Skip to main content
Log in

Transientes Simulationsmodell für lokale Kraftanregungen elektrischer Antriebe

Transient simulation model for local force excitations of electrical drives

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Für die Simulation von transienten lokalen Kraftanregungen innerhalb einer elektrischen Maschine wird eine Simulationsumgebung vorgestellt. Damit ist es möglich, drehzahl- und drehmomentdynamische Vorgänge zu bewerten. Es werden sowohl das Simulationsmodell als auch die Methode zur Kraftberechnung beschrieben und ein Simulationsergebnis als Abschluss gezeigt.

Abstract

A simulation environment for the transient simulation of local force excitations of electrical machines is presented. The model enables the evaluation of dynamic speed and torque situations. The simulation model as well as the method of the force determination are shown and a simulation result is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4.
Abb. 5.
Abb. 6.
Abb. 7.

Literatur

  1. Bösing, M., Niessen, M., Lange, T., De Doncker, R. (2012): Modeling spatial harmonics and switching frequencies in PM synchronous machines and their electromagnetic forces. In 2012 XXth international conference on electrical machines (ICEM) (S. 3001–3007).

    Chapter  Google Scholar 

  2. Bossavit, A. (1990): Forces in magnetostatics and their computation. J. Appl. Phys., 67(9), 5812–5814.

    Article  Google Scholar 

  3. Bossavit, A. (1992): Edge element computation of the force field in deformable bodies. IEEE Trans. Magn., 8(2), 1263–1266.

    Article  MathSciNet  Google Scholar 

  4. Braunisch, D., Ponick, B., Bramerdorfer, G. (2013): Combined analytical-numerical noise calculation of electrical machines considering nonsinusoidal mode shapes. IEEE Trans. Magn., 49(4), 1407–1415.

    Article  Google Scholar 

  5. Coulomb, J. L. (1983): A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans. Magn., 16(6), 2514–2519.

    Article  Google Scholar 

  6. Dutt, A., Rokhlin, V. (1995): Fast Fourier transforms for nonequispaced data, II. Appl. Comput. Harmon. Anal., 2, 85–100.

    Article  MATH  MathSciNet  Google Scholar 

  7. Fischer-Hinnen, J. (1904): Über das Pfeifen von Maschinen. Z. Elektrotech., 23, 399.

    Google Scholar 

  8. Gieras, J. F., Wang, C., Cho Lai, J. (2006): Noise of polyphase electric motors. Boca Raton: CRC Press (Taylor & Francis Group).

    Google Scholar 

  9. Giet, M. v. d. (2011): Analysis of electromagnetic acoustic noise excitations: a contribution to low-noise design and to the auralization of electrical machines. Diss. IEM, RWTH Aachen University. Aachen: Shaker.

    Google Scholar 

  10. Hameyer, K., Mertens, R., Pahner, U., Belmans, R. (1998): New technique to enhance the accuracy of 2-D/3-D field quantities and forces obtained by standard finite-element solutions. IEE Proc. Sci. Meas. Technol., 145(2), 67–75.

    Article  Google Scholar 

  11. Henrotte, F., Hameyer, K. (2007): A theory for electromagnetic force formulas in continuous media. IEEE Trans. Magn., 43(4), 1445–1448.

    Article  Google Scholar 

  12. Jordan, H. (1950): Geräuscharme Elektromotoren. Essen: Verlag W. Girardet.

    Google Scholar 

  13. Le Besnerais, J., Lanfranchi, V., Hecquet, M., Brochet, P. (2010): Characterization and reduction of audible magnetic noise due to PWM supply in induction machines. IEEE Trans. Ind. Electron., 57(4), 1288–1295.

    Article  Google Scholar 

  14. McFee, S., Webb, J. P., Lowther, D. (1988): A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics. IEEE Trans. Magn., 24(1), 439–442.

    Article  Google Scholar 

  15. Müller, G. (1995): Theorie elektrischer Maschinen. Weinheim: VCH.

    Google Scholar 

  16. Ren, Z., Razek, A. (1992): Local force computation in deformable bodies using edge elements. IEEE Trans. Magn., 28(2), 1212–1215.

    Article  Google Scholar 

  17. Roivainen, J. (2009): Unit-wave response-based modeling of electromechanical noise and vibration of electrical machines. Dissertation. Helsinki: University of Technology.

  18. Timar, L., Fazekas, A., Kiss, J., Miklos, A., Yang, G. S. (1989): Noise and vibration of electrical machines. Amsterdam: Elsevier.

    Google Scholar 

  19. Yang, J. S. (1981): Low-noise electrical motors. Oxford: Clarendon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Herold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herold, T., Franck, D., Böhmer, S. et al. Transientes Simulationsmodell für lokale Kraftanregungen elektrischer Antriebe. Elektrotech. Inftech. 132, 46–54 (2015). https://doi.org/10.1007/s00502-014-0277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-014-0277-y

Schlüsselwörter

Keywords

Navigation