 0.2.¢907 1.gil:2m 0.6 0.6.¢i1-47
thenA_B:<€a e)+< e ,1l-e >+(e, € > <>
T y z

Definition 2.12 (Complex Intuitionistic Fuzzy Symmetrical Difference) Let A and B be two complex
“ua® y (@) = 5, (2)  €va@ |y (2) =1y (2) - e

and v, (x) = s, (x)-e“v5(®) their membership and non-membership functions, respectively. The complex

intuitionistic fuzzy sets on U, p,(z) =r, (z) e

intuitionistic fuzzy symmetrical difference of A and B, denoted by AVB = {(x, i yo (2),V, 05 (2)) 1 ¢ €
U}, where

Havp (l‘) =Tuvs (.’L‘) . eiw“<AVB)(z) = |TA ('r) —Tp (x)l . ei‘w“A (w)iw“B(w)‘ (2'17)
and
Vo (8) = 8,405 (x) - €0ve) @ =1 5 (1) — 5, (2)] - 2T un @) —ws @, (2.18)

Example 2.10 Let
A (0.5-¢1127 0.4.¢10-87) n (0.4-€19-57 0.6.¢i1-37) n (0.3-¢127 0.5.¢71-57)

T Yy z !
. <0.6_e710.27r’0‘3‘ei1.87r> (0‘2~ei0'5”,().6<e"'0'5") <0.7_e117r70‘1_ei0.97r>
b= CO y =
_ {0.1-¢",0.3-¢"0-67) (0.2:¢°7 0.2.¢70-27) (0.4-¢'™,0.4-¢°0-4m)
then AVB = . - ; - > : &
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Definition 2.13 (Complex Intuitionistic Fuzzy Convex Linear Sum) Let A and B be two complex
intuitionistic fuzzy sets on U, u,(x) = r,(z) - “ua (@) v (z) = s,(x) - e@va® () = r () -
e“us(® and v, () = s,(x) - e®v5®) their membership and non-membership functions, respective-
ly. The complex intuitionistic fuzzy convex linear sum of min and max of A and B, denoted by
AlZB = {14y, 5(2), v 5 (@) :z €U}, A€0,1], where

IuAH)\B(x) = T‘AH)\B(J;) ’ lw“(AHAB) @ [)‘ mln(r (x)?rB ('T)) + (1 - )‘) maX(TA (x)’TB ($>)]

ei[)\ min(w“’A (I),w“B (2))+(1=X) max(w“A (z),w“’B (r))]’ (219)

and
Vajye(®) = SAMB(x)'e “eainm ) = (Nmax(s, (), 5, (x)) + (1 — ) min(s, (2), 5, (2))]

. ei[)\ max(wVA (z),wVB (2))+(1=X) min(wVA (z),wVB (x))] ) (220)

Example 2.11 Let
A (0.5-¢1127 0.4.¢10-87) n (0.4-€19-57 0.6.¢i1-37) " (0.3-¢127 0.5.¢71-57)
- T Yy z ’
0.6-¢10-27 0.3.¢i187 0.2-¢70-57 0.6.£10-57 0.7-¢i™,0.1.¢10-97
B = B by 4 )4 4 ) >7

0.57-¢10-97 .33.¢i1-17 0.34-¢70-57 0.6.¢10- 747 0.58-¢i1:7 0.22.¢11-087
then A|yB = {000e 080 1) 4 034e 700c 7)oy (058e 7928 D) when A=0.3.  {

3 (a, p)-Equalities of complex intuitionistic fuzzy sets

In this section, we define a new distance measure for complex intuitionistic fuzzy sets. The distance
of two complex intuitionistic fuzzy sets measures the difference between the grades of two complex in-
tuitionistic fuzzy sets as well as that between the phases of the two complex intuitionistic fuzzy sets.
This distance measure is then used to define (o, 3)-equalities of complex intuitionistic fuzzy sets which
coincide with those of intuitionistic fuzzy sets already defined in the literature if complex intuitionistic

fuzzy sets reduce to traditional intuitionistic fuzzy sets.

Definition 3.1 A distance between two complex intuitionistic fuzzy sets is a functiond : (IF*(U),IF*(U)) —
[0,1], for any A, B,C € IF*(U), satisfying the following properties:

(i) 0<d(A,B) <1, d(A,B) =0 if and only if A = B;

(ii) d(A, B) = d(B, A); and

(iii) d(A, B) < d(A,C) +d(C, B).

which play an important role in

In the following, we introduce two functions p(u,, p,) and p(v,,v,)

the remainder of this paper.
Let A and B be two complex intuitionistic fuzzy sets on U, u, (x) = 7, (z) - €"“na @), pp(x) =ry(x)-
e“us @y (z) =5, (2) - €“va® and v, (z) = s, (x) - €5 their membership and non-membership

functions, respectively. We define

Definition 3.2

p(pgs i) = max(sup |r, (z) — 7, ()], QL sup |w, , () — w, 5 ()]) (3.1)
zeU T xeU
and
p(V/HVB) = Inax(sup |SA (1‘) — Sp (I)| 21 sup |qu( ) —W,p (JC)D, (32)
xeU T xcU
then
A(AB) = 5 (plps, 1)+ Py, v,). (33)

14



Theorem 3.1 d(A, B) defined by the equality (3.3) is a distance function of complex intuitionistic fuzzy

sets on U.

Proof (i) and (ii) can be easily verified from Definition 3.2. Here we only prove (iii).

) ; “ua (x)a Hp (‘T) =Tp (l‘) ’
s (@) po(x) = ro(z) - e @) v (x) = s,(x) - e“va® () = s,(x) - 5@ and v, () =

Let A, B and C be complex intuitionistic fuzzy sets on U, u,(x) =r,(z) - e

Sa(x) - ¢™vc(®) their membership and non-membership functions, respectively.
(iii) d(A’ B) = é(p(:uAHU’B) +p( Vy, B))

= s(max(sup, ey |1 () =74 (2)], 55 SUPep |W, 4 () — w5 (2)]) + max(sup ey |5, (z)
55 (2)], 55 SUPger w4 (¥) —w, 5 (2)]))

< g(max(sup,ep (|r, (2) = 1o ()| + o (@) = 15 (@)]), 55 sUPLep (Jw, . (2) —
(W, () = W, ()]) + max(sup,ep (|5, (2) = 56 (@)] + I3 (2) = 5,(@)]), 57 SUPzer (|w, 4 (2) —
w, e (2) —w,5(2)))))

= g(max(sup,ey |1, (2) = 16 (2)], 55 SUPep |W, 4 () — w0 (2)]) + max(sup,ep |5, (z)
50 (2)], 37 $UPser |w, 4 (2) — W, (2)]) + F(max(sup,ep e (2) — 7, (2)], 57 SUPLer w0 (2) — w,, (@)]) +
max(supgep 8¢ (%) = 8, ()], 57 SUPser W, (2) — w, 5 (2)]))

= 5(p(as p1c) + PV, ve)) + 5 (Pt 1) + p(V5 V)

=d(A,C)+d(C, B). O

Example 3.1 Let
0.5-¢11:27 0.4.10-87 0.4-¢10-57 0.6.i1-37 0.3-127 0.5.i1:57
A= B ) 4 4 by 4 9 )7
0.6-¢7027 .3.¢i1:87 0.2-¢10-57 0.6.¢10-57 0.7-¢%™,0.1.¢10-97
B={ - IR ) b4 8 ) )

wo (2)] +

w
w, o ()| +

Since sup,.cs Ira(z)—r ( )| =04, i SUPgzeu ‘qu (z) —w B( )| = 0.5, SUPgzeu |54 (%) — s ()| = 0.4,
and %SupazeU |WVA(x) - ( )l = 0. 5 therefore p(ﬂA?MB) = 0.5 and p( Vas B) - 057 SO d(AvB)

2(p(ta ) + p(uA,uB)) 05,

<

Note 3.1 It is easy to see that, if A and B are two intuitionistic fuzzy sets on U, then

p(:”A?l’[’B) = sup |MA($) _MB(x)|’ p(VA?Z/B) = Sup ‘VA(J") - VB(x)|
zeU zeU

and )
(A4, B) = 5 (p(kas ps) + p(Vs, v5))-

Definition 3.3 ([20]) Let U be an universe of discourse, A and B be two intuitionistic fuzzy sets on U,
w, (), py(x), v,(x) and v, (x) their membership and non-membership functions, respectively. Then A
and B are said to be («, 8)-equal, if and only if

sup |p, (2) = pp (@) <1 —a, sup v, (z) —v,(2)] < B,
zecU zeU

where 0 <a <1, 0< 3 <1, and a+ 8 < 1. Symbolically, we denote A = (a, ) B. In this way we say A
and B construct a («, 8)-equality.

Lemma 3.1 Let
a1 * ag = max(0,a1 + as — 1) (3.4)
and
B1 * B2 = min(1, B1 + Ba), (3.5)

where 0 < aq,a5 <1, 0< B,8 <land a; + 81 <1, as + B2 < 1. Then
(i) 0xa; =0, 0% 31 = b1, Vag €[0,1], B €[0,1];
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(i) 1xay =g, 1% =1, Vay €[0,1], B1 €[0,1];
(i) 0<ar*xas <1, 0< Br*P2 <1, Vai, as €[0,1], By, B2 €[0,1];
(iv)ar<a=arxaz<axay, fi <B=Prxfa<BxPa, Vau, a, az €[0,1], B1, B, B2 €0,1];
(V) o *ap = g * aq, Brx B = Pox P, ¥V ai, az €0,1], B, B2 €[0,1];

(vi) (g *ag)xaz = ar*(agxaz), (B1*B2)*B3 = B1x(B2x83), Vaq, as, az € [0,1], B1, B2, B3 € [0,1].

Definition 3.4 Let A and B be two complex intuitionistic fuzzy sets on U, p, (z) = 7, (z) - €“na®)
fp (@) = 1y () - e nn (),

non-membership functions, respectively. Then A and B are said to be («, 8)-equal, if and only if

plpas i) <1 —a, p(v,,v,) < B, (3.6)

where 0 < <1, 0 <8 <1, and a+ 8 < 1. Symbolically, we denote A = («, ) B. In this way we say A
and B construct a («, 8)-equality.

v,(z) = s,(z) e“val@® and v, (z) = s,(z) - €“v5® their membership and

Note 3.2 Two complex intuitionistic fuzzy sets A and B are said to build a (o, 8)-equality if p(u ,, pi,,) <
1—«aand p(v,,v,) < B. An advantage of using 1 — « rather than ¢ is that the interpretation of a can
comply with common sense. That is, the greater « is, the more equal the two complex intuitionistic fuzzy
sets are; the smaller [ is, the more equal the two complex intuitionistic fuzzy sets are; and if « = 1 or

B =0, then the two complex intuitionistic fuzzy sets are strictly equal.

Theorem 3.2 Let A and B be two complex intuitionistic fuzzy sets on U. Then

(i) A= (0,1)B;

(ii) A = (1,0)B & A = B;

(iii) A= (o, 5)B < B = (o, B)4;

(iv) A= (a1, 51)B and oy > i, 1 < B2 = A = (az, 52)B;

(v) IfViel A= (w,pi)B, where I is an index set and sup;c; o + sup;c; 8; < 1, then A =
(Supje s @i, sup;e s Bi) B;

(vi) Let A = (a1, 1)B. If there exists an unique « and g, such A = (a, 8)B for any A and B, then
a<a, B=p.

Proof Properties (i)-(iv) can be easily proved. Here we only prove properties (v) and (vi).
(v) Since A = (o, ;) B for any i € I, we have

1
Pl 115) = mass(sup [ () = 1 ()], 5 SUp [, () = 0, ())) < 1= e,
xT

zeU 2
and )
p(VA7VB) = max(sup |5A('T) — Sg (I)|7 27 sup ‘qu (.CE) - wuB(I)D S B'La
zeU T z€U
therefore .
sup |1, (v) —ry(z)] <1 —supa;, ——sup|w,,(7) —w, ;(7) <1—supay,
zeU i€l T 2eU i€l
and )
sup s, (¢) — s ()] < sup By, o—sup |w,, (2) —w,, (2)] < sup f;,
zeU i€l T 2eU iel
hence )
PHas bp) = max(sup |r, (z) =1, (2)], o= sup w4 (2) —w, 5 (2)]) < 1 —supay,
zeU T xeU iel
and

1
p(VA7VB) = max(sup ISA (l‘) — Sp (x)|7 % sup |qu (Z‘) — W, (l‘)‘) < S_upﬂi-
zeU T xcU iel

It implies that A = (sup;c; o, sup;c; 5i)B.
(vi) Let aq = 1—p(pey, fty ), P1 = p(v,,vy). Then A = (a1, 81)B. Obviously, if A = («, 8)B, we have
1—a1 =p(p,, ) <1—aand B = p(p,, py) < B. There must be a < ay, 8> . O
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Theorem 3.3 If A = (a1, $1)B and B = (g, f2)C, then A = («, 8)C, where o = vy xg, 8= 1—aq*as.

Proof Since A = (a1, 51)B and B = (a2, f2)C, we have

1
P(Hasbiy) = maX(Sup 74 (@) =75 (2)] 5 sup W, 4 (2) — W, (2)]) <1 —au,
zeU T 2eU

) = max(sup s, () = 5, (2)], 5 5D, (&) = 0, (2)]) < B,

zeU S
and )
p(:uBnuc) max(sup |T ( ) —Te (x)l’ 27 sup ‘WMB (x) —Wue (x)D <1-—oo,
zeU T xcU
1
p(VB’ Vc) = rnax(sup |SB (I) - Sc (LE)|, 27 sup |w1/B (I) — W, (:C)D S ﬂQﬂ
xeU T z€
therefore
sup |r,(z) —ry(2)] <1 —aq, o sup w4 () —w, 5 (@) <1 -0y,
zeU TE
1
sup |s,, (2) = 5 (2)| < B1, 5—sup |w,,(2) —w,5 ()] < Bu,
€U T x2eU
and

sup |r,(z) —r ()] <1 — ag, o sup w5 (7) —w, o (2)] <1 —as,
xeU T

1
Sup |5, (2) = 80 (2)] < B2, 5 sup |w, 5 (2) —w,c(2)] < B2,
zeU T zeU
consequently, we have
p(PJAaMc) = max(supzeU |TA (I) —Te (‘T>|a % SUDycU |w“A (‘T) - wuc (I)D
< max(sup,ey |1 (2) = 74 ()] + subgep 175 (2) = 116 (2)], 57 SUPep w4 () — w, 5 (2)] +
25 S |W, 5 () — w0 (2)])
<max((1—ag)+(1—a2),(l-a1)+(1l—-a))=1-a1)+(1—a)=1— (g +az—1),
furthermore, note that p(u,, ) < 1. Hence

Pl pe) <1—max(0,01 + e —1)=1—a;*xaz=1—o.

p(VA ’ Vc) = ma‘X(SuprU |8A (.73) — S¢ (l‘)|, i SUPzeu |wVA (.73) —W,e (Z‘)D
< max(sup,ey |5, (2) = 55(@)] + supgey |55 (1) = so(2)], 55 sUPey w4 (2) — w5 (2)] +
25 SUPey W, 5 (%) — w0 (2)])
< max(fy + B2, B1 + B2) = p1 + Ba.
That is to say

P Vo) <P+ B<l—r+l-ay=1- (o1 +az—1)
=1-max(0,a1 +as — 1) =1—a1 xas = 0.
It implies that A = («, 8)C. O

Theorem 3.4 If A1 = (a1, $1)B;1 and Ay = (aa, B2)Ba, then A1 U Ay = (min(ay, as), max(f, 82)) (B U
Bs).

Proof Since Ay = (a1,61)B1 and Ay = (g, B2)Ba, we have

p(:u’Al ’ IUBI) - maX(ilelg' |T ( ) —Tp, (1‘)| 27‘_ iup |wMA1 ([E) — W, ('I)D <1- am,

p(VAl ’ VBl) max(sup |S ((E) ( )|a Sup |WVA1 (x) — W, ($)|) < Blv
xzeU T xeU
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and
P(fhay s fhp,) = maX(Sgng (x) —rp, (z )I, - S |wW,a, (@) —w,p, (@)]) <1 —ag,

p(VA27V32) max(sup |5 (Z‘) - 832( )| SUP |WVA2 (l‘) — W, B, (l‘)|) < B2,

zeU 27T
therefore
1
sup 74, (@) =75, (@) S 1=, o sup (Wa, (@) —w,p, () £ 1=,
xeU T xcU
1
sup |54, (2) = 8, (€)] < Br, 5 suD|w, 4, (2) = w,p, ()] < B,
xcU T zeU
and

1
sup \r (x) —rBz(x)| <1-— a9, — sup \quQ(x) —w, 5 (@) <1 - ay,

B
zeU T xcU ree

1
sup |5, () = 85, ()] < B2, 5—SUP |w, 4, (2) = W, 5, ()] < P2,
zeU T 2eU

consequently, we have

1
P(Hayoays oy om,) = maX(Sup 17 a10a5 (@) = 70, ()]s 5 SUP (W, 4, (8) = W50, ()],
zeU zeU

1
PV ay0ayrViy0m,) = MAX(SUD [5,4,,a, () = 85,0, ()]s 5 SUD W, (4 0ay) (8) = W, 5,08, ()]);
zeU zeU

where
SUPzeu ‘TA1UA2 (‘T) ~TpyuB, (I)‘ = SUPgzecy | rnax(rAl (l‘), T, (I)) - max(rBl (I)v Tp, (1‘))‘
< supey max(|r, (z) —ry (@)],[r,, (@) =74, (2)])
<sup,ep max(l — g, 1 — @) < 1 —min(as, o).
% SUPzeu |wp,(A1uA2) (x)_wu(slugz,) (J?)‘ = i SuPgey | max(qul (Z‘), qug (J:))—max(w“Bl (Z’), wuBz ('/E))|
< g supyep max(|w, ., () = w, 5, (2)], |w,4, (2) = w5, (@)
< % sup,cp max(l — ag,1 — ag) < 1 — min(ai, a9).
SUPLeu [S 4,04, (T) = S5,us, (T)] = SUpep [min(s, (z),s,, (2)) — min(s,, (2),s,, (2))]
< sup,ep min([s,, (z) — s, (2)|, |54, () — 54, (2)])
< sup,ep min(f1, f2) < max(f, f2).
i SUPzeu |wu(A1 UAs) (z) - W, (B UBs) (z)| = % SUPget | min(qul (z), Wyoa, (z)) — min(wuBl (z), W, B, ()]
37 SUP ey Min(|w, 4 () = w, 5, (@), W, 4, (2) = w, 5, (2)])
% SupwEU min(ﬁl? 62) S maX(Bla ﬁ?)

IN A

It implies that
A1 U A2 = (min(al, 042), max(ﬂl, 62))(31 U Bg)

O

Corollary 3.1 If A; = (o, ;) Bi, i € I, where I is an index set, then U;erA; = (inficr oy, sup;c; i) Uier
Bi.

Theorem 3.5 If Ay = (ay,31)B; and Ay = (a2, B2)Ba, then A1 N Ay = (min(ay, as), max(81, 52))(B1N
By).

Proof Since Ay = (a1,01)B1 and Ay = (g, f2)Ba, we have

p(:uAl ) :U’Bl) - maX(zlelp |T'A1( ) T, (JJ)|, % sup |wMA1 (J?) — W, (.13)|) <1- am,

p(VAl ’ VBI) max(sup |S ((E) ( )|a Sup |WVA1 (x) — W, ($)|) < Blv
xzeU T xeU
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and

P(fhay s fhp,) = maX(Slelg 7, (2) =75, (z )I, - Sup |4, (2) —w,p, ()]) <1 —ao,
xr TEe
1
P(VaysVp,) = max(sup |s,, (2) = 55, ()], 5 sub |w, ,, (2) —w, 5, (2)]) < B2,
zeU T xcU
therefore )
sup [, (@) =7y (2)| <1 —an, 27 Sup |Wa, (@) —w,p (@) <1 —an,
1
sup [s,, (z) — 8,4, (2)| < B1, s=sup fw,,, (2) —w,p, (2)] < B,
xeU ! T xcU ! !
and
sup \r (x) — T, ()] <1 - as, o sup \wHAQ (x) — W5, ()] <1 - ay,
zeU T xe
sup [s ,, (z) — 85, (%) < B2, s=suplw,,, (¥) —w, g, ()] < Bo,
zeU 27T zeU

consequently, we have

P(fha, nays Ps np,) =
zeU

p(VAlmA2 s VBlmBQ)
zeU
where

SUPgey ‘TAIHAZ (l‘) ~ TBinB, (x)‘

< SUp,ey max(l —
37 SUP ey | min(w, ,, (2),w,,, () =
sup, ey max(|w, 4, (%)
sup, ey max (1l —
S5, 0, ()] = sUD,ep [ max(

< sup, ¢y max(s

%super |wu(A1nA2)($) _wu(BlmBz)( )| -
< L
— 27
1
S ox

SUDserr (54,04, (%) =

max(Sp [, ., (@) = 75,00, ()] 5

= supey [min(r,, (z),7,, () —

< sup, ey max(|r

- W[L(BIQBQ) (x)|)7

sup |WM(A10A2) (:C)
xelU

1
max(sup |5A1mA2 (l‘) ~ SBinB, ($)|, o Sgg |W,,(A1mA2>(x) - WV(BlmBQ)(x)D)
x

min(r, (z),7,,(x))]
Ay (ZIJ) — T, (.73)|, |TA2 (33) —Tp, (1‘)‘)
a1,1 —ag) <1 —min(ag, as).

- wuBl (SL‘)|, |W;LA2 (CC)
a1, 1 —as) <1 —min(ay, as).
Sa, (l’), Sa, (I)) - maX(SBl (‘T)v Sp, (I))|

a, (@) = 55, (@) ]34, () = 5, (2)])

< sup, ey max(fy, f2) < max(f, f2).

% SUPzcu |wV(A1 NAg) (x) W, (B nBs) (x)|

<
<

It implies that
Ai1NA; =

Corollary 3.2 If A; = (o, 8;)Bi, i € I, where I is an index set, then N;er A; = (inf,er o, sup;e; Bi) Nier

sy [ max(w,., (2)., ., (@) ~max(e, 5, (2),,p, (2))
i SUPgey max(|qu1 (l‘)
i SuprU max(ﬁla ﬁ?) § max(ﬁla 62)

=Wy, (2)]s W, 4, ()

(min(ay, ag), max (51, B2))(B1 N Ba).

B;.

Theorem 3.6 If A= (a,3)B, then A = (o, 3)B

Proof Since A = (a, 8)B, we have

1
P(HAaHB) = max(sup |TA (x) —Tp ($)|, 27 sup |UJHA (33) — Wis (.TZ)D <l-a,
zeU T 2eU
1
p(VA7VB) max(sup |S ( ) — Sp (QC)|, 27 sup |wVA (x) —W,p ($)|) < ﬁa
zeU T zeU

therefore
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— W, (7))

— Wy, (¥)])



Figsthg)

= max(sup ey |7 (2) = 74 ()], 55 SUPgevs |w“,a(x) —w, 5 (@)])

= max(supgep |(1 =7, (2)) = (1 = 1,(2))]; 35 supgey |27 — w, 4 (2)) — 27 — w,, (2))])
= max(sup,ey |1y (€) = 15 ()], 37 8UPger W4 (2) = w,5 (@)]) = i, pp) <1 —a

Vi V)

= max(sup,ep |5, () = 55(7)], 55 SUPey \%A(x) —w, 5 (2)])

= max(sup,ep |(1 = 5, (%)) = (1 = 55 (2))], 55 SUpgep |27 —w,, (7)) — (27 — w, , (2))])
= maX(SUPzeU |S ( ) ( )|a o SUPgcu ‘WVA('T;) - wuB(m)D = p( Va, B) < ﬁ

It implies that A = (« 75)§.

>

=

3>\

Corollary 3.3 If A;; = (auj, Bij)Bij, © € I, j € Iz, where I and I are two index sets, then

Uiern, ijIQ Az] = (Hlf inf Q;5,8Up sup ﬂzg) Uiern, m]GIQBlj
i€l jEI2 i€l j€I>

and
Nicr, UjGIg Azg = (lnf inf Q;j,8Up sup Bzg) Nicr, U]€I2Blj'
i€l jEI2 i€l j€I2

Corollary 3.4 Suppose A; = (o, 5;)Bi, i =1,2,---. Let

lim supA4; =Ny, U2, A;, lim inf A, = U2, N2, A,
n—oo

n—oo
and
lim sup B; =Ny U2, B, lim inf B, =U;2, N2, By,
n— oo n—r00
then
lim sup A, = (mf Qp, SUP Bn) lim sup B,
and

lim inf A,, = (inf a,,sup B,) lim inf B,.

n—00 n>1 n>1 n—00

Theorem 3.7 If A; = (a1,61)B1 and Ay = (ag, f2)Ba, then Aj 0 Ay = (a1 * i, 1 — g * ap)(B1 0 Ba).

Proof Since Ay = (a1,01)B1 and Ay = (g, f2)Ba, we have

Pfa, fis,) = maX(sgpl?“ (z) - ()I, suplw,‘Al(w)*wﬂ,Bl(x)l)S1*&1,

1
PWayoVs,) = max(sup |s,, () = 55, ()], 5= 5UD w0, () = w5, (2)]) < B,

zeU xeU
and
P(fays Hpy) = maX(Sup 7, (@) =74, (@)], 5= sUp |w, 4, (2) —w, 5, (2)]) <1 —ay,
zeU T zcU
1
Py Vp,) = max(sup |s,, (2) = 55, ()], 5 sUD |w, ., (2) = w,, (2)]) < B2,
zeU T xeU
therefore )
Sup ., (2) =y, (2)] 1= @, o sup Jw,, (&) — w0, (2)] < 1=,
zeU T 2eU
1
sup|s (x) — S, (.Z‘)| < f, ?SUP |qul(m) uBl( )l < b,
zelU T xcU
and

1
sup |1, (¥) =7, (¥)] <1—ag, 5 Sup |Woa, (7) —w, 5 ()] <1 — g,
z€U T zeU
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1
zggls () = 85, (7)] < Ba, ﬂj‘éﬁ'“w(@ w, g, (T)| < B2,

consequently, we have

1
PlHasony Boyon;) = MAX(SUD |1y, (8) = 7,0, (2)]s 5 SO [0, 010,) () = Wi, (7)),
xz

p(VAloA2 ) VBloBz) max(sup ‘SAIOAQ (1') - 331052 ($)|, 5 Sup |wy(AloA2) ((E) - wu(BloBZ) (:C)D,

zeU 27 yevu
where

SUPgzeu ‘TAloAQ (.%') ~TBioB, (SL’)|
= Sup,ep |7 a, (2) 74, () =1y, (2) -7, (2
= SuPey |y, () 74, (2) — Az( )Ty (@
= SUPepr |74, ff)( ( ) =7, (@) + 75, (2)(ry, ( ) =75, ()]
< sup,ep [ry, () =g, (2 )| + SUP,e \TA2 (@) =74, (@)
Sl—al—l—l—ag:l—(al—i—ag—l).
We note that

r )|
r )+TA ( ) T, (LE) —Tp, (:E) “Tp, (LE)|

—~ o~~~

sup |TA10A2 (l‘) T Tpiom, (LE)| < 17
zeU

so we have

Sup 7, o4, () =75 o5, ()| < 1= (@1 + a2 — 1) =1 —max(0,01 + a2 — 1) =1 — a; * ay.
zelU

1

55 SUPzeu |w;1.(AloA2) (‘T() )_ w“,(Bl(oB)Q) ($)| ( ) )

_ 1 “Ypa, \® . “Ypay, \F _ HBl * “YuBy \ T

= 37 SUPzeU 27T( 27 27 ) 2m ( 27 2m )|

1 su |qu1 (z)'quQ (z) _ quQ (x)'W“Bl (z) + W#A2 (x).wMBl (I) _ w#Bl (I)-w#B2 (x) |
27 SUPzeU o7 p) P) o

% SupzeU | “uay (a:)(quéﬂ(-‘T“)_wuB1 (@) + “uBq (T“)(WMAS‘A(-I)_WMBQ (z)) |

< g7 (SUPep W, 4, () = W, (2)] + 5UPey |w, 4, (2) — W, p, (2)])
1—a1+1—a2:1—(a1+a2—1).
We note that

IN A

1
— sup |w <1,

T 2cl u(Ajo0Ag) (SC) - wu(BloBz) (f)

so we have

1
— sup |w

()| <1—=(a14+az—1)=1-max(0,a1 +az — 1) =1 — a1 * as.
27TwEU

w(Aj0Ag) (x) - wM(BloBz)
SUP et [$4,04, (%) = 85,0, (7)]
= SUPgzey |SA1 (Z‘) + Sa, (x) —Sa, (JJ) *Sa, (33) - (SBl (‘r) + Spy (J?) — S, (.73) " Sp, (JJ))'
= sup,ey [(1 =55, (2))(5,4, (2) = 55, () + (1 =5, (2))(54,(2) = 55, (2))]

< supgep |84, (2) = 55, (2)] + supser 54, () — 55, (2)]

< b1+ Be.

We note that

sup ‘SAloAz (1‘) ~ SBioB, (gj)‘ <1,
zcU

so we have

SUP|5A10A2(I)*531032(93)‘ <GB +f<l-a+l—-ay=1—(a;1+az—1)
zcU

=1—-—max(0,a1 + a2 — 1) =1 — a1 * as.

1 4
27 SUPzeu |wu(A1 0Ag) (1‘) - wl/(BlOBQ) (I)‘
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— %Super |27T(WV;(;T(;C) n wy(g%(év) _ w,,(;;)r(x) . wugi(x)) (—)QW(WUE%(T) n wvg%(j) _ wug;(x) . wug;(x))l
:SupJCEUKl— W;r;)r( ))( VAQ%) - V];(T) )0 Vg(;) ) V%i) . "]%i) )
w x w xr w T w T w x w xr
< supgep (|1 — 22— 5— — =g+ |1 = [ — — =)
< 5 (SUpyer (W, () = w5, ()] + W, 4, (2) = w, 5, (2)])
< B+ Bo.

We note that

1
27'(' sup| V(A10A2)( ) - wu(BloB2)(‘r)| <1,

so we have

1
— sup |w

27 U wu(BloB2)(x)| Sﬂl +ﬁ2 < 1_041-‘1-1—042:1—(0514-042—1)

V(Aj0As) (z) -

=1—-max(0,a1 +as — 1) =1— a7 * as.

It implies that

Al o AQ = (O[l * (g, 1-— Q% CVQ)(Bl o B2)

O
'OA’L

Corollary 3.5 Suppose A; = («a;,[;)B;, ¢ € I, where I is an index set, then A; 0 Ay 0 - -

*Oéi)(Bl OBQD' . OBl)

(ap kg xa;, 1 —ay xag*---

Theorem 3.8 If A, = (an,Bn)Bn, n=1,2,...,
By x - x By).

N, then Ay x Agx -+ x A, = (inf1<n<y an, SUp <<y Bn) (B X

Proof Trivial from Definition 2.7 and Definition 3.4. O

Theorem 3.9 If A; = (a1, 31)B; and Ay = (aa, B2)Bs, then A1 +As = (a1 * as, 1 — ay * ) (B1+Bs).

Proof Since Ay = (a1,01)B1 and Ay = (g, f2)Ba, we have

1
P(pay s Py ) = maX(Sup 174, (@) =75, ()], 5 sUD w4y (2) = W, (2)]) S 1 =,
zeU T xzeU
p(vaysvp,) = max(sup |s,, (z) = sp, ()], 5 sub |w, ,, (2) —w,p, (2)]) < B1,
zeU T zeU
and
P(Hoays bhp,) = maX(Slelp ray (@) =75, (@), 27 5P |wW,ia, (%) = w, 5, (@)]) <1 — g,
xr
1
Pp(VaysVp,) = max(sup |s,, (z) = 55, ()], 5 sUb |w, ,, (2) = w,p, (2)]) < B2,
zeU T 2eU
therefore
sup 74, (@) =75, (@) <1 = a1, o sup |W,ia, (#) =W, 5, (@) <1 — g,
Supls (@) = 55, (@) < B1, 5= sup |w,,, (2) —w,p, (2)] < B,
zeU 27T zeU
and
sup |1, (¥) =75, (@) <1—-a2, s=sup|w,, (z) —w,,, (@) <1 —ag,
zeU T 2eU
:telgls () = 55, (x)| < B2, 27 Sup W, a, () = w, 5, ()] < B,
consequently, we have
p(uAl Fag? ﬂBl 4'52) maX(ilelp |TA Az (1’) - 71314'32 (LU)|, % ilelg ‘wlt(Al;Az) (LU) - wu(B1 +B3) (i)‘%
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= max(sup |s
zeU

sup [

p(VAl%Az’VBlQ»B2) A1+Aq (l‘) - 3314;32 (.’L‘)‘ 271_ we V(A14?A2)(x) _WU(BI;B2)(1')|)7

where
sup,ep I, o (@) =1, ., ()
= SUPgcu |TA1 ($) + Ty (.13) T T4 T ( ) (.23) ( Tp, (Z‘) + TBQ( ) —Tp, (.13) "Tp, (x))‘
= sup,ey [(L—7p, (2))(r,, (2) — 7y, (2 )) (=7, @) (ra, (@) =74, (2))]
S sup,ep |74, () = 75, (@) + sup,cp |74, (%) — 75, (2)]
<l-ap+1l—-ay=1— (g +az—1).
We note that

9851618 |TA15rA2 (.’1?) n r51432 (LU)l =1,

so we have

sup |rA1J.rA2(a:) — @) <1l—(ar4+as—1)=1—max(0,a; +as — 1) =1 — a3 * as.

T
B1+B
zeU 1+52

1
27 SUP,cU |wu(A13rA2) (J?) o w#(Bl%BZ) (1‘)|

— Lsup,ep [2m(Zep Dy S @ G G0y g Gepn ) Sy ) g (0 g )
= sup, e |(1 - 222y (Lo ““3;($’>+—<1-— Sy Oy (Guga ) STy
< sup,ep(|l — 242 a2 @)y s )0 @ 0,
< L (Supacr 0, (2) — 0 (@] + 0,0, (@) — 0,5, (@)
<l-ag+l—-ay=1— (a3 +az—1).
‘We note that )
27 Sup 19, 4y 5ay (B) =@, (@) S L

so we have

1
— sup |w

) <1—(a1+as—1)=1—max(0,a1 +az — 1) =1 — ay * as.
T xeU

v(A1FA2) (.’L‘) - wV(B1JFB2)(

Wyep 15, 20 (7) = 5, o ()

= SUP,crr |5A1 () s, (zr)— Sp, (x) - Sp, ()]
5, (@)

)84,
= SWDyey |54, (7) - 54, (¥) = 5, (%) - 55, (1) +5,,(2) - 831 () = 55, (2) - 55, (7)]
)

= SUP,cp |54, (T) (84, (T) = 85, (2)) + 85, (2) (54, (7) — 55, (2))]
<sup,ep (84, (2) — 85, (@) +supgey (54, () — 55 ( ))I
< B+ fa.
We note that
— <
;1861618 |SV(A13rA2) (-’17) SV<BljrB2) (LL')| - 1’
so we have
» — 5, < <1-— 1-— =1- -1
:1618 |s o () —s (5yima) ()| < B1+ B2 < oy + Qo (a1 + as )

=1-max(0,a; +az — 1) =1 — a3 *x as.

1

27 SUPzeU |wV(A1JrA2) (a(j))_ wV(Bl(Jr;BQ) (.13)' () (@)
w ) w x w ) w x

= 57 S,y [2m (=5 - =) = 2m(— g - )

1 W, 4, (:p)-wVA2 (x) W, 4, (w)-wVBl (x) W, 4, (a:)»wVBl (z) W, B, (a:)u)uB2 (z)
= 37 SUPzecU | 2 - 2w + - 27 ‘

27
— % Sup$€U |W,,A2 (r)(w”Aéiﬁ)_w”Bl (:E)) + w,,Bl (z)(qugim)_wyB2 ('E)) |
3 (SWDserr W, 4, (7) = W, 5, (@) + SUDLep |w, 4, (7) = w, 5, (2)])
< Bi+ Be.

IN
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We note that

1
%:gg| U(Al-?-Az)(x)
so we have
27T Sup| u(A1+A2)( ) _wu(Bl-?—Bg)( )| < Bl +ﬁ2

zeU

W, 5 imy) ()| <1,

l-ag+1l—ae=1— (s +az—1)

=1—-max(0,a1 + a2 — 1) =1 — a7 * as.

It implies that
AT Ay =

Corollary 3.6 Suppose A; = (a;,3;)B;, i € I, where I is an index set, then A;F+Ay+ - -
* Ckl)(Bl-T-BQ—i- te

(al*042*~~-*ai,1—a1*0[2*--~

Theorem 3.10 If Ay = (a1, 51)B; and Ay =

Proof Since 41 = (a1,01)B1 and Ay =

(g, B2)Ba, then AjUA; =

(a1 * az, 1 — ay * a)(B1+B2).

O

=y
1By,

(Oél * (g, 1-— Q1 * OLQ)(BlL:JBQ).

(a2, B2) Ba, we have

Py, s p,) = maX(Slelp ra, (@) = 1p, (z )I, - S |wa, (@) —w,p, (@)]) 1 —an,
xr
1
p(va, s vp,) = max(sup |s,, (z) = 55, ()], 5 sub |w, ,, (2) —w,p, (2)]) < Br,
zeU T xeU
and )
P(Hay s g, ) = max(sup |, (2) =1y (2)], 5= 8UD Jw, 4, (2) — w0, (2)]) < 1= g,
zeU T zeU
00,0 1,) = max(sup |5, (2) = s, (&), 5 50 o, () = 0, () < o
therefore )
sup 1, (@) =, (@)] € 1= a1, 5sup e, () =0y, (2)] < 1=,
1
sup [s, (7) = s, (2)] < B1, s=suplw,, (2) —w,p (@) < B,
zeU T zeU
and 1
Sup 1, (@) =, (@)] < 1= 02, 5= sup e, () =y, ()] < 1=
1
sup [s,, (7) — 85, ()| < B2y 5= sup |w, 4, (2) —w,p, (7)] < Ba,
zeU 2T zeU
consequently, we have
p(:u“AluA2 ) IU‘BIQBQ) max(sup |TA1LJA2 (l’) - rBlL'JBz (1")|7 27 Sup |w“(A1QA2) (l’) - wu(BlL'JBz) (I)|)7
zeU T xeU
p(VAl Uagr Ve, uBQ) max(ilelp |SA1 UAg (z) — Sp 0B, (z )|7 sup |wu(A1 UAg) (z) — W, (B, 0By (@))),

where
SUDLcrr |74 0, (2) = 75 0, (2))]
= SUP;cy | min(l,rA (z) + TAQ( T)) —
< Sup,ep |TA1 (:L‘) T4, (z) — g, ( ) —
< SUp,cy |TA1 (.’L‘) - TBI( )l + Sup,ecp ‘TA2 (x)
<l-ag+l—ay=1— (a3 +az—1).

min(1, 7, (z) + 7y, (2))]

2(3«"\

5, (7)]
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We note that

81€1p |7"A1uA2 (x) — T 05, (x)] <1,
xr

so we have

sup |r x)—r

zeU

AlL'JAQ( 51032(1:” <l—-(agg4+az—1)=1—-max(0,a; +as — 1) =1 — a1 * as.
% SUPgzeu |w,L(A1L’JA2) (aj) - w;L(BIUBz) (SL‘)|

% SUp,cyy | min(2, le( x) + wM2( z)) — min(27r,w/“31 (z) + W5, ()]

3 SUDGer [Woa, () + W,n, () = W5, () = W, (7)]

9 (SUDepy (W, (2) = w, 5 (2)] +SUPgep W0, (2) = W, (2)])
<1—a1+1—a2—1—(a1—|—a2—1)

We note that

/\\/\

— sup |w

(x)] <1,
T z€U

n(A1UA) (I) o w#(Bl UB2)

so we have

1
— sup |w

(@) <l—(ar4+as—1)=1—-—max(0,a1 +as — 1) =1 — a7 * as.
27 zeU

w(A1UAS) (x) —W(By 0By
SUPyeu ‘SAIQAQ (.23) ~Spum, ($)|
= sup,cy [ max(0,s,, (2) +s,, () —1) —max(0, s, () + 55, (x) — 1)
< supep |54, (€) + 54, (2) = 55, (2) — 55, ()]

< SUPget |SA1 (Z‘) — B, (Z‘)| + SUPgzeu |SA2 (.13) — S, (.13)|

< B+ Ba.

We note that

Slelp |SAluA2 ($) - 531032 ((t)| < ]-7
xr

so we have

Slelp|SA10A2(x) _SBluBZ(x)l < ﬁl +52 <l-ap+1-ay=1- (al + o — 1)
z

=1—-max(0,a1 +as — 1) =1 — a1 * as.

% SUDPycU |wu(A1 UAg) (l‘) - w;/(BluBz) (;L‘)|

e supep | max(0, 6, (2) + 0,1, (2) — 27) — max(0, 0, (x) +w
< % SUPzeu |qu1 ( ) + Wy, \T ( ) — W, (l‘) — Won, ($)|

< 5 (SUPey W, 4, (2) = W, 5, (2)] +8UDsep W, 0, (2) — w, 5, (2)])

< B+ Be.

We note that

(x) = 2m)]

vBo

1
—sup\w | <1,

T 2l v(A1UAg) (x) - wu(BlL')BQ) ('75)

so we have

1
%;Telp |wu(A1uA2)('1:) - wu(BlUBz)(l‘)| SPhi+bfe<l-ar+tl-—ap=1- (O‘l +az — 1)

:1—max(0,a1+a2—1):1—a1*a2.

It implies that
AlUAQ = (0[1 * (g, 1-— Q1 * QQ)(BlL.JBQ).
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Corollary 3.7 Suppose A; = (ay,53:)Bi, @ €

(g xqg*- sl —apxag*---

Theorem 3.11 If A1 = (alvﬁl)Bl and A2 =

Proof Since Ay = (a1,01)B1 and Ay =

* OQ)(BluBQU .

(a2762)B27 then AlhAQ =

I, where I is an index set, then A;UAU - - -
-UBy).

UA,;

(0&1 * (g, 1-— Q] * Ozg)(BlﬁBg).

(az, B2) B2, we have

P(Hay s P, ) = maX(sgp ra, (2) =75, ()], 27 5P |wWa, (2) = w5, (@)]) <1 —an,
xr
P4, vy, ) =max(sup [s, (z) = s, (2)], 5= sup w,,, (2) —w,;, (2)]) < B,
zeU 27T xeU
and
Pty 1,) = (50D |1, () = 7, ()], = 50D [, () = 0,5, (@)]) < 1=
PWa,sVp,) = maX(ilelg 154, (@) = 85, (@), 5 sup W, a, () = w, 5, (2)]) < B,
therefore )
225 ‘T (.13) —Tp, (Z‘)| <1l—oa, 7225 ‘qul (l‘) — W, (l‘)‘ <l—oay,
1
sup |s,, () = sp, ()] < B, 5 sup fw,,, (2) —w,, ()] < Br,
z€U T xeU
and
sup ray (@) =7, (@) <1 — ag, o Sup (W,ay () =W, (@) €1 — g,
1
Supls (@) =55, ()] < B2, 5 sUP |w, 4, (2) —w,p, ()] < B2,
z€U T zeU
consequently, we have
p(MAlﬁAQ ’ uBlth) max(sup |TA1r'1A2 (3;‘) - rBlﬁB2( )| 27‘r Sup |°J w(A1MAY) (:L‘) — WB1ABy) ($)|)>

zeU

max(sup 1S 4, a, (T) —

p(VAmAz ’ I/Blth)
zeU

where
SUDLerr 74, na, (B) = T o, (2))]
= SUPgcy | maX(0> Ta, (l’) T, (;L‘) -
< SUP,cyu |TA1 (.’L‘) + Ta, (.T) —Tp, (1‘)
< SUPgcy |TA1 ($) - TBI ($)| + SUPgey ‘TAQ (33)
<l-ag+1l—-ay=1— (a3 +az—1).
We note that

)

sup |TA1rHA2 (I’) -

zeU

so we have

—max (0,7, (v) +71,, (z) —

— 75, (7)]

SpinBy (CC)|, % 51618 |wu(A1hA2) (CL‘) W, (B, nBy) ($)|)7

)

=7, (7)]

(@) <1,

TBlr'sz

sup |rA1hA2 ({,C) “TenB, ($)| <1l- (al +oag — 1) =1- maX(O7a1 + ag — 1) =1— a1 *as.
zelU
37 SUPe |9,y eay) (B) = Wy ()]
= g SUPgep | Max(0,w, ,, () + w4, (2) — 27) — max(0,w, 5, (¢) +w, 5, () — 27)]
9 SWaer W, 4, () + W0, (2) = W, 5, (2) = W, p, (2))]

37 (SUD v [w,4, (@)
1—0(1—|—1—O[2=1—(O[1—|—012—1):1—

ININ A

- wuBl (l‘)| + SUPgecu |qu2 (x)

- wuBz ($)|)

aq * Q9.
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We note that

sup |w

<1
55 SUp @I<1,

wiarag) () =W, any)

so we have

1
— sup |w“,(A1hA2)(‘r) - w“,(BlﬁBz)(x)l <l—(ap4+as—1)=1-max(0,; + a2 — 1) =1 — a3 * as.

T zeU

SUPyey ‘SAlhA2 (JC) - Blﬁ32 (I)|

= sup,ep |min(l, s, (2) + 5, (2)) —min(l, s, (2) + 55, (2))]
< supep |84, (@ )+8A2( ) =g, () — 2(93|

< SUP,ey |54, () = 55, (@) + sup,cy |54, (%) — 55, ()]

< B1+ Ba.

We note that

SLelp |SA1hA2 (1‘) - SBlﬁB2 (.’IJ)| < ]-7
xr

so we have

sup|sAmA2(3:)—sBmBz(x)|S,@l—&-ﬁgSl—al—i—l—ag:l—(al—i—aQ—l)
zelU

=1—-—max(0,a1 +as — 1) =1 — a1 * as.

1 4
27 SUPzeu |wV(A1hA2) (ZIJ) - wy(BlﬁBQ) ($)|
= g7 SUD,ey | Min(2m,w, ,, (2) +w,,, () — min(2m,w, , () +w, 4, (2))]

< 5 SUP,epr W, a, () + W, 0, () —w, 5, () —w, 5, (7))
< s (SUpyey (W, () = w, 5, ()] + SUDyeys W, 4, () — w, 5, (2)])
< B1+ Bo.
We note that )
2 hev W, aymag) (F) = W,y ()] <15

so we have

1
Py Slelp Iwy(AlhAz)(x) _wy(BlﬁBz)(x)| S 61 +62 S 1-— aq + 1-— Qg = 1- (al +O[2 - 1)
T

=1—-—max(0,a1 +as — 1) =1 — a3 x as.

It implies that
AlhAQ = (Ozl * (g, 1-— Q1 * Olg)(Blth).

O

Corollary 3.8 Suppose A; = («;,3;)Bi, i@ € I, where I is an index set, then A;NAxN - .- NA; =
(Oél *042*“-*041‘,1—061 * (Y * - *az)(BlﬂBgﬂﬂBl)

Theorem 3.12 If A1 = (Oél,ﬂl)Bl and AQ = (0527B2)BQ, then Al‘_‘AQ = (O(l *Qg, 1—0[1 *O{g)(Bl|—|B2).

Proof Since Ay = (a1,01)B1 and Ay = (g, f2) B2, we have

Pfa, s, ) = maX(Suplr (x) =714, (7)),

e 271' sup |W;LA1 (z) - W, B, (CL‘)D <1—oa,

1
P4, v, ) = max(sup s, (z) — s, ()], 5= sup |w,,, (z) —w,p, (2)]) < B,
zeU 2T zeU

and
1
P(fhay s fip,) = maX(Sup 174, () = 75, (@)], 5 SUD w4, (2) = w5, (2)]) ST = 2,
zeU zeU
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1
PWay:Vs,) = max(8UP |5, () = 55, ()], - SUD w0, () = w5, (2)]) < o,

zeU
therefore
sup [, () =7, ()] <1-aq, o sup |woa, (7) —w, 5 (2)] <1 —an,
zeU T xc
1
sup |54, () = 85, () < Brs 5 sup W, a, (@) = w,p, (@)] < B,
xelU T xeU
and
1
sup 74, () =75, (@) S 1=z, o sup (Woay (8) = W, (@) £ 1=z,
zeU T x€U

1
Sup |5, () = 85, ()] < B2, 5—SUP |w, 4, (2) = w, 5, ()] < P2,
z€U T xeU

consequently, we have

1
P(Bay g2 Hpy i -imy) = max(:gg 7 ay121a () = 75 s, (2] o 228 Wy - 1) (B) = Wiy -5y (),

1

p(VA1|—|A2 ) V31|7|52) = max(igg |SA1|—|A2 (z) — Sp1-1By ()], o 21618 |wu(A1\7\A2) (z) — Wy (B 1-1B2) (@),
where

SUPzeU ‘TAl\ |Ag (x) T31| | By (1‘)|

= sup,ep |max(0, 7, (x) —7,, (2)) —max(0,75 (z) =75, (2))|

< supgep [y, () —

W ) - Bl( )+ 7y, (2)]
S supgey |74, (2) =75, (@) +5Upsey 74, (2) =74, (7))
Sl—Oél—Fl—Oég—l—(Oél—f—OQ—l).

We note that

21618 |TA1|—|A2 (1') T Ty-1Bs (.’E)| <1,

so we have

Slelg |TA1|—|A2 (]J) ~ V-8, (Jf)| <1- (al + ag — 1) =1- HlaX(0,0q + g — 1) =1-— a1 *xas.
z

3 SUD,cy |0,y 1-1az) (B) = @, 1 gy ()]

= g SUPgep | Max(0,w, , () = w4, (2)) — max(0,w, 5, (2) — w5, (2))]

9 SWaer W, 4, () = W0, (2) = W, 5, (2) + W, p, (2))]

3 (SUPg ey W, a, (2) = W, 5, (@)] + 8UDGep W, 4, () = W, 5, (2)])
l—ag+1—as=1— (a1 +ay—1).

We note that

ININ A

27 228 |w“(A1|7|A2)(x) - wu(B1|*IBz)(x)‘ é 17

so we have

o, SuP |0, ay 1= 1ag) (B) = Wos iy (W) £ 1= (@1 + a2 — 1) =1 —max(0,1 + a2 — 1) =1 — g x az.

T z€U

SUPzeu ‘SA1| |As (z) — SBy1-1By ()]

= SUp,cy | mln(l, 1—s, () +s,,(2) —min(l,1—s, (2) + 5., (2))]
< sup,ep | — (fﬂ) 1y (@) F 75 (2) =7, ()]

< sup,cp |5A1 (90) - 531( )| +sup,ey |y, () — 55, (2)]

< B1+ Ba.

We note that

21618 |SA1|7|A2 (x) ~ Spy-1B, (x)| <1,
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so we have

21618 ‘SAllflAz (‘T> -

% SUPzcu |wu(A1\7\A2) (z) —w

2 SUp,ey | min(2m, 27 —

Spp, @ SPi+fe<l-ar+l-ar=1-(a1+az—1)

=1-max(0,a; +as — 1) =1 —ag *x as.

v(B1|—|Bg) (x)|
W, a, (@) +w, 4, (7))
3 SUDger | — wW,a, () +w, 4

, (@) W, (2) —w,p, ()]

— min(27, 27 —

37 (SUD,eu [w, 4, (2)

— W, (@) + supser W, 4, ()

— W, p, (37)

W, (2) + W, p, ()]

)

ININ TN

b1+ Bo.
We note that
<1

— )

1
— sup |w

pY, - wu(Bl\—\BQ)(x”

v 1ag) (T)

so we have

1
5 sup |wy/(A1\—\A2)('1:) - wu(Bl\—\Bz)( )| <Pr+Pe<l-ar+l-ar=1~— (a1 +as—1)

2T reU
=1—-—max(0,a1 +as — 1) =1 — a1 * as.

It implies that

Al‘ — |A2 = (a1 * g, 1-— (651 *ag)(Bl| — |Bg)

O

Corollary 3.9 Suppose A; = («, 5;)B;, i € I, where I is an index set, then A;| — |[Ag| — | -+ | = |4; =

(1 * g%k ay, 1 —
Theorem 3.13 If A; =

Proof Since A; =

Q1 % Qg k-
(0, f1)B1 and Ay =

(a1,51)By and Ay =

*a;)(Bi| = [Ba| — |-

(a2, f2) B2, we have

| —[Bi)-

(a2, B2)Ba, then A1V Ay =

1
p(/’l/Al ’ :LLBI) - maX(bup |’I“ ( ) T, (l‘)|, 27 sup |w“A1 (.I) — W, ('T)D <1l—oay,
zeU T zcU
1
p(va, s vp,) = max(sup |s,, (z) = 55, ()], 5 sUb |w, ,, (2) —w,p, (2)]) < Br,
zeU T xeU
and
P(Hayy Hp,) = max(sup |, () =75, (2)], o sUp |w, 4, (@) = 0,5, (2)]) <1 = a2,
zeU T zeU
P(VaysVp,) = max(sup |s,, (2) = 55, ()], 5—sub |w, ,, (2) = w,, (2)]) < B2,
zeU T 2eU
therefore
sup \r () — s, ()] <1—ay, Dy sup \qul (x) — W5, ()] <1-—ag,
zeU T xe
sup |54, (z) = 55, (@)] < B, sup W, 4, (2) =W, p, ()] < B1,
xzeU 27T zeU
and )
sup \r () — T, ()] <1 - as, 3 Sup \w“AQ (x) — W5, ()] <1 - ay,
zeU zeU
sup [s ,, (z) — 85, (%) < B2, s=suplw,,, (¥) —w,,, ()] < Be,
zeU 2m zelU
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consequently, we have

1
p(l’(‘AIVAZ ) I’LBIVBZ) = max(sug |TA1VA2 (l‘) - TBIVBQ( )‘ 271' sup |w n(A1VAg) (Z‘) - wu(Blvsy (JT)D,

€
p(VAIVAQ ) VBIVBQ) max(stelp |SA1VA2 (w) Sp,vBy ( )|a sup |wu(A1VA2) (1’) - wu(BIVBz) (x)Da
xr xTE
where
SUPzeu ‘TA1VA2 (x) B, vB, (x)|
= Sup,ep |14, (2) = 74, (2)] =[5, () — 75, (2)]]

= Sup,ep | max(r,, (w) =1, (@), 70, (@) =7, (2) —max(ry, () =1y, (2),75, (€) =75, ()]
< SUPep T4, (@) = 75, (2)] + sUPyey 74, (2) = 75, (@)
<l-ap+l—-ay=1— (g +az—1).

We note that

Slelp |TA1VA2 (f) —Tpvs, ($)| <1,
T

so we have

sup |r

D AlVA2(x) —TBlVB2(x)| <l—-(ag4+ar—1)=1-max(0,a1 +as — 1) =1 — a3 * as.
€

i SUPgev |wy,(A1VA2) (z) — W,.(B,VBy) ()]

= gz 5UP,ey [|w,a, (2) = w,n, (@) = |0, 5, (2) = w5, ()]

= % SUPzecu | maX(qul (.’L‘) _qu2 (x)7 WMAQ ( ) x)) max(wusl (x)_wuBQ (x)a WHB2 (x)_wuBl (x))|
< A (5UDrct [0y &) — iy, (0)] + 5Dt 0,0, 2) — 0y, (5)])
<l-ap+l—-ay=1— (g +az—1).

We note that

— sup |w

—w
27 zeU

| <1,

M(AIVAZ)(‘(E) M(BIVB2)(‘T)

so we have

2, Sup |0, a w49 (T) = W5 o, (@) S 1= (a1 + a2 —1) =1 —max(0, a1 + a2 — 1) =1 — ag * as.
zeU

SUPzeu ‘SAIVAZ (LZJ) ~ Sp,vB, (x)|
A (

= Sup,ep [|1 = 54, () — 9?)| [1—sp,(x) = s, (2)]
< Supgep | — 84, (2) — ( )+ s, (2 ) + 85, ()]

< sup,ep |SA1 ($> - 531( )| + SUPey S, (%) — S5, (7))
< b1+ Ba.

We note that

Slelp |SA1VA2 (l‘) — Sp,vB, (:E)| <1,
xr

so we have

SUP|$AIVA2(1)*53W32($)| <B+P<l-a+l—ar=1— (a1 +as—1)
zeU

=1—-—max(0,a1 + a2 — 1) =1 — ag * as.

% SUPzcu |wy(A1VA2) (CL’) W (,vBy) (1‘)‘

375U,y 127 — w, ,, () — w,,, (@) = 127 — w,, (2) + 0, ()]
< 57 SUPpeu | = W, (2) = w4, (2) + w5, (2) + @, (2)]

< 5 (Supyep W, (2) = w, 5, ()] + 5UDsep W, 4, () — w, 5, (2)])

< Bi+ Be.
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We note that

2 sup |wv(A1VA2)(‘r) - wu(Blsz)(x)l <1,
T z¢€
so we have
1
% sup |w1/(A1VA2)(x) - wu(BIVBQ)( )l <H+h<l-ar+tl-a=1- (al +az - 1)
zeU

=1—-max(0,a1 +as — 1) =1 — a1 * as.

It implies that
A1VA; =

Corollary 3.10 Suppose A4; = («;,[;)B;, © € I, where I is an index set, then A; VA,V - -
* al)(31VBQV .

(a1*a2*~~-*ai7l—a1*a2*--~

Theorem 3.14 If A} = (g, $1)B; and Ay =

Proof Since 41 = (a1,01)B1 and Ay =

(a2, B2)Ba, then A;|[y Az =

(a1 % 2,1 — g x ag)(B1VBa).

O

- VA,

-VB).

(a2, B2) Ba, we have

Py, s p,) = maX(Stelp Ira, (@) =7y (x )|, - S w4, (2) —w, 5 (@)]) £1—an,
1
p(va, s vp,) = max(sup |s,, (z) = 55, ()], 5 sub |w, ,, (2) —w,p, (2)]) < Br,
zeU T xeU
and )
P(Hays g, ) = max(sup |, (2) =1y, (2)], 5 8UD |w, 4, (2) = w,p, (2)]) <1~ g,
zeU T zeU
P(VaysV,) = max(sup |s,, (2) = 55, ()], 5 sub |w, ,, (2) = w,p, (2)]) < B2,
zeU T zcU
therefore )
sup [r, (x) =7, (2)] <1 —a1, s=suplw,,, (¥) —w, (@) <1—a,
Q:‘e 1 27T 1,‘6 rAY b1
1
Sup|5 () =55, (@) < B1, s=suplw, . (2) —w, 5 ()] < B,
€U ! T 2eU ! !
and 1
sup |1, (¥) =75, (¥) <1—a2, s=sup |w,,, (z) —w,,, ()] <1 —ag,
zeU 2 T eey 7P Hoe
1
sup [s ,, (z) — 85, (%) < B2, s=suplw,,, (¥) —w, g, ()] < Be,
zeU 2T zeU

consequently, we have

p('uA1H>\A2"u'B1HA32)

fAS

ApllxAg (x) -

p(VAll\AAz’VBllb\Bz) = maX(ileIB |S

where

SUPgeu ‘TAIH/\AZ (z) — LTINS (2)]

= sup, ey [A| min(r, (2), m, (x))—min(r, (), 7, (2))[+(1=A)[ max(r

Ay (@] |7, (€)=

< supep [Amax(|r,, (w)
= 1n(a1, 042)

<max(l —aj,1—a

)
1 4
27 SUPgzeU |wu(A1H,\A2)(m) <Bl|uB2>( )]

— max(sug |1"A1MA2 (x) — T 111 s ()], o up

SB111xB2 (:U)|, %

7, (@) (A= X max(lr, () =7,

- wu(BlH,\Bz) (:L')D,

sup |wH(A1H)\A2) (I)
T

WV(Bl\\ABz)(x)Da

21618 |w1/(A1H>\A2) (:E) -

Aq (.’E), T, (x))—max(rBl (1')7 s

@), 15, () — 1, (@)])]
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= 9 SUP ey N min(wy,, (2), wyea, (2)) = min(wyp, (), Wip, ()] + (1 = N[ max(wy,, (), W, () —
(Wusl (@), wup, (2))]]
< o Super[)‘ max(|wMA1 (CL’) ~Wha, (SL‘)|, |wHBl (33) —Wug, ('r)‘)+(1_)‘) maX(|qu1 (CC) ~Wya, ($)|7 |wHBl (33)_
Wy, (2)])]
<max(l —a1,1 —ag) =1 —min(ay, as).
SUPzeu ‘5A1|\)\A2 (x) - SBl\IABZ ((ﬂ)|
= sup,cy Al max(s,, (), s,, (x))—max(sy, ( ) 85, (2))[+(1=A)[min(s , (z),s,, (z))—min(s, (2), sy, (@))]]
< sup,ep[Amax(|s, (z)—s,, (@)l ]s;, () — ( )|) +(1=A)max(|s, (x)—s,, (@)],[s5, (@)= s,, (@)[]
< max(f, B2)-
1 suszU |WV<A1|\AA2>( )7wV(BlH)\Bz)(I)|
= 55 SUPep A max (Wi, (2), Wiy, (2)) — max(wyy, (), wip, (2))] + (1 = )| min(w,,, (), 0, (7)) —
w,,Bl( ), Wy, (7))l]
< g7 supey A max(lwy, (2)—wiy, (@), Wi, (2)=wpp, ()])+(1-X) max(lwy,, (2)—wi,, ()], |wup, (2)-
Wy, (2)])]
< max(S1, B2).
It implies that
Aq]|xAz = (min(ay, az), max(81, 52))(B1||AB2).

O

Corollary 3.11 Suppose A; = (a;,0;)B;, i € I, where I is an index set, then Aj|[xAz||x - ||x4i =
(inf(alaa@a te '7ai)7sup(/81762a o 761))(B1||XBQ||X e ||/\BZ)

4 Complex intuitionistic fuzzy relations

In this section, complex intuitionistic fuzzy relations are discussed.

Definition 4.1 ([4, 5]) Let U and W be two arbitrary finite non-empty sets. An intuitionistic fuzzy
relation R(U, W) is an intuitionistic fuzzy subset of the product space U x W. The relation R(U, W) is
characterized by the membership function p,(z,y) : U x W — [0, 1] and the non-membership function
vy(z,y) : U x W — [0,1] with the condition

0< ,u,R(I,y)JrVR(x,y) <1

forall z € U and y € W.
Like any intuitionistic fuzzy set, R(U, W) may be represented as the set of ordered pairs

RU,W) ={((z,y), tp(x,y),v5(2,9)) | (x,y) €U x W}

Definition 4.2 Let U and W be two arbitrary finite non-empty sets. A complex intuitionistic fuzzy
relation R(U,W) is a complex intuitionistic fuzzy subset of the product space U x W. The relation
R(U,W) is characterized by the membership function u,(z,y) : U x W — {ala € C,|a] < 1} and the
non-membership function v, (z,y) : U x W — {a'|a’ € C,|a’| < 1} with the condition

g (7, y) +vg (2, y) <1

where © € U and y € W, p,(z,y) and v,(z,y) assign each pair (z,y) a complex-valued grade of
membership and a complex-valued grade of non-membership to the set R(U, W).
Like any complex intuitionistic fuzzy set, R(U, W) may be represented as the set of ordered pairs

RU,W) ={((z,9), pr (2,9), v (2, 9)) | (x,y) €U x W}
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The value p,(z,y) and v, (x,y) may receive lie within the unit circle in the complex plane, and are
on the form g, (z,y) = r,(z) - €“er@ and v, (z,y) = s, (x) - @@ where i = v/—1, each of r,(z)
and s, (z) are real-valued and both belong to the interval [0,1] such that 0 < r_(x) 4+ s,(z) < 1, also
@, x(x) and @, ,(z) are periodic function whose periodic law and principal period are, respectively, 27
and 0 < w, . (2),w, ,(7) < 2.

The complex membership function u,(x,y) and the complex non-membership function v, (x,y) are
to be interpreted in the following manner:

(i) r,(x) represents a degree of interaction or interconnectedness between the elements of U and W;
Correspondingly s, (x) represents a degree of no connection or no interaction between the elements of U
and W;

(ii) @, (x) represents the phase of association, interaction, or interconnectedness between the elements
of U and W; Correspondingly @, () represents the phase of no connection or no interaction between
the elements of U and W.

Note 4.1 Without the phase terms @, ,(7) and @, (x), a complex intuitionistic fuzzy relation R(U, W)

reduces to a traditional intuitionistic fuzzy relation R(U, W).

5 Examples

As is well-known, in the practice of financial work, we can make accurate evaluation and judgment

on the advantages and disadvantages of the economic benefits of enterprises by dissecting and analyzing
the financial situation and operating results of enterprises. The selection and application of financial
indicators as evaluation and judgment standards is particularly important. In this section, we consider
financial indicators selection and application between two companies below which involves the significance
of the phase terms of a complex intuitionistic fuzzy relation and the application of operation of complex
intuitionistic fuzzy set.
Example 5.1 Let U be the set of financial indicators or indexes of the A company. Possible elements
of this set are return on equity, total asserts turnover, current asserts turnover, asset-liability rate, quick
rate, capital accumulation rate, etc. Let W be the set of financial indicators of the B company. Let the
complex intuitionistic fuzzy relation R(U, W) represent the relation of influence of A company indicators
on B financial indicators, i.e., y is influenced by x, where x € U and y € W.

The membership function of the complex intuitionistic fuzzy relation R(U, W), u,,(x,y), is a complex
valued, with an amplitude term and a phase term. The amplitude term indicates the degree of influence
of an A company indicator on a B company indicator. An amplitude term with a value close to 0 implies
a small degree of influence, while a value close to 1 suggests a large degree of influence. The phase term
indicates the “phase” of influence, or time lag that characterizes the influence of an A company indicator
on a B company indicator.

The non-membership function of the complex intuitionistic fuzzy relation R(U, W), v, (x,y), is also a
complex valued, with an amplitude term and a phase term. The amplitude term indicates the degree of
uninfluence of an A company indicator on a B company indicator. An amplitude term with a value close
to 0 implies a small degree of uninfluence, while a value close to 1 suggests a large degree of uninfluence.
The phase term indicates the “phase” of uninfluence, or time lag that characterizes the uninfluence of an
A company indicator on a B company indicator.

Consider, for example, let © =asset-liability rate, y=capital accumulation rate. Then pu,(x,y) and
v, (x,y) are the grade of membership and non-membership associated with the statement A company
asset-liability rate influence B company capital accumulation rate. The value of u,(x,y) and v, (x,y)

may be obtained from an expert.
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Suppose an expert was to state that “A company asset-liability rate has a great influence on B
company capital accumulation rate, and the effect of a decline or increase in A company asset-liability
rate is evident in B company capital accumulation rate in two-four months. While the degrees to which
A company asset-liability rate has no influence on B company capital accumulation rate is small, and
the no effect of a decline or increase in A company asset-liability rate is evident in B company capital
accumulation rate in two-four months.” If R(U, W) is a traditional intuitionistic fuzzy relation, the degree
of membership u, (z,y) = 0.85, the grade of non-membership v, (x,y) = 0.1 and all information regrading
the time frame of the interaction and no interaction between these two economic indexes would be lost.
However, R(U, W) is a complex intuitionistic fuzzy relation, thus u,(x,y) and v, (z,y) can be assigned
two complex value which include all of the information provided by the expert.

Assume R(U, W) measures interactions between A company and B company financial indexes in the

limited time frame of 12 months. Then

fip (2, ) = 0.85 - 2713, (5.1)

and
vy(z,y) =0.1- 2 (5.2)

thus
R(z,y) = (0.85 - €271 0.1 - ¢?712). (5.3)
¢

Note that the amplitude of y , (asset-liability rate, capital accumulation rate) and v, (asset-liability rate,
capital accumulation rate) were selected to be 0.85 and 0.1, similar to the degree of membership and the
degree of non-membership of a intuitionistic fuzzy set. The phase term was chosen to be 2%(%) as
an average of “two-four months,” normalized by 12 months-the maximum time frame the relation was
designed to take into account.

Example 5.2 Based on the Example 5.1, let V' be the set of development indicators or indexes of the
city, such as consumer price index, producer price index, etc. Now, consider the following two complex
intuitionistic fuzzy relations.

(1) The relation R(U, W), discussed in detail in the Example 5.1, representing the relation of influence
of A company financial indexes on B company financial indexes.

(2) The relation R(W, V), representing the relation of influence of B company financial indexes on
city development indicators.

Let x=return on equity, y=total asserts turnover, z=producer price index, where x € U,y € W and
zeV.

Suppose the following information is available from an expert.

(1) The influence of A company return on equity on B company total asserts turnover is medium,
and its effect is evident in four-six months, while no-influence of A company of return on equity on B
company total asserts turnover is medium, and its effect is not evident in four-six months. According to

Definition 4.2, we have
R(z,y) = (0.55 - €2™12 0.4 - 7 12), (5.4)

(2) The influence of B company total asserts turnover on city development producer price index is
verge large, and its effect is evident in nine-ten months, while no-influence of B company of total asserts
turnover on city development producer price index is very small, and its effect is not evident in nine-ten

months. According to Definition 4.2, we have

R(y,z) = (0.9 ™13 0.05 - ¢/2712)). (5.5)
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The two relations defined above may be combined in order to produce a third relation, R(U, V), the
relation of influence of A company return on equity on city development producer price index. The
relation R(U, V) is obtained through the composition of relation R(z,y) and R(y, z). It is possible to
provide a general and rigorous definition for the composition of complex intuitionistic fuzzy relation.
In this example, we consider the composition of the two degree of membership and the two degree of
non-membership derived above: p, (z,y), py (Y, 2), v, (z,y), and v, (y, 2).

The result of this composition is the degree of membership and non-membership p, (z, z) and v, (z, z).
From intuitive consideration, we suggest that the value of u, (z,z) and v, (z, z) should equal the product
of u,(z,y) and p, (y, z) and the product of v, (x, y) and v, (y, ), i.e., R(z, z) equal the product of R(z,y)
and R(y, z). According to Definition 2.6,

R(z,z) = R(z,y) o R(y, 2), (5.6)
where

pp(m,2) = p,(z,y)opn,(y,z) =0.55- €271 00.9 . €275 = (.495 - 27 (5.7)

and
vp(z,2z) =v,(x,y)ov,(y,z) =0.4- €715 60.05 - €271z = (.38 - 27T (5.8)

thus
R(x,2) = (0.495 - €277 0.43 - 2757 ). (5.9)
¢

Note that for the membership function, the amplitude term of p, (z, z) is derived by intersecting the
amplitudes of p, (z,y) and p,(y, z), with product used as the intersection function of choice. The phase
term of p,(x,z) is also derived by intersecting the amplitudes of u,(x,y) and p,(y, z), with product
used as the intersection function of choice. While for the non-membership function, the amplitude term
of v, (x, z) is derived by intersecting the amplitudes of v, (z,y) and v, (y, ), with probabilistic sum used
as the union function of choice. The phase term of v, (x, z) is also derived by intersecting the amplitudes
of v, (z,y) and v, (y, z), probabilistic sum used as the union function of choice.

Hence, the use of multiplication in this example makes good intuitive sense. Note that the product
operation emphasizes a unique property of complex intuitionistic fuzzy setsthe complex algebra of its
grades of membership and non-membership. It is a feature of complex intuitionistic fuzzy sets that is

difficult to reproduce using traditional intuitionistic fuzzy sets.

6 Conclusion

In this paper, we have investigated the properties of various operations on complex intuitionistic
fuzzy sets and introduced a new distance measure for complex intuitionistic fuzzy sets. This distance
measure was then used to defined (a, §)-equalities of complex intuitionistic fuzzy sets which subsumed
(o, B)-equalities of intuitionistic fuzzy sets defined in references [20]. Two complex intuitionistic fuzzy
sets are said to be («, 8)-equal if p(u,,p,) < 1—« and p(v,,v,) < B. The importance of the work
presented in this paper can be justified in theory as well as in practice. For example, in section 5 we
consider financial indicators selection and application between two companies below which involves the
significance of the phase terms of a complex intuitionistic fuzzy relation and the application of operation

of complex intuitionistic fuzzy set.
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