
Neural Comput & Applic (2003)11:210–223
Ownership and Copyright
 2003 Springer-Verlag London Limited

A Discrete-Event Neural Network Simulator for General
Neuron Models

T. Makino
Department of Complexity Science and Engineering, Graduate School of Frontier Science, Tokyo University, Tokyo, Japan

Efficient simulation techniques for a discrete-event
pulsed neural network simulator are developed. In
a discrete-event simulation framework, simulation of
complex neural behaviours, such as phase pre-
cession and phase arbitration, demands the predic-
tion of delayed firing times. The new technique, the
incremental partitioning method, uses linear envel-
opes of the state variable of a neuron to partition
the simulated time so that the delayed-firing time is
reliably calculated by applying the bisection-
combined Newton-Raphson method to every par-
tition. The quick filtering technique is also proposed
for reducing calculation cost of linear envelopes.
The simulator developed, Punnets, has achieved
efficiency and precision, but is still capable of simu-
lating a complex behaviour of large-scale neural
network models.

Keywords: Discrete-event simulation; Event-driven
simulation; Incremental partitioning method; Neural
network simulator; Punnets; Pulsed neural network

1. Introduction

The importance of time in a neural network simul-
ation is increasing. Emerging research areas, such
as the simulation of memory and context handling
in a neural network, are requiring the simulation of
temporal transitions of the network. Recent studies
pointed out that temporal coincidence of pulses have
various roles in the brain, including binding enco-

Correspondence and offprint requests to: T. Makino, Department
of Complexity Science and Engineering, Graduate School of
Frontier Science, Tokyo University, Hongo 7–3–1, Bunkyo-ku,
113–0033 Tokyo, Japan. Email: mak@sat.t.u-tokyo.ac.jp

ding [1,2] and functional connectivity [3]. A high-
precision and efficient simulator for pulsed neural
networks is demanded for studying the temporal
behaviour of the brain.

Most existing simulators are based on a discrete-
time simulation framework (also known as
synchronous simulation) [4,5]. Although this frame-
work is easy to develop, it inevitably requires a
large amount of computation to increase temporal
precision. If the temporal precision is reduced to
achieve efficiency, pulse timings are restricted and
the expressive power of temporal coding decreases.

It is widely known that a discrete-event simulation
framework, also called event-driven simulation, can
simulate a neural network with high temporal pre-
cision. Studies on discrete-event neural network
simulation were pioneered by Watts [6], and appli-
cation to a larger network has been investigated by
various researchers [7,8]. However, the neuron
model in the existing simulators is restricted to a
rather simple class, in which the future transition of
the neuron is easily predictable. Techniques to simu-
late a more complex class of neuron models are
thus being demanded by advanced simulation tasks,
such as the simulation of the short-term memory
model of hippocampus.

It is known that most of the demanded neuron
models can be described by the Spike-Response
model, whose state is described as a summation
of presynaptic pulse-response functions, a self-spike
response function and an external input function.
This model includes a large class of neurons, such
as leaky integrate-and-fire neurons [9]. However, its
high expressive power makes it difficult to predict
the future behaviour of a neuron, especially to detect
the nearest threshold-crossing point that corresponds
to the next firing time.

211A Discrete-Event Neural Network Simulator

In response to the above-described situation, we
developed a second-order incremental partitioning
method, which is a general solver to detect the
nearest threshold-crossing point by using linear
envelopes of a function and its derivatives. The
linear envelopes can be defined for any C1-class
continuous function; even when the function has
discontinuities, we can partition the function into
continuous parts. Moreover, since linear envelopes
of various functions can be summed, this method is
easily applicable to a neuron model with any func-
tions splittable into finite ranges of second-order
differentiable functions, including the Spike-
Response model of a neuron.

We also devised a filtering technique for reducing
the cost of the partitioning method. Since the par-
titioning method is based on prediction of the future,
every arrival of a pulse causes recalculation of
the prediction, which degrades the efficiency. Our
technique, quick filtering by maximum gradient
checking, effectively reduces the number of predic-
tions by concerning the next-known-pulse arrival at
a neuron.

2. Discrete-Event Neural Network
Simulation

Numerical simulation of neural networks is com-
monly based on a discrete-time simulation frame-
work. In discrete-time simulation, the temporal tran-
sition of neural states are represented in a form of
associated differential equations. The values of state
variables are then updated synchronously for each
time step �t, using a finite integration method such
as Euler or Runge-Kutta. �t gives temporal resol-
ution of the simulation in a sense that the simulator
cannot reproduce dynamics in a time span less than
�t. Since the simulation cost is inversely pro-
portional to �t, a coarse temporal resolution must
be used for large-scale network simulations.

For the simulation of pulsed neural networks, the
discrete-time simulation framework is not suitable.
To simulate the temporal correlation of pulses, �t
must be significantly less than the correlating pulses,
so the performance of the simulation degrades drasti-
cally. In addition, when the framework is applied
to pulsed neural networks, most of the calculation
is a deterministic update of neuron states. In a
pulsed neural network, neurons intercommunicate
with pulses. The transition of a neuron state between
receiving pulses is deterministic. In the case of a
fine-grained time step, most of the synchronous
updates in discrete-time simulation concern deter-
ministic evolution of neuron states. If this evolution

were properly calculated, such synchronous updates
could be reduced.

Elaborating this idea, we obtain a different frame-
work of simulation, which is called a discrete-event
simulation framework. An arrival of a pulse to a
neuron is regarded as an event; the state of the
neuron is calculated only at the time an event
occurs. This process may cause the neuron to fire,
which causes new pulses to be sent, each of which
turns into another event. This framework is called
discrete-event because it cannot simulate continuous
interaction of neurons; that is, it can only simulate
a discrete sequence of events. However, it is a
suitable framework for pulsed neural networks, in
which every interaction of neurons is a discrete
pulse.

2.1. Discrete-Event Simulation of a Neural
Network

Figure 1 sketches a discrete-event simulation process
with a simple integrate-and-fire neuron model. The
simulator keeps information of each neuron as a
pair consisting of the last simulation time and the
value of the state variable at that time, which are
denoted in the figure as ‘Last’ and ‘Sig’, respect-
ively. A scheduling queue keeps pending events in
the order of arrival time.

The simulation process consists of the repeated
deliveries of the earliest pending event in the sched-
uling queue to the neuron. In the figure, the event
arriving at neuron A at time 5.0 is the earliest
pending event; thus it is delivered to neuron A.
Then the state of the neuron is updated to the time
of the event. In this case, the last simulation of
neuron A was at time 4.0, and the state variable at
that time was 0.7. As the event arrived at time
t � 5.0, the state of neuron A is updated to time
5.0: Last becomes 5.0, and Sig is updated to 0.4,
i.e. the decayed value at t � 5.0. Note that, in this
update process, other neurons such as neuron B are
kept unchanged. The calculation of the state of A
presumes no other pulse arrives at A before that
time, although the state of neuron B, which may
send pulses to A, is left uncalculated from t � 3.3.
This is because we know that neuron B never fires
unless it receives an external pulse, and pulses for
B are absent between the last calculation of the
state of B (t � 3.3) and the calculation of the state
of A (t � 5.0). The absence of the pulses is ensured
by the scheduling queue, which stores events and
serves them in the order of arrival time. In this way,
discrete-event simulation keeps the whole network
consistent while minimising the neuron states to
be updated.

212 T. Makino

Fig. 1. Discrete event simulation model.

Thereafter, the effect of the pulse is added to
neuron A, which causes A to fire at time 5.0. As a
result, A sends a pulse to neuron B, with a delay
of time 1.0. Thus, an event of pulse arrival at B is
scheduled at time 6.0. When the event comes to the
top of the queue, it is delivered to neuron B, and
at that time the state of B is updated. If the event
caused firing, then another set of new events is
scheduled. In this way, the repeated deliveries con-
stitutes the simulation.

As described above, in a discrete-event simulation
framework, the update process of states no longer
relies on synchronous processing of neurons in �t
steps, but on calculation based on event arrivals.
This advantage makes it easy to achieve high tem-
poral precision efficiently with pulsed neural net-
works.

2.2. Delayed Firing

One remaining problem is the handling of delayed
firings. In some cases, the effect of an event on a
neuron is not instant. In the upper part of Fig. 2,
the pulse itself does not cause immediate firing, but
causes the neuron to fire at a later time. The hand-

t
1

Delayed firing occurs

autonomously

θ

Does not fire

at the event arrivalNeuron state

θ

Delayed firing time

predicted at the time t
1

Updated delayed firing time

predicted at the time t
2

t
1
t
2

Fig. 2. Delayed firing of a neuron. The upper part shows a
simple sine function with an immediate response for the pulse
at time t1. The lower part shows spike-response functions for the
pulses at t1 and t2. In the latter case, the first prediction of the
firing time at t1 is changed by another pulse arrival at t2.

213A Discrete-Event Neural Network Simulator

ling of such a firing, which we call delayed firing,
poses a problem for discrete-event simulation.
Namely, since the neuron state is not calculated
until the arrival of the next event, the delayed firing
is ‘ignored’ until the arrival of the next event. If
the pulses produced by the delayed firing are not
simulated in order of arrival time, the causality of
the simulation system is violated.

In a general neuron model such as the Spike-
Response model, delayed firing is not a special case.
If a response function such as the one in the lower
part of Fig. 2 is used, a firing is always delayed
from the last pulse arrival. Moreover, a superposed
response function from a later arrival of another
pulse causes the change in the delayed firing time.
Such a change poses more difficulty for the simul-
ation.

To avoid this problem, delayed firing has to be
scheduled in the pending event queue, which
requires prediction of the precise timing of the
delayed firing when the previous event is processed.
This firing prediction is undoubtedly the key to
precise simulation of pulsed neural networks. How-
ever, it is difficult to predict firing for a complex
neuron model such as the Spike-Response model,
as described in the next section.

2.3. Difficulty of Delayed Firing Prediction

Simulating complex neuron models, including the
Spike-Response model of pulsed neural networks,
are demanded in neural modeling of human memory
and high-level information tasks using human mem-
ory [2]. Such a neuron model is described by a
summation of a number of functions of time t,
including exponential and trigonometric functions.
However, it is difficult to predict the time of delayed
firing for such a neuron.

The difficulty is caused by the mathematical com-
plexity involved in finding the time of delayed firing.
Even if we can give a functional expression to the
state variable ui(t), it is different from finding roots
of the equation ui(t) � �, which gives the firing
time. Analytical methods for finding a root are
restricted to simple functions, such as a linear func-
tion and a simple exponential function. In general,
we cannot analytically find the roots for an equation
that is a summation of several exponential and
trigonometric functions; it is more difficult than
finding roots of higher-order polynomial equations.

However, we can solve such an equation numeri-
cally. The Newton-Raphson method is one of the
best-known and most powerful methods to give a
numerical solution to an equation. Basically, in solv-

ing an equation f(x) � 0, the method repeatedly
moves variable x to a crossing point of the x-axis
and the tangent line of f(x) at point x until x
converges on a root.

Although the simple application of the Newton-
Raphson method sometimes fails to find a root, it
is known that the Newton-Raphson method com-
bined with the bisection method can safely find a
root if we enclose the root in a range [10]. Here,
enclosing means finding a range (x1, x2) for a func-
tion f(x) in which the values f(x1) and f(x2) have
the opposite signs; at least one root exists in the
range because the function is continuous. Since the
bisection-combined Newton-Raphson method is
applicable to any differentiable function, it is suit-
able to find a root of ui(t) � �, where ui is a sum
of differentiable functions.

Nevertheless, the method is still incomplete, i.e.
it cannot predict the delayed firing time. Figure 3
illustrates a situation comprising a sum of a linear
function and a sine function. A prediction algorithm
of the delayed firing time should correctly find the
first point beyond the threshold, which is time t0 in
the figure. However, we cannot control which root
is calculated by the Newton-Raphson method;
namely, the method may converge to any root, such
as tS, the second crossing of the threshold.

For accurate simulation we have to guarantee that
the solver finds the first threshold-crossing point.
However, it is difficult to distinguish it from false
crossing, such as tF, where the state variable
approaches but does not go beyond the threshold.
When the solver finds t0 as a root, how can we
guarantee that all previous approaches to the thres-
hold are all false crossings? This is a difficult
question for a Spike-Response-model neuron,

t0 tStF
Time

θ

Fig. 3. Difficulty in finding the firing. We want to find t0, the
first threshold-crossing time. However, it is difficult for a solver
to distinguish it from tF, where the state variable approaches but
does not go beyond the threshold, and from tS, the second
threshold-crossing time.

214 T. Makino

because many exponential and trigonometric func-
tions are superimposed to form its state function.
The next section describes our method to solve
this problem.

3. Incremental Partitioning Method

3.1 Overview of the Incremental Partitioning
Method

Partitioning is a simple idea to solve the difficulty
concerning the Newton-Raphson method. We divide
the function into partitions, each of which has at
most one threshold-crossing point. After that, we
check each partition to see whether it has a crossing
point, and apply the Newton-Raphson method for
the first partition containing the crossing point. This
method can find the first crossing point, i.e. the time
of the delayed firing, without mistakenly finding the
second and later crossing points.

In the simulation, all partitions do not need to be
solved at once; they can be calculated and solved
one partition at a time. Figure 4 illustrates this
process. When a partition containing the current
simulation time t is solved but no crossing in the
partition is found, calculating and solving the next
partition can be postponed until the simulation time
reaches the end of the partition. The postponement
is done by scheduling the solution of the next
partition as an event. We call this method incremen-
tal partitioning.

This method is suitable for discrete-event neural
network simulation for the following reasons. First,
scheduling of the next partitioning can be
implemented in a consistent way with scheduling of

S
im

u
la

tio
n
 T

im
e

t
0

 Calculate t
1
, the partition boundary

 Solve the partition → no crossing

 Schedule the next partitioning at t
1

t
1

 Calculate t
2
, the partition boundary

 Solve the partition → no crossing

 Schedule the next partitioning at t
2

t
2

 Calculate t
3
, the partition boundary

 Solve the partition → crossing at τ
 Schedule firing at τ

t
0

t
1

t
1

t
2

t
3

t
2

θ

θ

τ

θ

Fig. 4. Incremental partitioning method.

other events, such as firing and pulse arrival. Sec-
ondly, it uses more computing power for the near
future; since a new arrival of pulses easily changes
the state of the neuron, it is often redundant to
predict firings in the distant future.

The remaining problem is providing an algorithm
for partitioning. If this method requires too fine-
grained partitioning, the discrete-event simulation
will lose its advantage over discrete-time simulation.
The rest of this section describes the partitioning
algorithm, which uses linear envelopes of the func-
tion.

3.2. Linear Envelopes

To perform partitioning efficiently, we calculate lin-
ear envelopes of functions to estimate the range of
function values. In short, a linear envelope provides
a convenient way to cover possible values of a
function with a linear region. Since a linear envelope
of a sum of functions can be easily composed from
linear envelopes of addend functions, we can cover
a complex summed function with a linear envelope.

Linear envelope �(f,t0) of function f(t) is a region,
whose edge is a set of linear equations and contains
any point (t, f(t)) such that t is greater than a given
starting point t0. Figure 5 shows examples of linear
envelopes. In Fig. 5(a), an exponential decay func-
tion is enclosed by a linear envelope consisting of
three linear inequality expressions (shown as dotted
lines). In Fig. 5(b), a sine wave function is enclosed
by a linear envelope consisting of four inequality
expressions. Note that a linear envelope is not
unique, even if f(t) and t0 are given.

It is notable that we can easily compose a linear

215A Discrete-Event Neural Network Simulator

(a)

(b)

(c)

A linear envelope for an exponential-decay function

A linear envelope for a sine-wave function

A linear envelope for the summed function of the above two,
composed of the linear envelopes showm in (a) and (b)

Fig. 5. Linear envelopes for nonlinear functions. Although the
composed envelope shown in (c) is looser than the envelopes
shown in (a) and (b), it correctly encloses the function.

envelope for a summed function of several nonlinear
functions from the linear envelopes of the addend
functions. Figure 5(c) shows a composed linear
envelope of a function, which is a summation of
the above two functions. This property enables us
to calculate linear envelopes for many complex func-
tions.

In the simulator Punnets, the linear envelopes
are calculated using tangent gradients and their
approximations. See Appendix A for the actual for-
mulas used in the Punnets system.

In the following, we also use linear envelopes of
the derivatives of a function. We call a linear envel-
ope of a first-order derivative a first-order linear
envelope, and that of a second-order derivative a
second-order linear envelope. In need of distinction,
we call a linear envelope of a non-derived function
a zeroth-order linear envelope.

Fig. 6. Zeroth-order incremental partitioning. The arrows denote
ranges of the partitions. The end of a partition is given by an
intersection point of the envelope edge and the threshold
(indicated by a small circle), which is in turn the start of the
next partition.

3.3. Incremental Partitioning with Linear
Envelopes

It is certain that a function never crosses a threshold
when the threshold is out of a linear envelope of
the function. We can thus partition the function at
the first point where the linear envelope touches the
threshold. As illustrated in Fig. 6, repeated appli-
cation of this process constitutes incremental par-
titioning, which we call zeroth-order incremental
partitioning.

Note that this partitioning never produces a par-
tition that contains threshold-crossing. The closer
the threshold-crossing is, the smaller the partition
becomes; we never reach the threshold-crossing, as
when Achilles could not catch up the turtle. One
solution to escape from this paradox is to introduce
a minimum partition size �t; in other words, fallback
to discrete-time simulation. Such fallback often
degrades the simulation efficiency.

A more sophisticated partitioning method uses

216 T. Makino

linear envelopes of the derived (differentiated) func-
tion. The derived function never reaches zero in a
range that the linear envelope of the derivative never
touches zero; in other words, the function either
monotonously increases or monotonously decreases
in the range. Thus, if we partition the function in
the range, the partition will have, at most, one
threshold-crossing point. Moreover, we can see the
existence of the threshold-crossing by checking the
signs of function values at both ends of the partition;
if the signs are opposite, a threshold-crossing is in
the partition, and at the same time, the crossing is
enclosed in the partition so that the bisection-com-
bined Newton-Raphson method is applicable. As
shown in Fig. 7, the first-order incremental par-
titioning uses two linear envelopes, a linear envelope
of the state function and a linear envelope of the
derivative, and uses a larger partition from two
envelopes; the method reverts to the minimum par-
tition size �t as before, but it relies less on the
�t fallback.

We can enlarge this approach to second-order
linear envelopes as second-order incremental par-
titioning, which uses the largest partition obtained
from the three linear envelopes. In a partition where
the second-order derivative never touches zero, the
function is either upward convex or downward con-
vex, as shown in Fig. 7. If the function values of
the both partition ends have opposite signs, we can

Fig. 7. First-order and second-order incremental partitioning
methods. First-order partitioning uses larger one of the above
two partitions, while second-order partitioning uses the largest of
the three partitions.

apply the enclosed Newton-Raphson method safely.
However, the problem occurs in the case with the
same signs, as shown in Fig. 8(a), since the partition
may have either zero or two threshold-crossings. In
this case, we first discriminate the existence of the
threshold-crossings by enclosed peak searching with
parabola approximation [10] (see Fig. 8(b)). If the
peak is beyond the threshold, we can enclose the
crossing between an end of the partition and the
peak; otherwise, it is analytically discriminated that
the partition has no crossings. Because of the con-
vexness of the function, the discrimination can be
finished before the real peak is found (see Fig. 8(c)).

It is noteworthy that the effects of the three
envelopes are complementary. When the function
value is far from the threshold, the zeroth-order
linear envelope usually makes the best and the
largest partitioning. In the case that the function
value is close to the threshold and the gradient is
large, a first-order linear envelope gives the large
partition that encloses the crossing. If the function
value is close to the threshold and the gradient is
also small, the second-order linear envelope will

1

2

3

(b)

(c)

1
2

3

P
Q

(a)

Peak
4

Fig. 8. Discrimination of threshold crossing. (a) Existence of
threshold-crossing. Signs of the function at both ends of the
partition show the left case has crossing, but cannot discriminate
the middle and the right cases. (b) Enclosed peak searching. The
triplet of points 1, 2, and 3 are said to be enclosing the peak
(f(x1) < f(x3), f(x3) > f(x2), x1 < x3 < x2). Parabola approximation
(dotted line) suggests the peak point as 4, so we can narrow the
enclosing to points 3, 2, and 4. The peak can be found by
repeating this process. Actually point 4 is above the threshold,
thus no more peak searching is required (crossing is enclosed
between 3 and 4). (c) Discrimination of thresholdcrossing using
convexness. Since both points P and Q are below the threshold,
this function has no threshold-crossing in the enclosed region. In
this case, we can safely abort the enclosed peak searching.

217A Discrete-Event Neural Network Simulator

make a partition that contains the convex curve to
be solved by peak search. Since it is theoretically
possible that all three approaches may fail to pro-
duce a good partition, it is still necessary to revert
to the minimum partition size �t; however, this
rarely happens in actual simulation.

3.4. Applicability of the Incremental
Partitioning Method

The incremental partitioning method uses linear
envelopes. For calculation of a second-order linear
envelope, the function must be second-order differ-
entiable. Note that any second-order differentiable
function satisfies C1-class continuity, that is, the
requirement of the Newton-Raphson method.

Moreover, to perform partitioning effectively, the
vertical range of linear envelopes at a given starting
point t is expected to converge to point (t, f(t)).
This ensures that the linear envelopes give better
prediction for the nearer future.

These requirements can be relaxed by introducing
additional partitions. For example, if a function with
discontinuities can be split into finite ranges of
continuous functions by additional partitions, the
function can be handled by the incremental partition-
ing method. Some functions such as f(t) � t2, which
is unable to maintain convergence of the linear
envelopes to the starting point, can be split by
additional partitions to satisfy the convergence
expectation.

As a result, the incremental partitioning method
can be applied to any function splittable into finite
ranges of second-order differentiable functions.
Although the method is unapplicable to some ill-
natured functions (such as a function with an infinite
number of incontinuities in a finite range), we can
say the method covers any arbitrary function for the
purpose of neural network simulation.

4. Efficient Simulation Techniques

The previous section introduced the incremental par-
titioning method, which predicts the delayed firing
for a neuron model with practically any arbitrary
function. However, naive application of the method
causes inefficient simulation. Since the prediction is
based on an assumption that no further pulses arrive,
it has to be updated each time a new pulse arrives
at the neuron. This degrades the performance of the
simulation. Moreover, the update of the prediction
changes the time of the scheduled events, which
stresses the scheduling mechanism.

We have developed an efficient technique that
solves these problems: quick filtering by maximum
gradient checking. It utilises the next-known-pulse
arrival to suppress redundant predictions. It also
suppresses the changes to scheduled events, so it
reduces the simulation cost.

4.1. Quick Filtering by Maximum Gradient
Checking

The incremental partitioning algorithm predicts the
delayed firing time of a neuron in the case that the
neuron receives no more pulses after the last deliv-
ered event. However, it is often the case that the
next pulse arrival is already scheduled but not deliv-
ered yet. Utilising this information, we can decrease
the cost of the prediction.

Quick filtering is a technique that uses the time of
the next-known-pulse arrival to filter out unnecessary
predictions. The prediction based on linear envelopes
can be suppressed if we can confirm that no
threshold-crossing occurs till the arrival of the next
known pulse. In such a case, it is not necessary to
schedule the end of the partition as an event, since
the state of the neuron is anyway recalculated at
the time of the next-known-pulse arrival. If the
confirmation is efficient enough, the decrease of
the cost of prediction and scheduling exceeds the
additional cost of confirmation.

For this purpose, we introduce zeroth-order linear
envelope checking and gradient limit checking. The
work of zeroth-order linear envelope checking is to
check the precedence of the next-known-pulse
arrival by using a zeroth-order linear envelope; in
this case, the calculation cost of first- and second-
order linear envelopes can be suppressed. However,
to reduce the cost of calculating zeroth-order linear
envelopes, we introduce a quicker checking method
that uses the upper limit of the gradient of the
function for quick checking. Since the upper limit
of the gradient is a constant for each function, it
can be calculated before starting simulation. More-
over, the upper limit of the summed function can
be easily calculated by summing up the upper limits
of the gradients of component functions.

Figure 9 shows an example of our quick filtering
method. When the next-known-pulse arrival is close
to the current time (which is often the case in
handling pulse bursts), the pulse arrives before the
gradient upper limit line reaches the threshold. The
filtering technique thus reduces the cost of re-
scheduling as well as the cost of calculating linear
envelopes.

218 T. Makino

The upper limit

of the gradient

of the function

The next known

pulse arrival
Current

simulation time

The next known pulse arrival

precedes the closest possible

threshold-crossing

θ

Fig. 9. Filtering a redundant prediction by gradient-limit check-
ing.

4.2. Queuing Model for Quick Filtering

Many discrete-event simulators have a single queue
to schedule all events, e.g. pulse arrivals. However,
in a single-queue model, it is difficult to find the
next pulse arrival for a specified neuron. To apply
the quick-filtering technique, another queuing model
should be used to allow a quick retrieval of the
information of the next-known-pulse arrival.

To meet this requirement, we introduce another
queuing model, in which each neuron has a local
event queue. The local queue of a neuron holds all
pending events that affect the neuron. A main sched-
ule queue keeps neurons sorted according to the
first event time of their event queues. In this model,
the next event of a neuron can be easily found at
the top of the neuron’s local event queue.

Note that this change of queuing model does not
increase the order of scheduling cost. The complete
binary tree (heap tree) algorithm, which is a most
popular and empirically efficient algorithm for a
priority queue [11], needs a cost of O(log n) for
insertion and retrieval of an entry, where n is the
entries in the queue. Suppose a neural network has
N neurons and each neuron has v pending events.
In the single-queue model, the insertion/retrieval cost
is O(logvN). On the other hand, in the object-queue
model, we generally need to insert both the neuron’s
queue and the main queue, which keep v and N
entries, respectively. The total insertion/retrieval cost
is O(log v � log N), whose order is equivalent to
O(log vN), the cost of the single-queue model.

5. Implementation

We implemented Punnets, the pulsed neural net-
work simulator, using the techniques described in
this paper. The simulator is a 3000-step C�� pro-
gram library, which is highly object-oriented and
easily used by C�� programs. Punnets has a class
that simulates any neuron based on Spike-Response
model, as well as an optimised version of classes
simulating an integrate-and-fire neuron with a
dynamic threshold. Since neurons and synapses are
designed as an object, a user can use various styles
of neurons and synapses, including stochastic neu-
rons and dynamically learning synapses. The library
also has a logging ability to record the behaviour
of neurons as either event reports or state graphs.

6. Experiments

We performed a series of experiments to prove the
efficiency of the incremental partitioning method
and the quick filtering technique. In the experiments,
we used 10�8 as the value of ε (the minimum
movement of x for one iteration of Newton-
Raphson method).

Figure 10(a) shows the zeroth-order incremental
partitioning on a summed function consisting of a
sine function and an exponential function. In this
figure, the simulator makes 19 partitions, although
the later partitions are too narrow to see. The last
eight partitions are enlarged in Fig. 10(b). Before
the �t-cutoff is used, the distance between the func-
tion and the threshold reaches less than the epsilon
value and causes firing. If we use first- or second-
order incremental partitioning, the area shown in
Fig. 10(b) is partitioned into only one partition. In
this case, nine iterations of the Newton-Raphson
method correctly find the firing time. The gaps
between firing times of zeroth-, first-, and second-
order partitioning are less than 10�8. It is clear that
the precision achieved by discrete-event simulation
outperforms discrete-time simulation, which requires
1011 synchronous updates to achieve 10�8 precision
in a 103 temporal range.

Note that the number of iterations in the Newton-
Raphson method (nine times) was almost the same
as the number of partitions in zeroth-order partition-
ing (eight times). This is because, in this local range,
the gradient of the edge of the linear envelopes is
near to the tangent of the function, so that the
zeroth-order partitioning makes the same movement
step as the Newton-Raphson method does. However,
higher-order partitioning has the advantages that,
first zeroth-order partitioning lacks the general solv-

219A Discrete-Event Neural Network Simulator

Fig. 10. Application of zeroth-order incremental partitioning. (a)
Incremental partitioning for the sum consisting of an exponential
function and a sine function; (b) Enlarged feature around the
threshold-crossing point of (a).

ing power of an equation; second, the cost of an
iteration of Newton-Raphson method is lower than
the cost of a partitioning.

Figure 11 shows the simulation result from a neu-
ron model, that is, an addition of two sine waves
with slightly different wavelength. This condition
corresponds to one of the worst cases, since the
composed linear envelope of the function becomes
much broader than the actual range of the function.

Figure 11(a) shows the result from zeroth-order
incremental partitioning. Despite the broad linear
envelope, the simulator reaches the firing time after
152 partitions. Higher-order partitioning achieves
better results: first-order partitioning shown in Fig.
11(b) requires 97 partitions, and second-order par-
titioning shown in Fig. 11(c) requires only 76 par-
titions to reach the firing time. These experiments
show that the works of higher-order partitioning are
complementary to the works of the zeroth-order par-
titioning.

We tested the performance of our method by
simulating a large-scale network. The network con-

sists of 100 neurons in the Spike-Response model.
Every neuron has a response function �(t) � exp
(��1t) and sine-wave external input H(t) � wsin
(�t), and 10 connections from other neurons, each
of which has the activation function εij(t) � wij

(exp(��1t) � exp(��ijt)), where wij and �ij are ran-
domly determined for each connection. We also
introduced 200 random pulses to the network, so
6276 fires were observed in the range of simulation.

Table 1 lists the performance results carried out
on a Pentium 4 Xeon 2-GHz processor. The second-
order partitioning method with quick filtering is the
fastest of all the tested configurations. The table
shows that the reduction of the number of partitions
by higher-order partitioning algorithms exceeds the
additional cost of the complex partitioning algor-
ithm. In addition, the quick-filtering techniques –
gradient-limit checking and zeroth-order linear
checking – are effective to filter out calculation of
partition ends to be re-scheduled. Note that in all
tests, memory consumption was kept under 1.6
megabytes.

7. Related Work
Only a few studies pursue discrete-event simulation
of pulsed neural networks. The first simulator by
Watts, SPIKE [6] targeted a simple neuron model
and a small network. He showed the advantage of
the discrete-event simulation framework by simulat-
ing complex behaviour on a hand-made neural net-
work.

Mattia and Giudice [8] developed techniques for
large-scale discrete-event simulation of pulsed neural
networks. They achieve efficiency by grouping sim-
ultaneous pulse arrivals into the one event, using a
layered queue structure. Their simulator efficiently
handles synaptic plasticity and Poisson-distributed
random inputs. They also discuss the handling of
delayed firing in the case of a neuron model with
a simple differential equation, but it is not applicable
to a general neuron model.

Gra�mann proposed a distributed simulation of
pulsed neural networks on a discrete-event simul-
ation framework [12,7]. He reported speedup by a
factor of 2.4 on three CPUs. He also mentioned
that delayed firing can be predicted by using table
lookup, but details are not given1.

1 Although a table-lookup method can accelerate calculation of
delayed firing if the pulses are represented by a simple formula,
it seems inapplicable to a neuron with input of various pulse
models and to a neuron with external inputs. Moreover, to achieve
high precision for the calculation of time and threshold, our
techniques will be also required, such as firing possibility check
by peak search and refinement of the calculation by the Newton–
Raphson method.

220 T. Makino

θ

1000 1200 1400 1600 1800 2000

Zeroth order

θ

1000 1200 1400 1600 1800 2000

Zeroth order
First order

θ

1000 1200 1400 1600 1800 2000

Zeroth order
First order

Second order

Fig. 11. Order difference of incremental partitionings.

Table 1. Performance experiments

Partitioning 2nd 1st 0th

Quick filtering Yes No Yes No Yes No

Time (sec) 5.09 6.02 5.21 6.00 10.88 11.21
of Partitions 53,790 90,348 55,326 91,995 142,057 179,624

0th partitions 41,222 75,904 42,292 77,051 133,811 171,448
1st partitions 11,699 13,484 13,034 14,944 0 0
2nd partitions 869 960 0 0 0 0
�t partitions 0 0 0 0 8176 8176

of Re-scheduled events 23,545 56,350 23,424 56,350 22,527 56,350
of events filtered by GLCa 26,720 0 26,752 0 27,218 0
of events filtered by 0th-LEb 9,838 0 9,917 0 10,349 0

a Gradient-limit checking
b Zeroth-order linear envelope checking

221A Discrete-Event Neural Network Simulator

8. Summary and Future Work

We developed the second-order incremental par-
titioning method, an efficient method for predicting
the delayed firing time from the function of the
neuron state variable. We also devised the quick-
filtering technique, which uses the time of a future
pulse arrival to reduce the cost of future prediction.
Using these techniques, we implemented a neural
network simulator that is based on a discrete-event
simulation framework but is still capable of simulat-
ing practically any Spike-Response neuron model.

One of our future works is the parallelisation
of the simulator. Many large-scale discrete-event
simulations are now performed in a parallel comput-
ing environment [13,14]. The discrete-event simul-
ation of a pulsed neural network seems a suitable
application for parallelisation, since every pulse
transmission can be treated as an event, and delays
between neurons enable us to use a simpler
synchronisation mechanism. Moreover, the queuing
model used in our simulation localises the schedul-
ing information, so it is expected that the simulation
can be speeded up more by parallelisation of our
queuing model than by that of a single-queue model.

Appendix A: Linear Envelope
Calculation in Punnets2

This section illustrates calculations of linear envel-
opes in the Punnets system.

A.1. Monotonic Convex Function

It is simple to calculate linear envelopes for mono-
tonically increasing or monotonically decreasing and
converging convex functions, such as f(x) � exp
(�x).

For a monotonically decreasing function, the fol-
lowing definition of linear envelope for the point x0

is used:

�(f,x0) � �
y 	 f(x0)

y
 f(x0) �
df
dx|

x�x0

(x � x0)

y
 f(�)

(1)

A monotonically increasing function can be trans-
formed into a monotonically decreasing function,

2 Makino T. (2003) Punnets reference manual.
http://snowelm.com/~t/research/software/

Fig. 12. Linear envelopes of f(x) � exp(�x).

such as g(x) � �f(x). Figure 12 illustrates linear
envelopes for various points of f(x) � exp(�x).

A.2. Sine Function

In calculation of the linear envelopes of a sine
function, it is useful to use information of tangent
lines from the start point of the linear envelope.
However, there is no easy formula for calculating
the tangent lines. We used the following approxi-
mation for the gradient of one of the tangent lines:

�(x0) � �
cos (�) (�
 �

�

2
)

sin(�(cos(�(� �
�

2
)) � 1)) (�
 �

�

2
)

(2)

(� � x0 � 2n�, �� 	 � 	 �)

where � � 1.311 and � � 0.375867. The gradient
of the other tangent line can be calculated from
��(t0 � �).

As shown in Fig. 14, the approximation always
gives a greater gradient than the actual gradient of
a tangent line. A linear envelope calculated from
the approximation therefore always contains a linear
envelope calculated from the actual tangent lines.
Figure 13 illustrates linear envelopes for
f(x) � sin(x). In a formula, the linear envelope is
given below:

-1

0

1

0 π/2 π 3π/2 2π 5π/2 3π 7π/2

sin(x)
linear envelopes

Fig. 13. Linear envelopes of f(x) � sin(x).

222 T. Makino

0

0.5

1

-π/2 0 π/2 π

Actual gradient
Approximated gradient

Fig. 14. Comparison of actual gradient and approximated gradi-
ents �(x0).

�(sin,x0) � �
y 	 1

y 	 ��(x0 � �)(x � x0) � x0

y
 �(x0)(x � x0) � x0

y
 �1

(3)

A.3. Pulse Response Function

In the Spike-Response model, the following function
is often used as a response to a pulse:

s(x) � w · (exp(�ax) � exp(�bx)) (4)
(0 < a < b)

We can apply linear transformation for the func-
tion in the following canonical form:

S(x) � (exp(�zx) � exp(�z�x)) (5)

(� �
b
a

> 1, z �
2 log �

� � 1
)

Here, z is a normalisation factor that fixes the
inflection point of the function to x � 1. Beyond
the point (x > 1), the function is monotonically
decreasing, so the linear envelope described in
Appendix A. 1 is applicable. This function reaches
the peak at x � ., and the value at the peak is
S(.) � exp (�.zx) � exp(�.z�x).

We also use the approximation to estimate the
gradient of the tangent line:

�(x0) � (�zexp(�z) � z� exp(�z�)) (6)
(1 � (1 � x0)�)

where � � 0.3(log10�)2 � 2.45. Although this
approximation is not as good as the approximation
of sine function, the function always gives a larger
gradient than that of the actual tangent.

This approximation gives the linear envelope as
in follows:

�(S,x0) �










y 	 S(.)

y 	 S(x0) �








dS
dx|

x�x0

(x � x0) (x0 < .)

0 (x0
 .)

y
 S(x0) � �
�(x0) (x � x0) (x0 < 1)

dS
dx|

x�x0

(x � x0) (x0
 1)

y
 0

(7)

Figures 15 and 16 illustrate linear envelopes of
Eq. (7) for � � 10 and � � 2. Figures 17, 18, 19
and 20 show the actual tangent, estimated tangent,
estimation error, and actual and estimated tangents
at � � 10.

Fig. 15. Linear envelopes of S(x) at � � 10.

Fig. 16. Linear envelopes of S(x) at � � 2.

Fig. 17. Actual tangent gradient.

223A Discrete-Event Neural Network Simulator

Fig. 18. Approximated tangent gradient � (x0).

Fig. 19. Approximation error of �(x0).

Fig. 20. Actual and approximated tangents of �(x0) when � � 10.

Acknowledgements. I would like to express my
deep gratitude for Prof. Kazuyuki Aihara, who gave
me invaluable help for this research. I thank Prof.
Jun-ichi Tsujii, Dr. Takashi Ninomiya, and Mr.
Yusuke Miyao for precious advices. This research
is supported by Research Fellowships of the Japan
Society for the Promotion of Science for Young
Scientists.

References

1. Makino T, Aihara K, Tsujii J (2001) Towards sentence
understanding: Phase arbitration in temporal-coding
memory mechanism. Second Workshop on Natural
Language Processing and Neural Networks
(NLPNN’2001), Tokyo, Japan 46–52

2. Makino T (2001) A Pulsed Neural Network for Langu-
age Understanding: Discrete-Event Simulation of a
Short-Term Memory Mechanism and Sentence Under-
standing. PhD dissertation, Department of Information
Science, Tokyo University, Tokyo, Japan

3. Fujii H, Ito H, Aihara K, Ichinose N, Tsukada M
(1996) Dynamical cell assembly hypothesis – theoreti-
cal possibility of spatio-temporal coding in the cortex.
Cognitive Science 9: 1303–1350

4. Bower JM, Beeman D (1995) The book of GENESIS:
Exploring Relistic Neural Models with the GEneral
NEural SImulation System. TELOS/Springer-Verlag,
New York

5. O’Reilly RC, Munakata Y (2000) Computational
Explorations in Cognitive Neuroscience: Understand-
ing the Mind by Simulating the Brain. MIT Press,
Cambridge, MA

6. Watts L (1994) Event-driven simulation of networks
of spiking neurons. In: Cowan JD, Tesauro G, Alspec-
tor J (editors) Advances in Neural Information Pro-
cessing Systems, 6, Morgan Kaufmann 927–934

7. Grassmann C, Anlauf JK (1999) Fast digital simulation
of spiking neural networks and neuromorphic inte-
gration with SPIKELAB. Int J Neural Systems 9(5):
473–478

8. Mattia M, Del Giudice P (2000) Efficient event-driven
simulation of large networks of spiking neurons and
dynamical synapses. Neural Computation 12: 2305–
2329

9. Gerstner W (1998) Spiking neurons. In: Maass W,
Bishop CM (editors) Pulsed Neural Networks, MIT
Press, Cambridge, MA 3–53

10. Press WH, Flannery BP, Teukolsky SA, Vetterling
WT (1988) Numerical Recipes in C. Cambridge Uni-
versity Press

11. Jones DW (1986) An empirical comparison of priority
queue and event set implementations. Comm ACM
29: 300–311

12. Gra�mann C, Anlauf JK (1998) Distributed, event
driven simulation of spiking neural networks. Proceed-
ings International ICSC/IFAC Symposium on Neural
Computation (NC’98), ICSC Academic Press, 100–105

13. Fujimoto RM (1993) Parallel discrete event simulation:
Will the field survive? ORSA Journal on Computing
5(3): 213–230

14. Lin Y-B, Fishwick PA (1996) Asynchronous parallel
discrete event simulation. IEEE Trans Systems, Man
and Cybernatics 26(4)

