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A review of the challenges in mobile
manipulation: systems design and RoboCup

challenges

Recent developments with a special focus

on the RoboCup

M. Sereinig, W. Werth, L.-M. Faller

Mobile robotics is already well established in today’s production lines. Navigation, control and perception for mobile robots are vivid
fields of research fostering advances in Industry 4.0. In order to increase the flexibility of such mobile platforms, it is also common
practice to add serial manipulator arms to their yielding systems with nine degrees of freedom and more. These platforms are not
limited to industry but are supportive in various field such as service, assistance, teleoperation and also rehabilitation. Due to the
operation of such increasingly complex systems in less structured and dynamic environments - often in close contact with humans -
more demanding challenges evolve in terms of systems design, control and sensors. These challenges are also reflected in the various
RoboCup leagues. In this paper, we discuss state-of-the-art developments in mobile manipulation using developments and work done
in the context of the RoboCup competition as design examples. Additionally, we elaborate on the recent challenges of the RoboCup
Rescue League as well as on the RoboCup@Work League.

Keywords: mobile robotics; grasping and manipulation; mobile robot control and learning; robotic sensing

Ein Uberblick iiber aktuelle Herausforderungen im Bereich der mobilen Manipulation: Systementwurf, Regelung und
Sensorik. Aktuelle Entwicklungen mit besonderem Fokus auf die Herausforderungen des RoboCup.

Die mobile Robotik ist im Bereich unserer heutigen Produktionslinien bereits eine etablierte Technologie. Wichtige Teilbereiche wie Na-
vigation, Regelung und Wahrnehmung fiir mobile Roboter stellen inzwischen stark beforschte Themen unserer Forschungslandschaft
dar. In aktuellen Systemkonzepten der mobilen Robotik im Kontext von Industrie 4.0., also zur Erweiterung der Automatisierung als
auch der Flexibilitdt solcher mobilen Plattformen, werden heutzutage vermehrt auch serielle Roboterarme zur Manipulation auf mobi-
len Plattformen eingesetzt. Die resultierenden Systeme besitzen in der Folge neun Freiheitsgrade und mehr. Im Allgemeinen beschrénkt
sich der Einsatz solcher Systeme nicht nur auf die Industrie, sodass sie in den Bereichen Dienstleistung, Assistenz, Teleoperation und
auch Rehabilitation allgegenwartig sind. Aufgrund des Einsatzes solcher zunehmend komplexen Systeme in weniger strukturierten und
dynamischen Umgebungen - oft in engem Kontakt mit Menschen - entwickeln sich anspruchsvollere Herausforderungen in Bezug auf
das Systemdesign, die Regelung und auch die Sensorik. Diese Herausforderungen werden weiterhin in den unterschiedlichen Ligen des
RoboCup abgebildet. In dieser Arbeit vermitteln wir einen Einblick in aktuelle Forschungsarbeiten im Bereich mobiler Manipulatoren
und stellen auch die entsprechenden Problemstellungen im Kontext des RoboCup-Wettbewerbs anhand der RoboCup-Rescue- sowie
der RoboCup@Work-Ligen naher dar.

Schldsselwérter: mobile Robotik, greifen und Manipulation, Lernkonzepte und Regelung fiir mobile Roboter; Sensoren in der Robotik
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1. Introduction

Historically, humans often tried to construct machines which would
resemble living beings, either human-like or closer to certain ani-
mals. While these approaches have been rather artistic, later the
upsurge of industrial robotics began with low Degree-Of-Freedom
(DOF) manipulator arms such as the PUMA 560 by Unimation. The
idea behind the development of these early machines was to allevi-
ate certain fabrication tasks for human operators. Traditionally, these
are dull, dirty and dangerous tasks. While the substitution of human
workers in such production environments with the aforementioned
context has already been achieved to a great extend, novel fields of
robot usage arise. These fields are no longer easily covered by pre-
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programming routines into robot arms. These novel robot tasks in-
clude dynamic operation and movement in flexible production lines,
human assistance in service and medical areas, in rehabilitation as
well as elderly care and rescue (compare Fig. 1). These tasks require
mobility as well as manipulation capabilities which former robotic
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(a) Kinematic chain of the (b) Rescue robot T.R.U.D.IL.

rescue robot T.R.U.D.I. during dexterity test.
with 12 DOF.

Fig. 1. Mobile manipulator for rescue purposes, developed and built
at Carinthia University of Applied Sciences (CUAS) by the RoboCup
Rescue Team CUAS-RRR

systems would not provide. New approaches in path-planning and
control of these high DOF systems are subject of current research
in the same way as are human-robot-interaction concepts and new
physical sensors which provide robots with sensing capabilties of-
ten more sophisticated than those of human beings. It is no longer
possible to draw a line clearly distinguishing between the research
areas involved, e.g., path-planning, motion control, manipulator and
grasp control.

In the following, we give an insight into recent developments with
respect to the hardware construction as well as motion, control and
sensing concepts. First, we show construction concepts for mobile
manipulator platforms. Then we outline the necessary physical capa-
bilties (moving, manipulation and grasping, sensing, interfacing and
interacting) of the same. Next, we discuss the systems’ intelligence
enabling them to understand humans and the environment, move
smartly and do the right thing.

Then we focus on the RoboCup, which is established to pub-
licly promote robotics research by posing forefront challenges in the
field, which, at the same time, should make significant social impact
as well. As such, it is the optimal setting for active groups to present
new ideas and recent developments. Consequently, we include this
here with a special emphasis on rescue (RoboCup Rescue) and in-
dustrial employment (RoboCup@Work) of mobile manipulators.

2. Physical capabilities (hardware)

The combination of a mobile robot platform with a manipulator (in
combination called mobile manipulator) quickly results in having a
DOF equal or greater than nine and must therefore be described as
robot system with kinematic redundancy. Modern mobile manipula-
tors are often equipped with collaborative manipulation arms. This
type of manipulation arms is specially designed to work with human
workers in a collaborative manner. With some additional restrictions
in terms of speed, force and torque of the mobile manipulator these
robots can be gathered under the term collaborative mobile manip-
ulators (see ISO 15066 and ISO 10218). Figure 5 shows an example
of a collaborative mobile manipulator with a degree of freedom of
nine which can be used in an industrial environment. In Fig. 1, a mo-
bile rescue robot with a DOF of 12 is shown which will be further
described in the following as a design example for the RoboCup
Rescue League. In [10] an overview of mobile manipulators used in

heft 6.2020

© The Author(s)

M. Sereinig et al. A review of the challenges in mobile manipulation...

Fig. 2. Schematic drawing of the mobile rescue robot T.R.U.D.I

industrial environments is given. Different search and rescue robots
are described in [21, 95] as well as in [11] (Part F, Sect. 50).

2.1 Moving

The method to move a mobile robot platform depends on the main
purpose of use, mostly these mobile robots are classified into wheel
type, track type and leg type. Here, two different driving methods
(wheel type and tracked type) including their advantages and disad-
vantages are described.

2.1.1 Tracked vehicle with additional linkages

When it comes to tasks in difficult unstructured environments (e.g.
damaged buildings or collapsed factories) where different obstacles
prevent safe rapid movement, tracked vehicles have advantages in
terms of stable movement and system robustness. Additional link-
ages with ground adaption (often called flipper or flipper tracks) are
used to overcome obstacles and to handle uneven ground. The mo-
bile rescue robot T.R.U.D.I. (Third Robot for Urban Disaster Interven-
tion) developed and built at CUAS [38] (Fig. 1) uses four active flip-
per tracks to extend its movement capabilities. Also, a special gear-
box was developed which includes all mechanical parts to move the
main tracks, flipper tracks and to rotate the flipper tracks with three
electric brushless DC (BLDC) motors for each flipper/track combina-
tion. The drive train is realized with four of these gearboxes, one on
each corner of the chassis.

Figure 2 shows a schematic drawing of the mobile base includ-
ing main tracks and flippers (f ...f4). This mobile platform is con-
sidered as non-holonomic system where the velocity in the plain is
constrained while the position is not. The system can only move in
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Fig. 3. Mobile rescue robot T.R.U.D.I. in a test lane at the RoboCup
WorldCup 2017

body x-direction with velocity vg and rotate around the body z-axis
with angular velocity ¢r.

Movement in the plane is achieved by the two main tracks and
follows the rules of a differential drive mechanism where the for-
ward velocity kinematics for a rotation with ¢z around the body
fixed z-axis can be denoted as

. _Vz—V1
PR=" (M

where v; are the wheel circumferential velocities calculated as vq =
1R and v; = wyR, R is the wheel radius and wj is the correspond-
ing rotational velocity of the sprocket, b means the wheelbase. The
linear speed along the body fixed x-axis vg matches to the circum-
ferential velocities of both main tracks if they are equal. The inverse
kinematics to control the tracks’ movement regarding the desired
body velocities vg and ¢r, whereby v is the desired velocity in body
x direction, can be described by

o = wn— ¥0) @)
wr = L+ 20 3)

The speed of the flipper tracks for each side (flipper f;, f3 on
the left and f,, f4 on the right hand side) is due to the mechanical
construction directly linked to the speed of the corresponding main
track. Due to the fact that the sprocket of the flipper tracks and
the sprocket of the main tracks have the same diameter and both
tracks are used with the same velocity it can be combined as one
big track (pointed out in Fig. 2, market as red rectangle). Figure 3
shows a view of the backside of the mobile manipulator T.R.U.D.I.
where this combined track can be seen in detail. The for simplicity
the slip problem of tracked vehicles as described in [23] and [57] was
neglected.

The angle of the flippers ¢4 with i=1...4 of each flipper can be
controlled individually. Due to those additional linkage structures,
the mobile platform extends its DOF in position to five. With a cer-
tain combination of flipper rotations, the platform can be moved as
shown in the kinematic chain of Fig. 1a.

The joints P; and P, can be assigned to the differential drive sys-
tem, the joints P3 and P4 can swivel the whole platform around xgz
and y axis. A movement of all four flippers downwards by the same
angle can be used to fulfill an elevation of the whole system and this
translational movement in zg direction can be seen as joint Ps as also
shown in Fig. 2.
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Fig. 4. Schematic drawing of the mobile platform SUMMIT XL-Steel
used as base for the mobile manipulator KAIROS

LT,
(a) Kinematic chain of (b)

Mobile

the mobile robot platform with omni directional drive

manipulator

KAIROS with 9DOF. capabilities.

Fig. 5. Mobile manipulator KAIROS for industrial usage, build by the
company Robotnik and developed by the working group MEKT at the
Campus Technik Lienz in Austria (Leopold Franz University Innsbruck)

2.1.2 Omnidirectional mecanum wheels

The requirements for the movement capabilities of an mobile robot
used in industrial environment are totally different compared to the
scenario described before. The floor in factories is commonly rather
smooth, obstacle-free and free of steps. Consequently, these en-
vironments can be considered structured quasi well-known. This
brings levitations to the construction of the drive train of mobile
platforms and simplifications in autonomous navigation and path
planing of mobile manipulators. Taking the advantage of the well-
known environment into account, often holonomous mobile plat-
forms which can move in all directions (omnidirectional) in the plane,
are used.

The usage of four actuated Mecanum wheels ensures a linear ve-
locity in xg and yg direction as well as an angular velocity around
the zg axis as shown in Fig. 4. That is why such mobile platforms
with omnidirectional drive mechanism (Fig. 5) can be represented
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Fig. 6. Husky platform equipped with two UR5 manipulator arms in a grasping scenario where the moving platform starts, approaches a soup
can on a support, grasps it and picks it up using reinforcement learning. Figure adapted from [88]

using three DOFs. In the kinematic chain of the mobile manipulator
KAIROS (Fig. 5a), the joints Py, P, and Ps represent these DOFs.

Detailed explanation of Mecanum wheels, as well as modeling
and motion control algorithms of Mecanum wheel driven mobile
manipulators, are given by Rohring et al. in [72], by Lin et al. in
[51] and by Taheri et al. in [81]. The simplified inverse kinematics on
velocity level is given by

o1 [ R
w2 _ 1 1 (/y + /x) y )
w3 T 1 =U+h||F
wa| |1 =1 @4k |LF

with w; the rotational wheel velocity of the i-th wheel, /; and /, are
the half robot lengths and widths and R is the wheel radius. For
an autonomous exploration, or path following, the velocities in the
robot frame can be transformed into the world frame:

Xw = R(6R) " Xg (5)

with xw = Bxw, yw, 6r]7, Xs = [Xz, V&, 6g]" and

cos(@g)  sin(@r) O
R(OR) = | —sin(@g) cos(@r) O] . (6)
0 0 1

2.2 Manipulating and grasping

Manipulator arms to be mounted on moving robotic platforms need
to exhibit a high ratio of payload compared to their own weight,
this has been achieved in some of the recent manipulators such as
KUKA LWR IIWA [8], the TM-series by Techman [82], or the Universal
Robots Cobot-series [71]. Research approaches in this context show
unified design for lightweight robot arms [96] and also more specific
work in the fields of medicine, e.g. the da Vinci system (compare
[44]), for the employment in space, e.g. the NASA ROBONAUT [6]
or JPL arms (compare, e.g., [12]), or anti-terror missions such as the
devices developed by the Forrest Miller and iRobot company (see
also, e.g. [58]).

With respect to industry, manipulation and grasping employed
in robotic devices, exploits a rather low degree of dexterity, still
most of the systems present in production are used for monotonous
tasks which do not require much grasping and manipulation intelli-
gence (compare also [30]). The more our industrial settings change,
i.e. demanding more flexible production lines and highly agile pro-
cesses, the higher the requirements regarding robot manipulators
become. Such problems are addressed by commercially available
robotic hands such as the shadow-hand [16], the DLR-hand [9] and
in research where a recent focus is also on soft devices for human-
robot-interaction [24]. Currently, specialized grippers are developed
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specifically for each application, e.g. [28], approaches based on
biomemimetic, soft devices (e.g., [37]) which naturally conform to
a large number of different objects could lead to a more efficient
use of grippers. Modular, highly redundant manipulators, which can
change their configuration with respect to the assigned task are pre-
sented by Pieber et al. [67]. Manipulation in a mobile setting (see
Fig. 6) is even more complex and different methods have to be de-
veloped to address flexibility [88].

2.3 Sensing

Perceiving the environment is a crucial capability of manipulators in
general and mobile manipulators especially, it is important in a va-
riety of fields where robots physically interact with the environment
as well as with human beings: in human care and assistance ap-
plications [30, 62], in industry settings as Cobots (e.g., which have
names such as Walt [22]), in fields of service [59] and also novel
public mobility applications [36].

In order to perceive their environment properly, mobile robots and
especially also mobile manipulators need to be equipped with the
corresponding sensors. These sensors may be placed on different
parts of the platform depending on the purpose they fulfill:

2.3.1 Elevated sensors

Such a setup resembles a concept known from biology: eyes. In the
case of humans who walk upright, the eyes are elevated sensors -
at the top of the body — in order to get the best possible impression
of the surroundings. In mobile robotics, such a concept can enable,
e.g., strategic ahead-of-path-planning and obstacle avoidance [50].
Important aspects in this context are the choice of proper sensor
hardware, placement of the sensors and intelligent task planning:
e.g. while a manipulation tasks is ongoing, these sensors can be
used for planning next actions after completing the current task.
These elevated sensors are often optical systems such as, e.g. light
detection and ranging (LIDAR) [20], stereo cameras and RGB-D cam-
eras [61].

2.3.2 Touch sensors

Due to the limited capabilities of cameras (e.g., with respect to the
field of view: occlusion, bad lighting conditions, mounting and in-
tegration issues, e.g., with respect to the object properties: temper-
ature, texture, material) size in terms of highly dynamic processes,
often physical sensors are preferred over vision-based systems. Ad-
ditionally they are preferable in such tasks, where properties of the
manipulated object (surface texture, temperature, fragility, stiffness,
etc.) are of major importance. Research in terms of visuo-tactile ob-
ject perception has been shown recently, however, purely physical
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approaches show promising results in terms of resolution and band-
width. Based on electrical sensors (see also [55]), e.g., employing
capacitive sensing electrodes [74], such approaches can be easily
fabricated using rapid-prototyping technology [26] and can enable
exteroceptive as well as proprioceptive sensing of robotic devices
and been shown previously for walking of humanoid robotics [27].

2.3.3 Base sensors

For holonomic platforms, such sensors often have to cover the
whole proximity region of the base platform. This can be achieved
using, e.g., laser rangefinders, LIDAR, Time-of-Flight and Radar [5],
as well as ultra-sonic-based principles are in use. These often times
need to be mounted on strategic positions on the mobile platform in
order to optimally cover a field of view of fiy = 360°. These sensors
are often used for map building in an unknown environment (such
as is necessary in a dynamic industrial context or in the RoboCup
Rescue League). This is commonly known as Simultaneous Localiza-
tion and Mapping (SLAM). The quality (accuracy of the trajectory
followed) of the SLAM depends strongly on the hardware used [29].
Depth estimation (such as enbaled by, e.g., LIDAR) can significantly
improve the quality of the SLAM [70], this, however, also comes with
an increased computational complexity.

2.4 Interfacing and interacting

Another aspect is the interfacing of robots with their environment,
this is especially important when teaching and controlling the robot
system in a collaboration task. Such interfaces can either be estab-
lished using touchpad technology [25, 86] or in contactless gesture-
based approaches [78]. In the latter it is often mandatory to find a
common language which is, on the one hand, intuitive for the hu-
man operator and on the other hand easily interpretable and man-
ageable in terms of signal processing [85].

The terms human-robot interaction and human-robot collabora-
tion describe all those application scenarios and the various meth-
ods used to implement these. In most cases, especially in industry,
it is important to provide a safe environment for humans. In this re-
spect, lately, strong research efforts have been put into qualifying
and quantifying the resulting injury and level of pain caused by an
impact with certain energy and location on the body [33, 34]. Apart
from the application of ISO/TS 15066 [56], more effort is necessary
in the definition of standard testing methods and standardized test
setup and hardware. Currently available developments which en-
able safe human robot co-working are airbags systems [90], robotic
skins [15, 53], but also control strategies for intuitive hand guid-
ance [92] based on force/torque-sensing.

3. Intelligence (software)

The software implementation of mobile manipulators is the systems'’
intelligence. It is connecting the hardware and corresponding sensor
readings in a sense-plan-act-loop. It consequently is the brain of the
whole system. Important tasks here are:

— Interfacing: communicating with the sensors and actuators hard-

ware.

Perception: human and object detection algorithms, mapping.

— Knowledge-base: gather information about the robot, the envi-

ronment, objects.

Planning: path and task planning components.

— Control: actuate the system in order to follow the planned move-
ment as accurately as possible.
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Fig. 7. A 20 DOF robotic hand including multimodal touch sensors
and the grasp force control strategy as suggested by Deng et al. Fig-
ure adapted from [18]

3.1 Understanding humans and the environment

The authors of [77] claim already that common metrics are impor-
tant in Human-Robot-Interaction and safety standards have been
implemented since then. Vision-based distance monitoring has re-
cently been presented in [80] and in [73], a strategy for human-
robot collaboration is presented where the signals from 378 sensors
of an artificial skin are used in a constraint-based optimization task
to control the robot and avoid collisions. Delicate grasp force con-
trol, for manipulation, based on physical sensors for a high DOF
robot hand (Fig. 7) has been shown in [18]. While in the previous
approaches, human-robot physical contact is monitored, in [17], the
authors establish an interaction scheme based on gaze recognition
of the human co-operator. Even the role of robot-telepathy is evalu-
ated in [93]. In this field of robot intelligence, common metrics and
a standardized approach, however, are still missing. It is very likely
that different strategies will have to be pursued depending on the
field of robot application (elderly or child care, robot tele-operation,
flexible industry with a lot of interaction, pure production lines, etc.).

3.2 Moving smartly (path and motion planning)

Path planning is generally defined as follows: A collision free and
continuous path in the joint angle space is to be found to bring a
robot from a start configuration (position and orientation) to a target
configuration without violating the limitations of the system [89].
Redundant robots, as described before, are able to move while the
position and orientation of the end effector are fixed. An advantage
of such kinematically redundant systems is the capability of colli-
sion avoidance, while the end effector follows a specific path [60].
Therefore, such systems can be used for technically difficult dexter-
ity tasks, for example grasping in a tube or between two walls. The
workspace of a stationary industrial robot is also limited by the arm
length and allowed joint torques. The initial placement of the base
of a static industrial serial manipulator when installing it is often
done by trial and error or by help of human experience. For mobile
manipulators controlled by an operator (as often in rescue missions)
this is also valid. For autonomous driven mobile manipulators the
positioning task of the mobile platform which is equal to the base
of the mounted serial manipulator is part of the path planning al-
gorithm and there are many possibilities how to fulfill this planing
task.

Mobile manipulator movement can be considered in three ways,
movement of the mobile platform, movement of the manipulator
or a combination of both. Depending on the system the separation
of mobile platform and manipulator reduces the difficulty to solve
the inverse kinematics problem of such kinematically redundant sys-
tems [35], e.g., Husty et al. [41] show an analytic solution of the
inverse kinematic for a general serial link manipulator. The problem
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Fig. 8. Game setup with varying complexity for robot learning. Figure
adapted from [94]

of path planning and collision avoidance in general of redundant
configurations can be solved using different methods. In [100], the
authors describe the solution, based on numerical optimization algo-
rithms using the pseudo-inverse of the Jacobi matrix. In [14] neural
networks are used to find a solution for a planar manipulator with
three joints. Quendler [69] uses a combination of different concepts
to solve the inverse kinematics problem for a 6-DOF manipulator
used on the mobile rescue robot R.U.D.I. [42] which was later ex-
tended with an additional joint [68] and mounted on the rescue
robot platform T.R.U.D.I. [38] (Fig. 1a). Here, the Cyclic Coordinate
Descent and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton [87]
methods are used. The manipulator is controlled by a human opera-
tor with the help of a joystick input in either of the following modes:
Control of each joint individual (forward kinematics), control posi-
tion and orientation of the end effector relative to the actual end
effector coordinate system or to the robots body fixed coordinate
system (inverse kinematics).

In [7] and [79] an approach is shown where not only the Carte-
sian working space of the robot is used for the solution but also
the joint angle space. Both [49] and [31] give an overview of many
possible solutions for path planning and collision avoidance in the
Cartesian workspace or low dimensional joint angle space. A sum-
mary of methods for higher dimensional spaces is given in [66].
In particular, the three methods Net-based, Sampling-based and
Trajectory-Optimizing Path Planning are discussed. Additional to col-
lision avoidance while following a desired path with redundant
robotic systems also the configuration regarding manipulability from
different points of view can be considered. Thereby often manipu-
lator Jacobian based methods as a measure of robot manipulability
introduced by Yoshikawa in [98] are used. It is based on the idea
to determine the capability of the end effector to move in an cer-
tain direction as well as how easy the end effector can generate
forces. The detailed calculation of those measurements is based on
the idea of manipulability and force ellipsoids [52]. Based on this
idea also the dynamic manipulability measure was introduced [97]
and reformulated for redundant systems by Chiacchio in [13]. The
authors in [75] use a combination of different concepts such as ma-
nipulability, reachability [54] and stiffness [3] to define a so-called
comfort zone for kinematically redundant mobile manipulators.

Additionally, non-traditional methods such as robot learning
based on infant development theory has been presented in [94].
In this setting, the mobile manipulator is made to play games with
varying difficulty as shown in Fig. 8. As soon as there is no more
progress on one level of difficulty, it will automatically step forward
in complexity.

heft 6.2020

© The Author(s)

M. Sereinig et al. A review of the challenges in mobile manipulation...

d/dt Encoder Position M,

BLDC Motor
Controller Left 1

0)1 Speed Controler,

Left Track
ser [,
RIYR . .
Input | ———¥ Inverse Kinematics

®, Speed Controler,
Right Track

BLDC Motor
Controller Left 2

BLDC Motor
Controller Right 2 1RL

BLDC Motor
Controller Right 1

; E Ng _lg

d/dt Lr E -
ncoder Position M

1R

Fig. 9. Schematic of the drive control structure

3.3 Do the right thing (control)

Mobile Robots are a set of complex mechanical systems, sensors
and computational processes. A control system architecture and its
implementation solve the challenging task to transfer these com-
ponents to a well performing working robot. A traditional control
methodology decomposes the robot’s tasks into functional steps:
sense — plan (control) — act. This is needed and often suitable for
solving the problem of driving a mobile robot, i.e. to guarantee a
smooth navigation of a mobile robot platform. Classical PD or PID
controller are still used in terms of servo control of the robot’s indi-
vidual drives. Many effective methods for the navigation and trajec-
tory tracking have been proposed [46].

Robot control of mobile manipulator platforms in general deals
with the central problem of finding appropriate forces or torques
that are generated by the actuators, e.g. DC-motors, in order to
move the robot arm or hand to a desired position or to track a
desired reference-trajectory.

Cascade control structures of multiple linear and nonlinear con-
trollers are widely used. The mobile rescue robot T.R.U.D.I. uses four
brushless DC (BLDC) motors with a power of Py, = 200 W to drive
the main tracks. Each main drive (left and right side of the robot) is
powered by two motors to achieve a higher driving torque. The two
motors on each side are permanently coupled via a chain connec-
tion (Fig. 9 marked in red). Here, a combination of closed loop an
open loop controller together with the BLDC motor controller was
implemented. Figure 9 shows the overall control structure, one can
see the user input (robot velocities Xz and ¢r, the inverse kinemat-
ics block is used to calculate the desired angular velocities of the
chain sprocket for each track (w1 and w;y). The green blocks repre-
sent linear (LEAD-compensator [39]) speed controllers which control
the first motor (of each side) in an closed loop control structure. The
control signal (controller output) is also sent to the second BLDC
motor controller (M,;/Myg) to achieve the same speed.

In known or adaptable environments (e.g. in a factory), it is suit-
able to employ model-based dynamic control strategies including
inverse kinematics approaches. They are based on mathematical
descriptions of the manipulators in terms of nonlinear differential
equations and their parameters. Computed torque control together
with PD or PID control have successfully been employed for control
in joint space [43, 45]. Such a combined control strategy was also
used to control the 7-DOF manipulation arm on the mobile rescue
robot TR.U.D.I. (Fig. 1a) [68].

Depending on the used drive concept (e.g. wheeled robots),
present (nonholonomic) constraints and the complexity (highly non-
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linear systems) nonlinear control techniques like feedback lineariza-
tion or Lyapunov based control turn out to be mathematically in-
tense, but suitable methods [19, 83].

In uncertain (highly dynamic) and uncontrolled environments, the
control algorithms must be more sophisticated involving some kind
of (artificial) intelligence. One of the methodologies for treating such
uncertain systems is the adaptive control methodology [40, 91]. Fur-
thermore, the design of a robust control has been attracting great
attention. The sliding mode control methodology is a robust control
procedure often used in mobile robots’ control [2].

Recently, ANN-based control methods have been attracted much
more attention. The authors in [99], for example, address the con-
trol problem for a class of mobile robot systems, where multi-layer
feed forward ANNs and deep learning are both employed for the
mobile robot system to achieve the trajectory tracing and obstacles
avoidance.

Especially, when mobile rescue robots are used, the mobile ma-
nipulator is often teleoperated by a human operator. This can be
supported by additional algorithms which may use additional sen-
sor readings, be based on inverse kinematics (for example as de-
scribed in Sect. 4.1) or semi-autonomous driving methods. Semi-
autonomous here means assistant algorithms which help an opera-
tor to control a robot with higher DOFs. For Example the mobile ma-
nipulator T.R.U.D.I. described in Sect. 2.1 needs additional operator
inputs to move the four flippers to support the mobile manipulator
while overcoming difficult obstacles like stairs or steps. Addition-
ally, in [32, 63, 64] different possibilities to control additional flipper
tracks by sensor information about the environment or soil condition
are described.

A comprehensive review of control strategies and their advan-
tages and disadvantages can be found in [84].

4. RoboCup challenges

The first RoboCup competition was held at IJCAI-97, Nagoya. The
idea was to push the developments of soccer playing robots up to
a level to participate in a soccer game against human players in
year 2050. At this time only soccer robots where in the view of
the researchers by comparing real robots as well as robot simulation
algorithms in the competition [47]. Step by step, different leagues
where established each pursuing a different goal. With competi-
tions in the Small-Size-, Soccer Simulation-, the Middle-Size-, the
Standard Platform- as well as the Humanoid-League, soccer is still
one main focus in the competition, with different aspects of soccer
robots taken into account. Furthermore, more practice related tasks
were included in the RoboCup competitions over the years. This re-
sults in a diversity of different disciplines of which the main ones
are shown in Table 1 (including date of first event and main drive
method).

In the following, we discuss mobile manipulators in view of the
RoboCup Rescue and RoboCup@Work competitions. Mobile manip-
ulators in general, with different suitable drive methods as shown in
Table 1, are used in RoboCup Rescue, RoboCup@Work, RoboCup
Logistics, RoboCup@Home. Mobile robot platforms with omnidi-
rectional drive system but without classical serial manipulators are
used in Soccer Small-Size and Soccer Middle-Size leagues. Stein-
bauer et al. [76] give an overview of the development of the dif-
ferent RoboCup leagues from year 2000 to year 2016.

4.1 RoboCup rescue

After the Great Hanshin Earthquake (1995) in Kobe, the Japanese
government decided to promote research related to urban disaster
and rescue robots [4]. The RoboCup Rescue competition simulates
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Table 1. Summary of main RoboCup leagues

League Date Drive method

Soccer Simulation 1996 depending on league
Soccer Small-Size 1996 omni directional
Soccer Middle-Size 1996 omni directional
Soccer Humanoid KidSize 2005 2 legs, human gait
Soccer Humanoid TeenSize 2007 2 legs, human gait
Soccer Humanoid AdultSize 2007 2 legs, human gait
Soccer Standard Platform 2004 2 legs, human gait
RoboCup Rescue 2000 differential drive
RoboCup Rescue Simulation 2000 depending on league
RoboCup@Home 2006 omni directional
RoboCup Logistics 2006 omni directional
RoboCup@Work 2007 omni directional
RoboCup junior 2000 depending on league

(a) The simulated victim (b) The used sensor board

consists out of QR-charts, includes pipes (dexterity

heatpad, doll (for face recog- tests), hazard signs, QR-

nition) and an audio player. and C-charts, heatpad as
well as moving parts.

Fig. 11. Simulated victim and sensor board to evaluate the sensor
capabilities

the search for victims in a disaster scenario such as after an earth-
quake or flooding in an urban environment. Until 2015 the main
focus of the competition was to find simulated victims in a big area
with various obstacles like stairs, pipes, ramps and stones to over-
come as shown in Fig. 10.

Finding those victims, scores points for the competition ranking,
extra points are gained for mapping the area, marking various ob-
jects in the map or various audio and visual detections. Those simu-
lated victims can be placed all over the competition area and consists
of visual markers as QR codes, E or C charts, a heat pad to simulate
body temperature and an audio player.

They can be located at a height of up to ho = 1.6 m over ground,
be hidden in holes or can be found in pipes and behind closed doors.
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(a) Test lane (MAN2) dur- (b) Test lane (MAN2) simu-
ing RoboCup Rescue World- lated in Gazebo.
cup 2017 in Nagoya, Japan.

Fig. 12. Test Line (MAN2- Align) with two parallel bars (10 cm in
width and in height) adjusted to the dimension of the robot

The search for victims could be done by a swarm of robots, where
only one of these migh be teleoperated and the others needed to
operate in autonomous mode. Each year, the rules for the RoboCup
Rescue competitions are extended to support the development of
new features for the participating robots and to enhance their ex-
isting capabilities. The competition is manly based on the mobile
robot test strategies developed by the American National Institute
of Standards and Technology (NIST).

In the year 2016, a new rule set was introduced during the
RoboCup World Championship in Leipzig (Germany) with the fo-
cus to test repeatability, functionality and operator proficiency, and
all capabilities should be combined onto a single robot platform.

So-called individual test lanes (example shown in Fig. 12) where
introduced. Each lane has another testing focus [65]. For each rep-
etition of one lane, the team earns one point and by the help of
basic sensor and dexterity tests at the begin of each test round this
number can be multiplied by the number of successful fulfilled sen-
sor/dexterity tasks. The best teams in this individual tests are quali-
fied to participate in the final runs where the individual test lanes are
used to build a large arena with the goal to find as many simulated
victims as possible.

The basic sensor and dexterity tests at the beginning of each test
lane ensures the reliability of the system. Especially, test lanes out
of the so called mobility tests suits, include driving over terrain with
high difficulty. This are for example driving over sand and gravel
(with 15° slope) as well as stepfields (a diagonal hill terrain consist-
ing of 20 cm square steps made from posts with flat tops and stairs
(35° and 45°) and obstacles partly blocked with debris, e.g. angled
bars in defined locations). These tests require a high degree of sta-
bility and reliability in the mechanical as well as in the electronic and
sensor system. The dexterity and sensor tests have to be done every
time the mobile manipulator starts on a new test lane which is ap-
proximately 5 times a day. The schedule during one competition day
is very tight therefore a problem in the sensor system or with the
manipulation arm can lead to a loss of points.

Figure 11 shows the used test board which consists of two parts
where the lower part is used to test the sensors of the mobile ma-
nipulator and the upper part is used to test the dexterity of the mo-
bile manipulator. For the sensor test the robot system has to fulfill 6
identification tasks:

heft 6.2020

© The Author(s)

M. Sereinig et al. A review of the challenges in mobile manipulation...

- Video Image Resolution: Visual identification the third biggest
concentric C gap by the competition judge.

— Motion Detection: Highlight the moving target (1-4) automatically
by any usage of any camera and integrated video processing. Ad-
ditionally track the identified motions on the operator station tex-
tually or audibly.

— Thermal Image Resolution: Visual identification of the concentric
Landolt C with a 2 cm gap to evaluate thermal resolution by the
competition judge.

— Audio Acuity: Two way communication from mobile manipulator
to operator station. Tested by judge and team members.

— Color/Pattern Recognition: Automatically identification of two
hazards labels out of 12 possibilities. Highlight and track the iden-
tified labels on the operator station textually or audibly.

— Gas: Operator demonstrates active display of increase in CO, con-
centration when a team-mate breaths into the robot’s sensor or a
CO; cartridge is opened near the sensor.

All identification tasks has to be done with a minimum distance of
40 cm to the sensor board. Furthermore 4 dexterity tasks has to be
performed:

— Touch: Touch a 1 cm diameter circular target on the end of a pipe
with a pencil attached to the manipulator end effector.

— Rotate: Grab a 5 cm octagonal pipe cap and rotate 180° with the
end effector.

— Extract: Grab a 5 cm octagonal pipe cap and pull out of the pipe
after holding it 1 s it can be dropped to the floor.

— Inspect: Visual identification the number of bars placed on the
internal walls of a 5 cm pipe by the competition judge.

For the sensor and dexterity tests a precise movement of the ma-
nipulator without oscillations or vibrations as well as a stable posi-
tioning of the mobile platform (without tilting) is crucial. To unveil
the mobile manipulator in rescue purpose often additional flipper
tracks as described in Sect. 2 are used. Moreover it has been shown
that a remote controlled movement of the end effector by using an
inverse kinematics solution as described in 3.2 is a big advantage
in terms of usability and time consumption to solve the task com-
pared to a simple forward kinematic movement. Especially for the
sensor and dexterity tests the operator uses the inverse kinematics
mode which allows a movement of the end effector related to the
end effector-camera coordinate system. In this right handed coordi-
nate system the z-y plane is equal to the camera image plane and
the x-axis is equal to the camera optical axis. Therefore a move-
ment parallel to the sensor/dexterity board is done very intuitive in
comparison to a movement with classical forward kinematics where
every joint of the manipulator has to be moved individually.

4.2 RoboCup@Work
In 2012, the RoboCup Federation included the RoboCup @Work
league to increase the development progress of mobile manipulators
in a more industry-related setting. The mobile robotic systems used
in RoboCup @Work are aimed to be used as flexible multipurpose
systems also for smaller companies with changing product range.
In the competition, different tasks like acquiring, pick and place as
well as transportation of different machine parts and objects are
to be performed. The contest procedure is separated into two parts.
After some basic tests which must be completed, an extended, more
difficult test scenario has to be fulfilled.

The basic tests include testing navigation, manipulation and trans-
portation capabilities of the participating mobile manipulators with
three different test tasks:
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(a) KUKA youBot robot platform of the team b-it-bots
fulfilling a pic and place task [1].

(b) Evocortex robot platform of the team AutonOHM test-
ing the precision placement task.

Fig. 13. Two RoboCup@Work examples

— Basic navigation: The mobile manipulator will be send a string
contains a series of triples, each of which specifies a location, an
orientation and a pause duration. The challenge is to navigate
autonomous robust and safe in the scenario environment. Addi-
tional to specific service areas, arena objects, wall markers and
floor markers random obstacles my be placed in the environment.

— Basic manipulation: The mobile manipulator will be send some
task specifications consist of the objects source location, the ob-
jects destination location, a list of objects to manipulated from
source to the destination area and the final place for the robot.
As objects different obstacles like aluminum profiles of different
size and color, screws, nuts and plastic tubes can be used. An
object does not count as placed when it dropped from a height
above 5 cm. The pose of the object at the destination location can
be chosen freely by the robot.

— Basic transportation: Here the ability of the robots to combine
navigation and manipulation tasks as well as its task planning ca-
pabilities are tested. The task is to pic objects from the source
location to the destination location. Two lists will be send to the
robot. The first list contains a list of manipulation object descrip-
tions, the second list contains for each destination area a config-
uration of manipulation objects the robot is supposed to achieve.
A robot may carry up to three objects at the same time and it is
not allowed to place objects anywhere except on the robot itself
and the correct destination areas.

Figure 13a shows a KUKA youBot robot platform during the ba-
sic manipulation test [1]. Figure 13b shows the mobile manipulator
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Fig. 14. Rotating table used in the competition

of evocortex used by the RoboCup@Work team AutonOHM at the
Nuremberg Institute of Technology during the precision placement
test where the mobile manipulator has to pick up different obsta-
cles like screws, nuts or aluminum profiles and has to place them
into prepared cavities on a target desk after a short movement of
the robot platform. Figure 14 shows the rotating table which is used
in the competition for the so called rotating table test. The robot
has to navigate autonomous to the table and has to grasp all ob-
jects from the moving table. Objects can pass multiple times by the
robot end-effector until the maximum time is over. Target location
of the objects is on the robot itself. The rotating table test assesses
the ability to pick and place moving objects which are placed on a
rotating turntable with unknown speed. In this context, the vision
system as well as the physical movement of the end-effector (this is
the robots’ hand-eye-coordination) have to meet very high require-
ments in terms of speed and precision [48].

The score calculation for each test is defined individually, it in-
cludes points for achieving certain sub tasks, for winning a run and
also penalty points can be assigned each time an incident occurs
(collisions, losing an object during manipulation or transportation).
Additional to this tests, there are further technical challenges (e.q.
cluttered pick test, human-robot collaboration, open challenge) to
evaluate specific capabilities of the robotic system. These challenges
are separately awarded and could be included into the major com-
petition in future.

5. Conclusion

Mobile manipulation is a vivid research field with a variety of ap-
plications such as industry, rescue, service and health. Each subfield
covered in the development of mobile manipulators, such as con-
struction of the hardware (platform, manipulator, gripper), choice
of suitable algorithms for path-planning, obstacle avoidance, con-
trol and perception is a huge field of research on its own. In this
paper, we have tried to give a brief overview of recent develop-
ments in all those fields covered together with an insight into the
development on the example of a tracked rescue robot developed
at CUAS. Additionally, we have discussed mobile manipulation chal-
lenges in the context of the RoboCup and especially the RoboCup
Rescue and RoboCup@Work leagues. We consider the RoboCup as
an attractive platform to motivate young researchers and students
to have a deeper look into the research challenges ahead in robotics
in general and in this context especially in mobile manipulation.
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