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Distributed tracing of OPC UA method calls
C. Mayr-Dorn , B. Pereszteghy, J. Holzweber, M. Mayrhofer

With increasing digitalization, shopfloor architectures transition to service-oriented, distributed layouts in which the complexity of
monitoring communication between systems becomes a major challenge. Distributed tracing assists in establishing causality and hence
supports the analysis of latency aspects, wrongly configured communication endpoints, and bottlenecks. In this paper, we present a
first feasibility study, which investigates to what extent it is possible to trace OPC UA method calls in a distributed manner using the
Zipkin framework. We show how this standard can be used in conjunction with the Eclipse Milo OPC UA open source stack and how
it can be integrated into our industry demonstrator “Factory in a Box”.
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Verteiltes Nachverfolgen von OPC UA Methodenkommunikation.

Mit zunehmender Digitalisierung werden Shopfloorarchitekturen zunehmend verteilt und serviceorientiert. Somit wird die Komplexität
der Überwachung der Kommunikation zwischen den teilnehmenden Systemen zu einer immer größeren Herausforderung.

Hierbei hilft die verteilte Ablaufverfolgung bei der Ermittlung der Kausalität und unterstützt somit die Analyse von Latenzaspekten,
falsch konfigurierten Kommunikationsendpunkten und Kommunikationsengpässen.

In diesem Artikel präsentieren wir eine erste Machbarkeitsstudie, die untersucht, inwieweit es möglich ist, OPC UA-Methodenaufrufe
mithilfe des Zipkin-Frameworks verteilt zu verfolgen. Wir zeigen, wie dieser Standard in Verbindung mit dem Eclipse Milo OPC UA Open
Source Stack verwendet und in unserem Industriedemonstrator “Factory in a Box” integriert werden kann.
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1. Introduction
As digitalization advances, shopfloor architectures transition to

service-oriented, distributed layouts. As a communication protocol,

OPC UA is introduced at multiple hierarchy levels, e.g., cell, station,

substation, and even component (see, for example, the VDMA R+A

OPC UA Demonstrator [17]). The two trends together create highly

distributed CPPS, in which the complexity of monitoring communi-

cation between systems becomes a major challenge.

Distributed tracing assists in understanding which communication

and action on the shopfloor is the result of what other action. This,

in turn, helps establish causality and hence supports the analysis of

latency aspects, wrongly configured communication endpoints, and

bottlenecks.

As a centralized schema for monitoring is typically only feasible

when a single vendor provides an integrated solution, yet with ele-

ments coming from multiple vendors, a more lightweight approach

is more feasible.

In this paper, we present a first feasibility study to what extent it

is possible to trace OPC UA method calls in a distributed manner. To

this end, we propose to use the widely used Zipkin standard for trac-

ing information modeling and trace correlation information propa-

gation. We show how this standard can be used in conjunction with

the Eclipse Milo OPC UA open source stack and integrated into our

industry demonstrator: “Factory in a Box”. We also discuss the vari-

ous ways OPC UA interaction affordances can be instrumented, and

the open issues deriving from a communication environment that

aside from method calls also uses data access, monitored items, and

events.

1.1 Motivating scenario
Our lab-scale production cell, as part of a university-funded demon-
strator project Factory in a Box1 (FIAB), aims at illustrating the con-
cepts that enable flexible production. Our particular demonstrator
can customize the drawings on a piece of paper at multiple plot-
ting stations. The production cell consists of the following machine
types: input stations that provide pallets with paper, plotters that
load the pallets and draw images in one color each, turntables that
transport the pallets between plotters, and finally, output stations
where the finished product (i.e., paper) is placed.

Communication between the machines is purely based on OPC
UA. Plotters and output stations are designed and programmed with
the IEC 614992 industry standard using the open source IDE Eclipse
4diac [13] and the respective FORTE runtime environment that builds
on the Open62541 OPC UA [5] server. The turntables (and virtual

1https://github.com/jku-isse/factory-in-a-box.

2http://www.iec61499.de/.
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Fig. 1. Example control flow through a distributed system (left), with instrumented and non-instrumented components, using method calls
and events (full lines); displaying component internal control flow with dashed lines. Info icons mark the instrumentation points where trace
information is sent to the central trace collector (e.g., a Zipkin server). The diagram to the right displays the resulting spans and their relations.
Span names identify where the tracing information has been captured

twins of the prior introduced machines) are implemented in Java,
using the Eclipse Milo OPC UA framework. Hence, despite the toy
character of the setup, the used software and communication in-
frastructure is industrial grade. We use Lego Mindstorm EV3-based
PLCs as a basis as this enables rapid and cheap machine prototyping
without the need to test individual subcomponents such as motors,
actuators, and sensors. Also, it ensures their seamless integration.

In the scope of this article, we are especially interested in track-
ing individual orders through the FIAB shopfloor, and hence, need
to trace how the machines communicate for fulfilling each order.
Given the highly dynamic layout, one critical support is quick de-
tection of incomplete or incorrect wiring of communication paths
between machines, production deadlocks, identify the potential for
parallelizing activities, and understanding to what extend the pro-
duction time of each order is determined by the machine one the
one hand and coordination needs among the machines on the other
hand. In short, we need to understand how the behavior of ma-
chines (i.e., method calls, etc.) is causally related to the individual
production orders.

2. Distributed tracing background
This section provides only a brief introduction to the concepts used
in distributed tracing. The interested reader finds a more thorough
discussion in [11].

The idea of distributed tracing is tracking how a batch, an order,
a single command, or event is processed by a (distributed) produc-
tion system. The ripple effect of further requests or events is then
captured in a “trace”. Figure 1 (left) depicts a simplified control
flow graph through an example system. Different approaches are
possible to know which request/events belong to the same trace
(see also Sect. 5). The state-of-the-art approach to obtain such a
correlation is using metadata propagation of a trace identifier. This
implies the instrumentation of the various system components with
tracepoints. These tracepoints are typically placed where a request or
event enters a component, respectively, where a response or event
is returned.

A key aspect of distributed tracing is capturing the causality
amongst requests, i.e., how is the sending of one request was
caused by the reception of another, earlier request. In the exam-
ple flow it would be potentially difficult to assess based only on
timestamps and trace identifier information alone whether request
4 occurred due to request 2 or due to request 3. To this end, trace
metadata propagation typically also includes a parent request iden-
tifier. For example, both requests 2 and 3 will have request 1 as a
parent, request 4 will have request 2 as a parent.

Tracepoints by themselves just represent events in a system. Even
with causality relationships among these events (that then build up
an acyclical directed graph), users find it usually hard to easily inter-
pret such trace information. Most modern tracing approaches thus
utilize “spans” to group events that meaningfully describe a compo-
nent’s processing activities. These spans build up a tree where lower
spans describe the more detailed, fine granular processing. Figure 1
(right) depicts the span hierarchy for the depicted control flow on
the left. Note that the uppermost client span (i.e., the root span), is
complete before the end of Consumer D and potentially even Pro-
ducer D span due to their asynchronous execution.

Ultimately, span-based distributed tracing such as Zipkin foresees
the sending of spans to the central span collection server (e.g., a
Zipkin server) upon the finishing event of a span (indicated in Fig. 1
with the info icons).

2.1 Zipkin
In Zipkin, a span entry defines the following properties which we
briefly introduce. We discuss a more detailed mapping to OPC UA
in Sect. 3.

– traceId: same random id for all spans that belong to the same
trace.

– name: the activity or operation this span represents, e.g., an OPC
UA skill or the OPC UA method name if available.

– parentId: empty if this is the root span, otherwise parent span’s
id.

– id: uniquely identifies this span
– kind: additional, optional information to allow interpretation of

timestamp, duration, and remoteEndpoint. We discuss the impli-
cations of the possible values (CLIENT, SERVER, PRODUCER, and
CONSUMER) below.

– timestamp: an as accurate as possible measure representing the
start of this span.

– duration: how long this span lasted. The interpretation depends
on the span’s kind.

– localEndpoint: describes the networked component that created
this span in terms of a serviceName, ipv4 or ipv6 address, and port
number.

– remoteEndpoint: describes the networked component to which a
causal relation exists in the scope of this trace. The span’s kind
determines how to interpret the remoteEndpoint.

– annotations: capture additional events that occur between the
start and end of this span. Each annotation consists of a times-
tamp and a string describing the event, e.g., for capturing when
an error occurred, perhaps an internal state transition happened,
etc.
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– tags: provide additional endpoint or vendor-specific information
such as version information, query string, request parameters, etc.
as a set of key-value pairs.

Aside from traceId, and id, (and parentId for child spans), no other
properties are strictly mandatory.

CLIENT describes a span from the view of a component that re-
quests some service from a remote component (described in the
span’s remoteEndpoint), capturing in the span’s timestamp the in-
stant the request was sent and measuring in the span’s duration
the time until a response is received.

SERVER describes a span from the view of a component that re-
ceives a service request from a remote client (described in the span’s
remoteEndpoint), capturing in the span’s timestamp the instant the
request was received, and measuring in the span’s duration the
time it takes to send back a response.

PRODUCER describes the span from the view of a component that
dispatches an event to an event broker (described in the span’s re-
moteEndpoint) without any knowledge of who the receiving con-
sumers will be. The span’s timestamp indicates the time of hand-
ing the event over to the broker. The span’s duration, if present,
measures the time between handing over the event, and the event
being actually sent to consumers.

CONSUMER described the span from the view of a component that
receives an event from an event broker (described in the span’s re-
moteEndpoint) without any explicit knowledge of who the sender
of the event is. The span’s timestamp indicates the time of obtain-
ing the event from the broker, the duration, if present, measuring
the time between the reception by the event broker and the start
of being processed by the consumer component.

Note that in the case of CLIENT and SERVER the span’s dura-
tion is typically more meaningful as it describes a component’s/ser-
vice’s/skill’s latency as well as network latency, whereas the span’s
duration for PRODUCER and CONSUMER only measures the latency
of the event broker and requires application-specific knowledge to
measure any type of service/skill latency.

3. Mapping Zipkin to OPC UA
Two aspects need consideration when applying distributed tracing
to OPC UA. First, the propagation of trace meta-data, and second,
the use of spans.

3.1 Propagating trace correlation information
Zipkin uses the B3 header specification3 for which mappings to HTTP
headers, Apache Kafka record header, gRPC ASCII headers, or JMS
headers already exist.

We propose to encode the B3 equivalent information in an OPC
UA method call’s additionalHeader element defined in the OPC UA
standard.4

At the moment, no standardization exists yet that would manage
how multiple, independent header extensions can coexist in the ad-
ditional header element. Hence, the exact injection and extraction
procedure of the B3 header from OPC UA method calls is very likely
to change; the encoding of the B3 information itself, however, will
not be affected by this.

3https://github.com/openzipkin/b3-propagation.

4https://reference.opcfoundation.org/v104/Core/docs/Part4/7.28/.

<B3
t r a c e I d ="80f198ee56343ba864fe8b2a57d3 . . . "
span Id =\ e457b5a2e4d86bd1"
parentSpan Id ="05e3ac9a4f6e3b90"

/ >

In order to provide the B3 information for injection into the ac-
tual OPC UA additionalHeader element, we needed to extend a few
classes in the Eclipse Milo stack (v0.3.8) as the header is not suffi-
ciently exposed via the stack’s API. Specifically, on the client-side we
extended the OpcUaClient and the UaStackClient to enable hand-
ing over and insertion of B3 information into the header and the
resulting dispatching of span information to the Zipkin server upon
method call completion. On the server-side, we extended the Server-
SymmetricHandler, StackServer, SessionManager, and Session to ex-
tract the B3 header information from the request, and thereby en-
able any server logic to pass on the B3 information for further prop-
agation, and likewise, the dispatching of span information to the
Zipkin server. Note that the client can send span information to the
Zipkin server also when invoking a method on a non-instrumented
server, as it doesn’t rely on header information in the invocation re-
sponse. We additionally relied on the Brave library5 for the actual
dispatching of the span information to Zipkin.

3.2 Implications of OPC UA usage
Contemporary web-based systems primarily use a procedure call-
centric architecture where a request is typically expecting a response
with the desired content. In contrast, with OPC UA, method requests
are expected to finish as quickly as possible, thus being most of-
ten used merely as triggers to longer running actions on the server-
side. The result and success of such actions are then inspected using
separate method calls, data access operations, monitored items, or
events.

Consequently, even when instrumenting OPC UA method calls
and creating spans of kind “SERVER”, respectively “CLIENT”, this
will result in a span structure more similar to spans of kind “PRO-
DUCER” and “CONSUMER”. We demonstrate this behavior in
Sect. 4 where we also discuss the opportunity to lift tracing instru-
mentation into the component logic to obtain a more easily under-
standable span hierarchy.

Aside from method invocations, requests to read and write an
OPC UA node’s value via OPC UA Data Access can be equally in-
strumented with B3 header extension information. Here, however,
we have to differentiate the direction of the correlation information
flow for reads and writes. A write can be interpreted as a form of re-
quest. Note, that this will not be the case for every data item; hence
such instrumentation only makes sense where a write is expected
to trigger some behavior on the server-side that propagates correla-
tion information and is traced. Here, the request header will contain
the relevant B3 correlation information. Upon dispatching the write
request, the OPC UA client may then create a span of kind “PRO-
DUCER”, and the server should create a span of kind “CONSUMER”
whenever that node is next accessed locally. A read, in contrast, can
be used as a mechanism to providing a return value from a long-
running action, or a trigger to execute some next steps on the client
side. In both cases, the B3 header in the response will be meaning-
ful to propagate context from server to client. Creating of spans is
reversed here. Whenever the node value changes at the server, the
server may create it as a span of kind “PRODUCER”, and the OPC
UA client will create a span of kind “CONSUMER” whenever it reads

5https://github.com/openzipkin/brave.
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Fig. 2. Conceptual architecture excerpt of the Factory in a Box showing OPC UA method calls (full lines), and machine internal communication
paths (dashed lines)

the value. Note that in the former case, the client could also retain
the B3 propagation information from the initial long-running action
trigger, thus not relying on any B3 response header information. For
both read and write, however, there is more instrumentation needed
on the server-side than for method invocations, as the server has to
maintain B3 information for every node that is used for correlation
propagation. The same read-specific aspects hold for propagating
correlation information when using monitored items.

Transparent instrumentation of OPC UA events is more difficult,
as, at the time of writing, no standardized mechanism for including
meta-information in an event is available. Hence, any correlation
information needs to be explicitly modeled in the event data model.

4. Evaluation use case
In the Factory in a Box scenario, the primary communication via OPC
UA occurs between the MES and the machines (input station, output
station, turntables, plotters) as well as between machines to coor-
dinate the handover of pallets. In doing so, we can obtain a single
trace from the MES’ transport request(s) to the turntable(s) and the
subsequent handover handshakes. Figure 2 provides a conceptual
architecture overview of the involved components in the Factory in
a Box for transporting a pallet from input station to Turntable 1,
on to Turntable 2, a plotter, and ultimately reaching the output sta-
tion. To this end, turntables offer an OPC UA server endpoint for
receiving transport commands (i.e., method invocations), and then
connect with respective OPC UA clients to the other machines to
coordinate the pallet handover. A turntable also exposes its OPC UA
server to other turntables to coordinate pallet handover between
turntables. Note, that the input station and output station need not
be controlled from the MES as they signal via their state (i.e., acces-
sible as an OPC UA node) whether they are ready to provide a pallet,
respectively, whether they can take on a pallet.

Figure 3 displays the resulting trace information as displayed in the
Zipkin UI for an exemplary transport scenario where a pallet is moved
from input station to output station via the turntables without, for
the sake of clarity, involving a stop at a plotter. Note that a turntable
needs to internally forward the trace correlation information ob-
tained when receiving the transport request to the handshake com-

ponent which coordinates the handover. This requires explicit ex-
traction of the B3 header information from the OPC UA method call
and thus is specific to the communication means used within the
machines (here IEC 61499 for plotters, and Akka actor framework
for turntables). The exact mechanism involved is outside the scope
of this article. In FIAB, we limited the instrumentation to sending
spans from the client-side as not all server-side OPC UA stacks in-
volved in FIAB are yet instrumented (i.e., currently only Eclipse Milo,
but not yet the open62514 server used in the Forte framework on
the plotters and input and output stations).

There are several aspects visible in the trace of Fig. 3 (left). The
root span is created in the MES (indicated by “DEFAULT” spans),
where the transport system coordinator has separate OPC UA clients
to connect to both involved turntables. A transport request is then
dispatched to the two turntables at the same time. This is visible
in the timestamps of the two “/transportrequest” spans that reside
at nesting level two. Figure 3 (right) provides details of one such
request in the span’s tags, here specifically the method invocation
parameters and OPC UA method node identifier.

The spans are listed in their dispatch order by timestamp. In this
particular case, the MES happened to dispatch the transport re-
quest to Turntable 2 first, and immediately afterward to Turntable 1.
Turntable 1 then proceeds to initiate the handshake to the input sta-
tion (the two bottom spans). Only once Turntable 1 has completed
loading the pallet and is in a ready state will Turntable 2 commence
with the handshake to Turntable 1 (the two brown spans), and then
the handshake to the output station. The time before and after the
set of two handshake method calls is spent on turning and con-
veying (internal component behavior that involves no traceable OPC
UA method calls). The attentive reader will notice that the spans’
duration is extremely short. As we outlined in the previous section,
the method calls are merely used as triggers to an action such as
“initiate” or “start” a handshake and trigger a transport request. To
obtain spans of longer duration, it is necessary to push the tracing
instrumentation from the OPC UA stack up into the (sub) compo-
nents that manage logic at a higher abstraction level, for example,
the state machine that governs the handshake. There, a compo-
nent could then start a span upon receiving an internal “start” re-
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Fig. 3. Example trace of a transport request from the MES to two turntables, as well as the handshake communication to an input station, among
the turntables, and an output station. Span details of one request displayed on the right

quest, capture in span annotations the events triggered by receiv-
ing of state updates via monitored items, and eventually close the
span upon transitioning into the handshake state machine’s “Com-
pleted” state. Any OPC UA-level spans would then be captured as
they currently are but only as sub spans of a higher-level handshake
span. Similarly, the MES transport system coordinator would have to
manage separate spans for each end-to-end transport request.

Nevertheless, already at the current level of trace instrumenta-
tion, the available trace information allows to inspect the timing of
requests, here for example, between initiate and start, and analyze
any deviations thereof over time, or the context of requests in case
one of them fails.

5. Related work
A plethora of runtime monitoring approaches [8] focus on the mon-
itoring of resources, e.g., for fault detection or resource usage [15],
often supported by model-driven techniques to simplify instrumen-
tation [6]. In this category, approaches that address distributed sys-
tems, mostly focus on aspects and events of the individual dis-
tributed components but not their interaction. Here passing of cor-
relation metadata is less of a requirement, or implicitly provided in
the identifier of the instrumented components [16].

As production systems become more flexible and need to sup-
port frequent reconfiguration on the move to lot-size one, per or-
der, batch, or request tracing becomes important. To this end, meta-
data propagation based techniques such as Zipkin (originally devel-
oped by Twitter) are suitable candidates to support these existing ap-
proaches. Zipkin is not the only distributed tracing technology with
multiple frameworks emerging over the past decade (e.g., Dapper
[12] at Google, Jaeger [10] at Uber, or Canopy [3] at Facebook).

These tracing infrastructures are then the basis for sophisticated
use cases such as anomaly detection [7] or attack path detection
[14]. Additional use cases and their support by distributed tracing
frameworks are discussed in depth by Sambasivan et al. [9]. As the
number of different use cases extends to debugging, taint prop-
agation, auditing, or provenance, a generic multipurpose context
propagation mechanism becomes sensible [4].

Alternative approaches to metadata propagation-based monitor-
ing include treating the distributed system as a black box and thus

only derive insights from analyzing vast amounts of heterogeneous
log entries (e.g., [2]) or schema-based approaches (e.g., [1]) that de-
fine a model for each component on how to interpret logged system
calls. Such approaches, however, have significant limits in their abil-
ity to enable inspection of the causal relationships of requests (and
their properties) for individual traces.

6. Conclusions and outlook
In this article, we motivated the potential for distributed tracing to
better understand causality in highly distributed and dynamic CPPS.
We introduced how to integrate Zipkin with OPC UA method calls
and discussed that additional instrumentation is also useful when
reading and writing to nodes via OPC UA Data Access. We also high-
lighted that due to the event-centric nature of CPPS, method call-
based spans are not ideally suited to quickly and easily understand
span structures. To this end, span generation based on component
internal models such as state machines seems very promising. As we
outlined in Sect. 5, Zipkin is just one applicable framework, with the
OpenTracing APIs6 aiming for interoperability. However, all similar
approaches that have their origin in the web and cloud domain face
similar challenges concerning passing correlation information and,
most importantly, the event-centric nature of OPC UA communica-
tion.
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