Skip to main content
Log in

Scaling and design of miniature high-speed bearingless slice motors

Skalierung und Auslegung von lagerlosen Miniatur-Scheibenläufermotoren für hohe Drehzahlen

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Recent years have shown a development of electrical drive systems toward high rotational speeds to increase the power density. Applications such as optical systems benefit from rotational speeds at which conventional ball bearings suffer from high losses, excessive wear, and decreased reliability. In such cases, magnetic bearings offer an interesting alternative. This work presents a universally applicable design procedure for miniature bearingless slice motors intended for rotational speeds of several hundred thousand revolutions per minute. Design trade-offs are illustrated and facilitate the selection of Pareto-optimal implementations. An exemplary motor prototype for rotational speeds of up to 760 000 rpm with a rotor diameter of 4 mm and a suitable inverter featuring an FPGA-based controller are demonstrated briefly.

Zusammenfassung

Um die Leistungsdichte elektrischer Antriebssysteme zu erhöhen, existiert seit einigen Jahren ein Trend hin zu höheren Rotationsgeschwindigkeiten solcher Motoren. Anwendungen wie beispielsweise optische Systeme profitieren von hohen Rotationsgeschwindigkeiten, bei denen konventionelle Kugellager mit hohen Verlusten, überhöhtem Verschleiß und verringerter Zuverlässigkeit behaftet sind. In solchen Fällen bieten Magnetlager eine interessante Alternative. Die vorliegende Arbeit präsentiert einen universell einsetzbaren Designprozess für lagerlose Scheibenläufermotoren kleiner Baugröße, die für den Einsatz bei Drehzahlen von mehreren Hunderttausend Umdrehungen pro Minute vorgesehen sind. Eine Veranschaulichung der bei der Auslegung solcher Maschinen einzugehenden Kompromisse ermöglicht die Realisierung von Pareto-optimalen Designs. Ein beispielhafter Prototyp eines Motors für Drehzahlen von bis zu 760 000 U/min und einem Rotordurchmesser von 4 mm sowie ein geeigneter Umrichter mit FPGA-basierter Regelung werden kurz beschrieben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Baumgartner, T., Kolar, J. W. (2015): Multivariable state feedback control of a 500 000-r/min self-bearing permanent-magnet motor. IEEE/ASME Trans. Mechatron., 20(3), 1149–1159. https://doi.org/10.1109/TMECH.2014.2323944.

    Article  Google Scholar 

  2. Bertotti, G. (1988): General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn., 24(1), 621–630. https://doi.org/10.1109/20.43994.

    Article  Google Scholar 

  3. Bilgen, E., Boulos, R. (1973): Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers. J. Fluids Eng., 95(1), 122–126.

    Article  Google Scholar 

  4. Borisavljevic, A., Polinder, H., Ferreira, J. A. (2010): On the speed limits of permanent-magnet machines. IEEE Trans. Ind. Electron., 57(1), 220–227. https://doi.org/10.1109/TIE.2009.2030762.

    Article  Google Scholar 

  5. Daily, J. W., Nece, R. E. (1960): Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Eng., 82(1), 217–230. https://doi.org/10.1115/1.3662532.

    Article  Google Scholar 

  6. Deng, F. (1997): Commutation-caused eddy-current losses in permanent-magnet brushless DC motors. IEEE Trans. Magn., 33(5), 4310–4318. https://doi.org/10.1109/20.620440.

    Article  Google Scholar 

  7. Duma, V. F., Podoleanu, A. G. (2013): Polygon mirror scanners in biomedical imaging: a review. In Optical Components and Materials X (Vol. 8621). Bellingham: SPIE. https://doi.org/10.1117/12.2005065.

    Chapter  Google Scholar 

  8. Epstein, A. H. (2004): Millimeter-scale, micro-electro-mechanical systems gas turbine engines. J. Eng. Gas Turbines Power, 126(2), 205–226. https://doi.org/10.1115/1.1739245.

    Article  Google Scholar 

  9. Fausz, J., Wilson, B., Hall, C., Richie, D., Lappas, V. (2009): Survey of technology developments in flywheel attitude control and energy storage systems. J. Guid. Control Dyn., 32(2), 354–365. https://doi.org/10.2514/1.32092.

    Article  Google Scholar 

  10. Ferreira, J. A. (1989): Electromagnetic Modelling of Power Electronic Converters. Berlin: Springer.

    Book  Google Scholar 

  11. Hearn, E. J. (1997): Mechanics of Materials 2: The Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials. 3rd ed. Stoneham: Butterworth.

    Google Scholar 

  12. HKCM Engineering (2016): Magnet-Disc S04x02ND-45SH Datasheet.

  13. Kaufmann, M., Tüysüz, A., Kolar, J. W., Zwyssig, C. (2016): High-speed magnetically levitated reaction wheels for small satellites. In Proc. Int. Symp. Power Electronics, Electrical Drives Automation and Motion (SPEEDAM) 2016 (pp. 28–33). https://doi.org/10.1109/SPEEDAM.2016.7525889.

    Chapter  Google Scholar 

  14. Kimman, M., Langen, H., Schmidt, R. M. (2010): A miniature milling spindle with active magnetic bearings. Mechatronics, 20(2), 224–235. https://doi.org/10.1016/j.mechatronics.2009.11.010.

    Article  Google Scholar 

  15. Krahenbuhl, D., Zwyssig, C., Weser, H., Kolar, J. W. (2010): A miniature 500 000-r/min electrically driven turbocompressor. IEEE Trans. Ind. Appl., 46(6), 2459–2466. https://doi.org/10.1109/TIA.2010.2073673.

    Article  Google Scholar 

  16. Looser, A., Tüysüz, A., Zwyssig, C., Kolar, J. W. (2017): Active magnetic damper for ultrahigh-speed permanent-magnet machines with gas bearings. IEEE Trans. Ind. Electron., 64(4), 2982–2991. https://doi.org/10.1109/tie.2016.2632680.

    Article  Google Scholar 

  17. Luomi, J., Zwyssig, C., Looser, A., Kolar, J. W. (2009): Efficiency optimization of a 100-W 500 000-r/min permanent-magnet machine including air-friction losses. IEEE Trans. Ind. Appl., 45(4), 1368–1377. https://doi.org/10.1109/TIA.2009.2023492.

    Article  Google Scholar 

  18. Markovic, M., Perriard, Y. (2008): Analytical solution for rotor eddy-current losses in a slotless permanent-magnet motor: The case of current sheet excitation. IEEE Trans. Magn., 44(3), 386–393. https://doi.org/10.1109/TMAG.2007.914620.

    Article  Google Scholar 

  19. Metglas, Conway, SC, USA (2011): 2605SA1 Magnetic Alloy. https://metglas.com/wp-content/uploads/2016/12/Amorphous-Alloys-for-Transformer-Cores-.pdf

  20. Mitterhofer, H., Gruber, W. (2017): Effizienzsteigerung durch die und in der Magnetlagertechnik. E&I, Elektrotech. Inf.tech., 134(2), 191–196. https://doi.org/10.1007/s00502-017-0487-1.

    Article  Google Scholar 

  21. Mitterhofer, H., Gruber, W., Amrhein, W. (2014): On the high speed capacity of bearingless drives. IEEE Trans. Ind. Electron., 61(6), 3119–3126. https://doi.org/10.1109/TIE.2013.2272281.

    Article  Google Scholar 

  22. Mitterhofer, H., Jungmayr, G., Amrhein, W., Davey, K. (2018): Coaxial tilt damping coil with additional active actuation capabilities. IEEE Trans. Ind. Appl., 54(6), 5879–5887. https://doi.org/10.1109/TIA.2018.2854263.

    Article  Google Scholar 

  23. Monolithic Power Systems, Inc. (2016): MPQ8039 High Current Power Half Bridge.

  24. Murgatroyd, P. N. (1989): Calculation of proximity losses in multistranded conductor bunches. IEE Proc. A, Phys. Sci. Meas. Instrum. Manag. Educ., 136(3), 115–120. https://doi.org/10.1049/ip-a-2.1989.0021.

    Article  Google Scholar 

  25. Pfister, P. D., Perriard, Y. (2011): Slotless permanent-magnet machines: General analytical magnetic field calculation. IEEE Trans. Magn., 47(6), 1739–1752. https://doi.org/10.1109/TMAG.2011.2113396.

    Article  Google Scholar 

  26. Puentener, P., Schuck, M., Steinert, D., Nussbaumer, T., Kolar, J. W. (2018): A 150000 rpm bearingless slice motor. IEEE/ASME Trans. Mechatron. https://doi.org/10.1109/TMECH.2018.2873894.

    Article  Google Scholar 

  27. Raggl, K., Nussbaumer, T., Kolar, J. W. (2009): A comparison of separated and combined winding concepts for bearingless centrifugal pumps. J. Power Electron., 9(2), 243–258.

    Google Scholar 

  28. Rahman, M. A., Chiba, A., Fukao, T. (2004): Super high speed electrical machines—summary. In Proc. IEEE Power Engineering Society General Meeting (Vol. 2, pp. 1272–1275). https://doi.org/10.1109/PES.2004.1373062.

    Chapter  Google Scholar 

  29. Schoeb, R., Barletta, N. (1997): Principle and application of a bearingless slice motor. JSME Int. J., Ser. C, Mech. Syst. Mach. Elem. Manuf., 40(4), 593–598.

    Article  Google Scholar 

  30. Schuck, M., Da Silva Fernandes, A., Steinert, D., Kolar, J. W. (2017): A high speed millimeter-scale slotless bearingless slice motor. In Electric Machines and Drives Conference (IEMDC) 2017 (pp. 1–7). New York: IEEE Press.

    Google Scholar 

  31. Schwager, L., Tüysüz, A., Zwyssig, C., Kolar, J. W. (2014): Modeling and comparison of machine and converter losses for PWM and PAM in high-speed drives. IEEE Trans. Ind. Appl., 50(2), 995–1006. https://doi.org/10.1109/TIA.2013.2272711.

    Article  Google Scholar 

  32. Schweitzer, G., Maslen, E. (2009): Magnetic bearings, theory, design, and application. Heidelberg: Springer.

    Google Scholar 

  33. Silber, S., Sloupensky, J., Dirnberger, P., Moravec, M., Amrhein, W., Reisinger, M. (2014): High-speed drive for textile rotor spinning applications. IEEE Trans. Ind. Electron., 61(6), 2990–2997. https://doi.org/10.1109/TIE.2013.2258308.

    Article  Google Scholar 

  34. Steinert, D., Nussbaumer, T., Kolar, J. W. (2013): Concept of a 150 krpm bearingless slotless disc drive with combined windings. In Proc. Int. Electric Machines Drives Conf. (pp. 311–318). https://doi.org/10.1109/IEMDC.2013.6556269.

    Chapter  Google Scholar 

  35. Steinert, D., Nussbaumer, T., Kolar, J. W. (2014): Slotless bearingless disk drive for high-speed and high-purity applications. IEEE Trans. Ind. Electron., 61(11), 5974–5986. https://doi.org/10.1109/TIE.2014.2311379.

    Article  Google Scholar 

  36. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurswesen (2010): VDI Heat Atlas. 2nd ed. Berlin: Springer.

    Google Scholar 

  37. Zwyssig, C., Baumgartner, T., Kolar, J. W. (2014): High-speed magnetically levitated reaction wheel demonstrator. In Proc. Int. Power Electronics Conf. (IPEC-Hiroshima 2014–ECCE ASIA) (pp. 1707–1714). https://doi.org/10.1109/IPEC.2014.6869813.

    Chapter  Google Scholar 

  38. Zwyssig, C., Kolar, J., Round, S. (2009): Megaspeed drive systems: Pushing beyond 1 million r/min. IEEE/ASME Trans. Mechatron., 14(5), 564–574. https://doi.org/10.1109/TMECH.2008.2009310.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the company Levitronix GmbH for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Schuck.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuck, M., Puentener, P., Holenstein, T. et al. Scaling and design of miniature high-speed bearingless slice motors. Elektrotech. Inftech. 136, 112–119 (2019). https://doi.org/10.1007/s00502-019-0718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-019-0718-8

Keywords

Schlüsselwörter

Navigation