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Learn, detect, and grasp objects in
real-world settings
M. Vincze , T. Patten, K. Park, D. Bauer

Experts predict that future robot applications will require safe and predictable operation: robots will need to be able to explain what
they are doing to be trusted. To reach this goal, they will need to perceive their environment and its object to better understand
the world and the tasks they have to perform. This article gives an overview of present advances with the focus on options to learn,
detect, and grasp objects. With the approach of colour and depth (RGB-D) cameras and the advances in AI and deep learning methods,
robot vision has been pushed considerably over the last years. We summarise recent results for pose estimation of objects and work
on verifying object poses using a digital twin and physics simulation. The idea is that any hypothesis from an object detector and
pose estimator is verified leveraging on the continuous advances in deep learning approaches to create object hypotheses. We then
show that the object poses are robust enough such that a mobile manipulator can approach the object and grasp it. We intend to
indicate that it is now feasible to model, recognise and grasp many objects with good performance, though further work is needed
for applications in industrial settings.
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Lernen, Erkennen und Greifen von Objekten mit einem mobilen Manipulator.

Experten sagen voraus, dass zukünftige Roboteranwendungen einen sicheren und vorhersehbaren Betrieb erfordern werden: Roboter
müssen erklären können, was sie tun, um vertrauenswürdig zu sein. Um dieses Ziel zu erreichen, müssen sie ihre Umgebung und die
Objekte darin wahrnehmen. Nur dann werden sie die Aufgaben, die sie ausführen müssen, zuverlässig ausführen. Dieser Artikel gibt
einen Überblick über aktuelle Fortschritte mit dem Schwerpunkt Lernen, Erkennen und Greifen von Objekten. Mit dem Aufkommen
von Farb- und Tiefenkameras (RGB-D) und den Fortschritten bei künstlicher Intelligenz (KI) und Deep-Learning-Methoden wurde die
Robotik in den letzten Jahren erheblich vorangetrieben. Es ist bereits möglich, viele Objekte zu modellieren und zu erkennen, obwohl
der Nachweis in offenen industriellen Umgebungen noch aussteht. Um dieses Ziel zu erreichen, verwendet man auch die Erkennung
größerer Strukturen wie Tische und Wände, um Beziehungen zu den Objekten herzustellen und die Erkennungsraten zu verbessern.
Dies wird durch moderne Simulation und digitale Zwillingstechnologie (Digital Twin) unterstützt, mit deren Hilfe überprüft werden
kann, ob die erlernten Black-Box-Ergebnisse auch physikalisch Sinn machen. Der Artikel hebt aktuelle Entwicklungen hervor und weist
auf zukünftige Trends in Richtung Service- und Industrieroboteranwendungen hin.
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1. Introduction
Ever increasing computing power, availability of large datasets, and

modern artificial intelligence (AI) and deep learning approaches have

led to new methods in computer vision and robotics. A major influ-

ence has been the breakthrough of deep learning, which has en-

hanced the accuracy and reliability of semantic vision methods such

as object recognition and classification [1, 2]. The trends in robotics

currently move in two directions. Thanks to new safety features,

such as flexible arms, force sensors in joints and touch-sensitive skin,

industrial robots are emerging from behind the fences. This creates

new mobile applications for the cooperation between robots and

humans in manufacturing. And thanks to better AI methods, such

as in image processing and robot vision, navigation or path plan-

ning, robots are found more and more moving on the workshop

floor and in service applications. Examples of this are robots in nurs-

ing homes to support the staff, in logistics fulfilling orders, in shops

at the reception, and also robots at home that will perform a variety

of tasks beyond the vacuuming robots, such as lifting things off the

floor [3].

A key aspect to make robots enter all these applications is the
understanding of the environment and the objects involved in the
tasks. This understanding is essential: the interface to humans will
only be possible if the robot shares the interpretation and task at the
level of humans, in other words, using the same references and la-
bels to address objects, relations, and actions [4]. Only then it will be
possible to solve industrial tasks rapidly and bring robots to services
such as making order, Fig. 1.

The contribution of this article is to show that a situated approach
increases robustness to the object detection and pose estimation
phases of understanding the robot’s environment. We first show re-
cent results for pose estimation and then present work on verifying
object poses using a digital twin. The idea is that any hypothesis
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Fig. 1. Two applications exploiting object recognition and manipu-
lation: Tidying up and a Semantic Assistance System (SAS) to guide
object assembly in industrial applications. The idea is that SAS shows
the steps to the user to reach the goal state of the part assembly

from an object detector and pose estimator could be verified with
this approach leveraging on the continuous advances in deep learn-
ing approaches to create object hypotheses. We then show that the
poses are robust enough such that a mobile manipulator can ap-
proach the table and grasp the object. Of particular interest is here,
that we can use each trial to keep learning which grasps have been
successful for improving the reliability of grasping.

The article starts with an outline of the situated approach to robot
vision in Sect. 2. We then present our novel approach to object
pose estimation, Sect. 3. Section 4 presents the method to verify
object hypotheses and Sect. 5 the experiments to use these poses
for grasping. Section 6 summarises the results achieves and gives an
outlook of future work.

2. Situated robot perception: embodied AI from the view of
the robot

Classic deep learning methods in computer vision learn from large
image datasets created by humans or acquired while driving cars,
e.g. [5, 6]. The limit of these approaches is shown when applied
to settings in homes and industry [7]. Many of the objects are not
recognised. A main reason is that the robot does not create images
of target objects in the center under good viewing conditions but is
constrained by its motion and physical capabilities, e.g., camera at
fixed height, limited viewing angles, and no understanding of back
light or good view.

There are two options to counter this shortcoming. One ap-
proach, presently pursued in computer vision, creates larger and
larger datasets to obtain the view points as gathered when deploy-
ing the system [8]. This is the common approach at large compa-
nies working on the challenge of autonomous driving, for exam-
ple, Google1 or Uber.2 A similar approach has been taken for the
robotics environment to build up a dataset of indoor scenes in [9].
However, this approach is limited, since it will be difficult to create
examples of all possible scenarios that one might ever encounter.

Another approach is to work towards better understanding what
is actually perceived and done. With respect to perception this
means to develop deep learning approaches that use parts and their
relationships to better explain overall scenes [10]. With respect to
robotics, there is the approach of embodied AI that aims at exploit-
ing the robot body to better understand a situation [11]. We also
refer to this approach as situated, since the robot is immersed in

1https://waymo.com/.

2https://www.uber.com/at/en/atg/technology/.

its settings and exploits contextual knowledge to improve its under-
standing of the scenes. Along this approach we develop a situated
approach to robot vision that uses contextual knowledge from the
map and larger object structures to centre views of the robot and fo-
cus object recognition methods [12]. Figure 2 presents an overview.
The basic idea is that the robot exploits the data from navigating
around for its tasks: (1) floor detection is essential to safely navigate,
(2) the boundary of the floor can be perfectly used for localisation,
(3) the boundary also clearly delineates areas where there will be
larger structures for further analysis such as object recognition, and
(4) the larger structures and, in particular, horizontal surfaces are
exploited to focus object recognition and classification.

With the detection of larger structures such as cupboards, desks
and tables, and the detection of surfaces, the task of detecting ob-
jects is enhanced with the dimension to find clusters of data points
that stick out of the plane and possibly present one or more ob-
jects [9]. This simplifies object detection or can be viewed as pre-
senting a second step of verification to the detection step.

3. Object detection and pose estimation
An important task of robots in both industrial and service applica-
tions is the detection and tracking of objects. Every handling task
of an object requires the recognition of the object and the deter-
mination of its position and orientation (object pose). Appropriate
methods can be divided into the recognition of objects based on
their texture (or appearance) in the colour image or their shape,
usually in the depth image. With the advent of RGB-D cameras such
as the Kinect (PrimeSense) and RealSense (Intel), the use of colour
and depth images has shown to be advantageous for applications
in robotics.

The critical task for the eventual goal of grasping an object, is
the accurate pose estimation of objects. The inclusion of depth im-
ages has induced significant improvements by providing precise 3D
pixel coordinates [13]. However, depth images are not always easily
available. Hence there is substantial research dedicated to estimat-
ing poses of known objects using RGB images only. A large body of
work relies on the textured 3D model of an object, which is made by
a 3D scanning device, e.g., BigBIRD Object Scanning Rig [14], and
provided by a dataset to render synthetic images for training [15].
Thus, the quality of texture in the 3D model should be sufficient to
render visually correct images.

The idea of our approach is to convert a 3D model to a coloured
coordinate model. Normalized coordinates of each vertex are directly
mapped to red, green and blue values in the colour space, see Fig. 3.
In this novel method Pix2Pose [16] we predict these coloured images
to build a 2D-3D correspondence per pixel directly without any fea-
ture matching operation.

An advantage of this approach is that texture information of CAD
models are not necessary when limited numbers of real images with
pose annotations are available, which simplifies learning for indus-
trial objects, e.g., using texture-less CAD models and collecting im-
ages of real objects while tracking camera poses. The method out-
performs state-of-the-art methods that use the same amount of
real images for training (approximately 200 images per object for
LineMOD). In this case, the performance does not rely on the tex-
ture quality of 3D models that can be varied with different texturing
methods and lighting conditions.

Even though recent studies have shown great potential to esti-
mate poses of multiple objects in RGB images using Convolutional
Neural Networks (CNN), e.g., [17], a significant challenge is to es-
timate correct poses when objects are occluded or symmetric. In
these cases the object pose will not be correct or wrongly attached
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Fig. 2. Situated object detection exploiting the robot embodiment. Moving through a room, the floor is used for safe navigation, the boundary
of the floor for localisation and detecting structures, while structures and features such as planar surface guide object detection

Fig. 3. Pose estimation based on creating 3D colour coded coordi-
nates, adapted from [16] (Color figure online)

to a symmetric view resulting in divergence of network training. The
ideas presented in Pix2Pose tackle these problems [16]. For occlu-
sion, the pixel-wise prediction is performed for not only the visible
area but also the occluded region. For symmetric objects, a novel loss
function, Transformer loss, is introduced to guide the predictions to
the closest symmetric pose.

The evaluation of pose estimation methods is typically done using
several benchmarks, most noticeable, BOP [13]. Two of the bench-
marks are specifically related to tasks such as object pose estima-
tion from the view of a robot, the YCB-Video dataset and the Rut-
gers Amazon Picking Challenge (APC) dataset. At ICCV 2019 [16]
won the competition in both these robotics-related benchmarks.
Figures 4 and 5 indicate the performance of Pix2Pose when moving
around closely placed objects on a small desk. To give an indication
of performance, success rate for correct 6D poses on YCB-Video is
75% (up five percent over other methods) with average computing
time of 2.9 seconds per scene. APC success rate is 41% (up 24 per-
cent over other methods) using 0.48 seconds per scene. Details are
given at the BOP webpage.3

4. Object hypotheses verification
The idea of a verification step is to exploit the constraints of the
robot’s environment to check whether an object hypothesis makes
sense and is feasible. Object recognition and pose estimation is im-
proved by introducing physical constraints in [18–20]. For exam-
ple, Aldoma et al. [18] concentrate on a reliable energy function
to model the validity of object hypotheses and an efficient method
to solve the global model selection problem. Any data point is ex-

3https://bop.felk.cvut.cz/.

Fig. 4. Examples for the reliable pose estimation in a real environ-
ment. Left, image with original images and bounding box from 2D
recognition. Right, the same image with the superimposed object
models in 3D. It clearly shows that pose estimates are accurate and
cope very well with symmetries

Fig. 5. Two more examples of 3D pose estimates while moving
around the scene in Fig. 4

plained only by one object hypothesis, smooth surfaces should be-
long to one object, and object and support plane or other objects
should not overlap. While these are obvious physical constraints,
they are, however, not considered in object recognition methods [1,
2].

The general idea of hypothesis verification is to exploit digital
twin technology and physics simulation. Physical object properties
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Fig. 6. Accurate pose estimation using hypotheses verification [23]
for images of the Rutgers Extended RGB-D dataset. Particularly in
scenes with occluded objects, pose estimation becomes more stable

are exploited by integrating a physics engine and deep learning. The
model predicts physical attributes of objects (i.e., 3D shape, posi-
tion, mass and friction) using estimates of future scene dynamics
from physics simulations. In static scenes, it is highly unlikely to find
objects that overcome gravity and rest in unstable positions. This
is used in [21] to explain scenes by reasoning about geometry and
physics. Especially, the stability of 3D volumetric shapes recovered
from 3D point clouds is estimated. Previous approaches focus on
predicting the physical behaviour of objects and augmenting hy-
potheses by modelling Newtonian principles. While Zheng et al. [21]
perform physical reasoning utilising mainly depth information, Jia et
al. [22] incorporate both colour and depth data.

In our recent work [23] we presented the use of scene models in
a feedback cycle to verify the plausibility of hypotheses. The scene
model consists of physically annotated objects and structural ele-
ments, allowing our approach to inherently consider these proper-
ties in a rendering-based verification step using physics simulation.
Figure 6 gives examples including partially occluded objects. In ad-
dition, this results in an explainable scene description that allows
for meaningful interpretation by other system components as well
as by humans. The latter is of special significance when deploying
autonomous robots in social settings, such as care or educational
facilities. For example, objects resting on other objects are clearly
identified. In Fig. 6 bottom, right, the glue (white object) rests on
the book (red). Consequently, scene explanation reasons, with the
help of the physics engine, that taking the book would unsettle the
glue.

Based on previous work [18, 24], we investigated how the con-
sideration of physics and appearance cues is integrated into a sin-
gle, coherent hypotheses verification and refinement framework. As
a result, potential false positives in evidence accumulation will be
detected as implausible by the hypotheses verification framework.
This is in particular helpful when object recognition as well as robot
localisation shows typical uncertainty when used in a mobile manip-
ulation scenario. This has been evaluated on the YCB-Video dataset
and Fig. 7 highlights some of the results. Success rate of pose es-
timates with less than 1 cm difference to ground truth, a standard
measure in this field, is 91.9 % (up 2.9 percent over other works).
For more details, please refer to [23].

Fig. 7. Samples from the YCB-Video dataset and accurate pose esti-
mates using hypotheses verification

5. Learning to grasp objects
Given accurate object pose, the task of grasping becomes to match
the robot motion with the planned pose. While in settings with fixed
industrial robots, known objects, and accurate pose this is consid-
ered a solved task, grasping from a mobile manipulator adds un-
certainty that renders the approach an open challenge for research.
Deep learning approaches achieved great results, but for fixed set-
tings: if the input to the vision algorithms varies from the anticipated
setting then the task at hand fails, similar to grasp learning in [25],
where a disturbance of the camera-robot relation will cause break-
down. Hence, we need an approach that copes with this uncertainty
and reacts to it. Ideally, the robot is continuously aware of the situ-
ation and acts to obtain data relevant for the task. To date, this is
not how robotics is approached in most cases, instead perception
systems deliver data at one specific instance triggering a one-shot
planning process [26]. Noticeable exceptions are closed-loop control
systems such a visual servoing, e.g., [27], and directly learned grasp
planners, e.g., [25].

The classical approach to robot grasping is to exploit known ob-
jects, e.g., [28, 29]. However, this can only be applied if the set of
objects is given and it does not generalise well to new objects. For
grasping new objects an option is to use a learned classifier or pre-
dictor, e.g., [2, 30] but large amounts of labelled data are required
and this is time consuming when done by hand. Another approach
is to transfer grasps for known objects to unfamiliar objects. This as-
sumes that a novel object has some similarity to an already learned
object and that there is a known successful grasp for the learned
object [31]. The idea of these approaches is to exploit a database
of sensory observations with associated grasp information, e.g., the
object pose and grasp points. The experience is accumulated by trial
and error with a robot platform [32] or inferred directly from hu-
man behaviour [33]. Grasping an unseen object requires a strategy
to map the current observation to the samples in the database and
execute (or extrapolate from) the most similar experience. This is
typically done using global shape [32, 34], local descriptors [33] or
object regions [32]. In contrast to end-to-end learning approaches,
experience-based grasping has the potential to learn from very few
exemplars.

The key to our incremental approach to grasp learning is to ap-
ply a dense geometrical correspondence matching. Familiar objects
are identified through global geometric encoding and associated
grasps are transferred through local correspondence matching. We
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Fig. 8. Using simulated grasps in PyBullet for learning good and bad
grasps. Left two images: example of grasp that failed. Right two im-
ages: successful lifting of object

introduce the dense geometrical correspondence matching network
(DGCM-Net) that uses metric learning to encode the global geome-
try of objects in depth images such that similar geometries are repre-
sented nearby in feature space to allow accurate retrieval of experi-
ence [35]. The focus is on small objects, where observing the whole
object is useful for matching the observation to past experiences.
The global geometry is therefore important for the matching task.
For the grasp itself, the global geometry is not needed and only the
local geometry around the region of interest (i.e., a cube around the
grasp points) is used to transfer.

DGCM-Net is used in an incremental grasp learning pipeline, in
which a robot self-supervises grasp learning from its own experi-
ence. We show that a robot learns to repeatably grasp the same ob-
ject after one or two successful experiences and also to grasp novel
objects that have comparable geometry to a known object. The idea
is illustrated in Fig. 8 with two examples from the simulation, a not
successful and a successful grasp. Learning which grasps are good or
bad helps when transferring to novel objects. The assumption is that
previous good grasps have higher likely to also achieve a successful
grasp and will be tried first.

We further develop this idea to create generate large quantities
of grasp poses by exploiting simulation. Figure 8 illustrates exam-
ple grasps in the simulator both successful and non-successful. The
grasps that succeed in simulation are associated to the relevant ob-
jects and then executed with the real robot platform. As shown in
Fig. 9, the known successful grasps are detected within the scene
even under partial occlusion. To deal with occlusion, we apply data
augmentation during training such that samples consist of missing
parts. The geometry encoder is guided to generate features that
are agnostic to the effects of occlusion. During grasp execution, we
use a motion planner to only execute grasps that are reachable. In
more detail, our method generates many grasp proposals (as many
as there are past experiences) and we use the observed scene to se-
lect a grasp that is not in collision [35]. Grasp success rate was 89%
as compared to 71% in [36] and 79% in [37].

Figure 9 also shows the top three grasps based on their score.
Since the weighting between these two factors is difficult, we rather
introduce a ranking. It takes into account a grasp that is as safe
as possible and better ranks reliable object poses. Figure 10 shows
examples exploiting this method for grasping with a mobile ma-
nipulator to demonstrate that given this combined set of methods,
grasping objects reliably from a mobile robot is feasible.

6. Conclusion
The intention of this article was to highlight that object detection
and pose estimation become more and more reliable and move out
of the lab to become useful methods for mobile manipulators for
a tidy up task or as an assembly assistant (Fig. 1). In particular, we

Fig. 9. Grasp hypotheses while driving around the table shown with
an overlay of the black gripper. Note that reachable grasps have been
found for partially occluded object in the top row and the change in
illumination towards the end of the sequence. The score combines
the confidence of the object pose and the clearance to neighboring
objects. It is higher for the free-standing objects

Fig. 10. Examples of object grasping with the mobile manipulator
Toyota HSR

showed that the situated approach combines contextual informa-
tion with object recognition methods such that results are more ro-
bust. For the task of object pose estimation, the recently developed
method Pix2Pose [16] achieved first rank in methods for two chal-
lenges (RU-APC and YCB-Video at the pose estimation benchmark
at ICCV 2019).

Given the continuous improvement of AI and deep learning meth-
ods, it is expected that better object detection and pose estimation
methods will appear. Since these methods do not degrade grace-
fully, we introduced a method for hypotheses verification [23], which
uses physics simulation to verify if a pose hypothesis makes sense
given the present data and structure of the environment. This also
works towards explaining scenes at semantic level. Since pose es-
timates explicitly consider the support surface, object relations are
now transparent and can be retrieved. Furthermore, knowledge
from navigating the room adds semantic identity to the surface type,
e.g., table, shelf, or counter.
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Finally, we showed that past experience can be used to incremen-
tally learn grasps for novel objects [35]. This is extended to learn
grasps in simulation, which is particularly suitable to industry, where
part variations may appear regularly and it is necessary to rapidly,
i.e., with a few learning steps, adapt to these parts.

To apply robot vision successfully, other methods such as learning
from CAD models [16, 38] as well as learning parts rather than full
objects [39] improve recognition results. These results indicate that
it becomes feasible that robots begin to tidy up in offices or our
homes and execute fetch-and-carry tasks in open environments in
industrial settings. The experiments with the Toyota robot in Figs. 9
show that processes run in less than one second without any further
optimisation on the on-board laptop resulting in reasonably fluent
behaviour for lab demonstrations. However, we see great potential
in investigating methods that take the presented results further and
optimise the learning of core features and exploit compression to
work on limited memory and time resources.
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