Skip to main content
Log in

Von Fotos zu personalisierter räumlicher Audiowiedergabe

From photos to personalized spatial audio playback

  • Review
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Der Umgebungsschall wird von unserem Körper gefiltert, ehe er unsere Gehörgänge erreicht. Diese räumliche Filterung wird mit den sogenannten head-related transfer functions (HRTFs) beschrieben und ermöglicht unserem Gehör, Informationen über unsere Umgebung aus dem Schallfeld zu extrahieren. Eine genaue Kenntnis personenspezifischer HRTFs ist für personalisierte Kopfhörerwiedergabe essenziell, zum Beispiel in Systemen zur Darbietung hochqualitativer virtueller Realität. Während bisher personenspezifische HRTFs vorwiegend akustisch gemessen wurden, erlaubt die hohe Rechenleistung heutiger Computersysteme eine Alternative in der Form der numerischen Berechnung von HRTFs. Dabei können HRTFs auf dreidimensionaler Geometrien (3D-Geometrien) von Kopf und Ohrmuscheln der Testperson berechnet werden. Die 3D-Geometrien wiederum können, unter Einhaltung gewisser Bedingungen, sogar aus zweidimensionalen Fotos (2D-Fotos) der Testperson berechnet werden. In diesem Artikel stellen wir den aktuellen Stand der Forschung zur personenspezifischen Berechnung der HRTFs vor – von 2D-Fotos über 3D-Geometrien bis hin zu HRTFs.

Abstract

The sound field surrounding a listener is filtered by the listener’s body before reaching the ear drums. This filtering depends on the directions of the surrounding sound sources and is described by the head-related transfer functions (HRTFs). The impact of the HRTFs on the incoming sound waves enables the listener to extract information about the environment from the sound field. Knowledge of listener-specific HRTFs is thus essential for personalized sound reproduction via headphones, e.g., in virtual reality systems. While in the past decades listener-specific HRTFs were mainly measured acoustically, the high computing power of recent computer systems enables the numerical calculation of HRTFs based on three-dimensional (3D) geometries of the listener’s head and ears. Under certain conditions, the 3D geometries can be calculated based on two-dimensional (2D) photos of the listener. In this article, we describe the state-of-the-art process of the numerical calculation of HRTFs – from 2D photos via 3D geometries to listener-specific HRTFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4.
Abb. 5.

Notes

  1. Hier wurde Metashape 1.0 (Agisoft, Russia, https://www.agisoft.com) verwendet.

  2. https://mesh2hrtf.sourceforge.io.

Literatur

  1. Algazi, R., Avendano, C., Duda, R. O. (2001): Estimation of a spherical-head model from anthropometry. J. Aud. Eng. Soc., 49. https://doi.org/10.1121/1.1349185.

  2. Algazi, V. R., Avendano, C., Duda, R. O. (2001): Elevation localization and head-related transfer function analysis at low frequencies. J. Acoust. Soc. Am., 109(3), 1110–1122.

    Article  Google Scholar 

  3. Baumgartner, R., Reed, D. K., Tóth, B., Best, V., Majdak, P., Colburn, H. S., Shinn-Cunningham, B. (2017): Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proc. Natl. Acad. Sci., 114(36), 9743–9748.

    Article  Google Scholar 

  4. Blauert, J. (1997): Spatial hearing: the psychophysics of human sound localization. Cambridge: MIT Press.

    Google Scholar 

  5. Brinkmann, F., Dinakaran, M., Pelzer, R., Grosche, P., Voss, D., Weinzierl, S. (2019): A cross-evaluated database of measured and simulated HRTFs including 3D head meshes, anthropometric features, and headphone impulse responses. J. Audio Eng. Soc., 67(9), 705–718. https://doi.org/10.17743/jaes.2019.0024.

    Article  Google Scholar 

  6. Brinkmann, F., Lindau, A., Weinzierl, S., van de Par, S., Müller-Trapet, M., Opdam, R., Vorländer, M. (2017): A high resolution and full-spherical head-related transfer function database for different head-above-torso orientations. J. Audio Eng. Soc., 65(10), 841–848. https://doi.org/10.17743/jaes.2017.0033.

    Article  Google Scholar 

  7. Burton, A., Miller, G. (1971): The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 323(1553), 201–210.

    MathSciNet  MATH  Google Scholar 

  8. Carlile, S. (1996): Virtual auditory space: generation and applications. Austin: RG Landes. 1996.

    Book  Google Scholar 

  9. Coifman, R., Rokhlin, V., Wandzura, S. (1993): The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag. Mag., 35(3), 7–12.

    Article  Google Scholar 

  10. Community, B. O. (2018): Blender - a 3D modelling and rendering package. Amsterdam: Blender Foundation, Stichting Blender Foundation. http://www.blender.org.

    Google Scholar 

  11. Gumerov, N. A., O’Donovan, A. E., Duraiswami, R., Zotkin, D. N. (2010): Computation of the head-related transfer function via the fast multipole accelerated boundary element method and its spherical harmonic representation. J. Acoust. Soc. Am., 127(1), 370–386. http://view.ncbi.nlm.nih.gov/pubmed/20058984.

    Article  Google Scholar 

  12. Hanrahan, P., Krueger, W. (1993): Reflection from layered surfaces due to subsurface scattering. In Proceedings of the 20th annual conference on computer graphics and interactive techniques (S. 165–174).

    Google Scholar 

  13. Jin, C. T., Guillon, P., Epain, N., Zolfaghari, R., Van Schaik, A., Tew, A. I., Hetherington, C., Thorpe, J. (2013): Creating the Sydney York morphological and acoustic recordings of ears database. IEEE Trans. Multimed., 16(1), 37–46.

    Article  Google Scholar 

  14. Kazhdan, M., Bolitho, M., Hoppe, H. (2006): Poisson surface reconstruction. In Proceedings of the fourth eurographics symposium on geometry processing (Bd. 7).

    Google Scholar 

  15. Kreuzer, W., Majdak, P., Chen, Z. (2009): Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range. J. Acoust. Soc. Am., 126(3), 1280–1290.

    Article  Google Scholar 

  16. Li, S., Peissig, J. (2020): Measurement of head-related transfer functions: a review. Appl. Sci., 10(14), 5014. https://doi.org/10.3390/app10145014. https://www.mdpi.com/2076-3417/10/14/5014. Number: 14 Publisher: Multidisciplinary Digital Publishing Institute

    Article  Google Scholar 

  17. Majdak, P., Balazs, P., Laback, B. (2007): Multiple exponential sweep method for fast measurement of head-related transfer functions. J. Audio Eng. Soc., 55, 623–637.

    Google Scholar 

  18. Majdak, P., Noisternig, M. (2015): Aes69-2015: Aes standard for file exchange-spatial acoustic data file format. In Audio Engineering Society.

    Google Scholar 

  19. Marburg, S. (2002): Six boundary elements per wavelength: is that enough? J. Comput. Acoust., 10(01), 25–51.

    Article  Google Scholar 

  20. Møller, H., Sørensen, M. F., Hammershøi, D., Jensen, C. B. (1995): Head-related transfer functions of human subjects. J. Audio Eng. Soc., 43(5), 300–321.

    Google Scholar 

  21. Pollack, K., Majdak, P., Furtado, H. (2020): A parametric pinna model for the calculations of head-related transfer functions. In Proceedings of forum acusticum, Lyon.

    Google Scholar 

  22. Reichinger, A., Majdak, P., Sablatnig, R., Maierhofer, S. (2013): Evaluation of methods for optical 3-d scanning of human pinnas. In 2013 international conference on 3D vision-3DV 2013 (S. 390–397). New York: IEEE Press.

    Chapter  Google Scholar 

  23. Runkle, P. R., Blommer, M. A., Wakefield, G. H. (1995): A comparison of head related transfer function interpolation methods. In Proceedings of 1995 workshop on applications of signal processing to audio and accoustics (S. 88–91). https://doi.org/10.1109/ASPAA.1995.482965.

    Chapter  Google Scholar 

  24. Saad, Y. (2000): Iterative methods for sparse linear systems. 2. ed. Philadelphia: SIAM.

    Google Scholar 

  25. Takemoto, H., Mokhtari, P., Kato, H., Nishimura, R., Iida, K. (2012): Mechanism for generating peaks and notches of head-related transfer functions in the median plane. J. Acoust. Soc. Am., 132(6), 3832–3841.

    Article  Google Scholar 

  26. Treeby, B. E., Pan, J., Paurobally, R. M. (2007): An experimental study of the acoustic impedance characteristics of human hair. J. Acoust. Soc. Am., 122(4), 2107–2117.

    Article  Google Scholar 

  27. Ullman, S., Brenner, S. (1979): The interpretation of structure from motion. Proc. R. Soc. Lond. B, Biol. Sci., 203(1153), 405–426. Publisher: Royal Society.

    Article  Google Scholar 

  28. Vorländer, M. (2008): Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality.

    Google Scholar 

  29. Wright, D., Hebrank, J. H., Wilson, B. (1974): Pinna reflections as cues for localization. J. Acoust. Soc. Am., 56(3), 957–962.

    Article  Google Scholar 

  30. Xie, B. (2013): Head-related transfer function and virtual auditory display. Plantation: J. Ross Publishing.

    Google Scholar 

  31. Yu, G., Wu, R., Liu, Y., Xie, B. (2018): Near-field head-related transfer-function measurement and database of human subjects. J. Acoust. Soc. Am., 143(3), EL194. https://doi.org/10.1121/1.5027019.

    Article  Google Scholar 

  32. Ziegelwanger, H., Majdak, P., Kreuzer, W. (2015): Numerical calculation of listener-specific head-related transfer functions and sound localization: microphone model and mesh discretization. J. Acoust. Soc. Am., 138(1), 208–222.

    Article  Google Scholar 

  33. Ziegelwanger, H., Reichinger, A., Majdak, P. (2013): Calculation of listener-specific head-related transfer functions: effect of mesh quality. In Proceedings of meetings on acoustics (Bd. 19, S. 050017). Montreal: ASA.

    Google Scholar 

Download references

Danksagungen

Wir danken Jeffrey Thomsen für die Dokumentation und das Testen von Mesh2HRTF version 0.5.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Pollack.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Diese Forschung wurde unterstützt durch die Österreichische Forschungsförderungsgesellschaft (FFG, Projekt „softpinna“ 871263) und der Europäischen Union (EU, Projekt „SONICOM“ 101017743, RIA action of Horizon 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pollack, K., Brinkmann, F., Majdak, P. et al. Von Fotos zu personalisierter räumlicher Audiowiedergabe. Elektrotech. Inftech. 138, 250–255 (2021). https://doi.org/10.1007/s00502-021-00891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-021-00891-4

Schlüsselwörter

Keywords

Navigation