
Robust Control of Nonlinear Stohasti Systems byModelling Conditional Distributions of Control SignalsRanda Herzallah David LoweNCRG, Aston University, UKemail: herzarom,d.lowe�aston.a.ukMay 8, 2003AbstratWe introdue a novel inversion-based neuroontroller for solving ontrol problems in-volving unertain nonlinear systems whih ould also ompensate for multi-valued systems.The approah uses reent developments in neural networks, espeially in the ontext ofmodelling statistial distributions, whih are applied to forward and inverse plant models.Provided that ertain onditions are met, an estimate of the intrinsi unertainty for theoutputs of neural networks an be obtained using the statistial properties of networks.More generally, multiomponent distributions an be modelled by the mixture density net-work. In this work a novel robust inverse ontrol approah is obtained based on importanesampling from these distributions. This importane sampling provides a strutured andprinipled approah to onstrain the omplexity of the searh spae for the ideal ontrollaw. The performane of the new algorithm is illustrated through simulations with examplesystems.1 IntrodutionIn nonlinear stohasti ontrol problems, one the objetive funtional is de�ned we would ideallyseek a dynami programming solution. This however, is pratially unfeasible, not least beauseof the unbounded searh spae in whih we need to maintain possible solution trajetories.The method of approximation we hoose is to onstrut nonlinear neural network models for theforward and inverse plant dynamis. However we are interested in intrinsially stohasti systems.Sine standard neural network approahes produe deterministi system approximations, we need1



a way to allow for sampling from the (unknown) distribution of ontrol signals whih wouldbe generated by the real stohasti system. We ahieve this by employing the same neuralnetworks to estimate error varianes around the predited mean values of the ontrol values,thus haraterising the distribution of the ontrol signals as Gaussian. For inverse problems, themapping an be often multi-valued, with values of the inputs (traking signal) for whih thereare several valid values for the outputs (ontrol signals). In this ase, mixture density networksan be implemented to model the more general distribution of the ontrol signal.In reent years, neural network models have evolved into favourite andidates in the �eld ofnonlinear system identi�ation and ontrol, due to their ability to approximate multi-variablenonlinear mappings. In addition to having nonlinear features, dynami systems may have noiseevents a�eting their inputs and outputs, and usually are time-variant. Beause arti�ial neuralnetworks an be adapted on line [15, 4, 13℄, usually they are apable of good approximation insuh situations. However for most real ontrol problems where disturbanes play an importantpart and where a relatively big sampling interval is used, the predited output of the neuralnetwork is inherently unertain. Neural networks now have the ability to model general distri-butions rather than just produing point estimates, and in partiular an produe an estimateof the unertainty involved in the preditions [3, 7, 16℄. Reent researh interest has been togo beyond the lassial methods for identi�ation and ontrol by aounting for model and sys-tem unertainty expliitly in the modelling proess. As examples, in [2℄ a systemati proedurethat aounts for the strutured unertainty when a neural network model is integrated in anapproximate feedbak linearisation ontrol sheme has been developed. The use of an adaptiveriti ontroller when there is input unertainty has been disussed in [5℄. The appliation ofreently developed minimal resoure alloating network (MRAN) in a robust manner underfaulty onditions has been demonstrated in [14℄. A robust adaptive nonlinear ontrol method forontrolling a lass of nonlinear systems in the presene of both unknown nonlinearities and un-modelled dynamis has been illustrated in [8℄. In [3, 11℄ a new lass of network models obtainedby ombining a onventional neural network with a mixture density model, has been used tomodel the onditional probability distribution for problems in whih the mapping to be learnedis multi-valued. Other omputational approahes, namely forward and inverse modelling, andfeedbak error learning have been suggested in [15, 9℄ for aquiring the inverse dynamis modelof the multi-valued funtions. None of the reent works have onsidered the possibility of usingthe neural network's own estimate for error bars. In this paper we address for the �rst time theuse of this extra knowledge to develop a robust ontrol method for unertain nonlinear systems.This paper aims to demonstrate that a promising approah to robust ontrol an be provided by2



this proposed framework.The paper begins with a review of the priniple of system model and error bar estimation.Next, we develop a nonlinear ontroller arhiteture based on approximate dynami inversionand the use of error bar knowledge. This development is then employed to ontrol a nonlinearstohasti simulated system.2 Adaptive Inverse ControlThe lassial inverse adaptive ontrol tehnique is shown in �gure 1. The neural network islearning to rereate the input u(t � d), that reated the urrent output of the plant y(t). Theinverse ontroller ontains adjustable parameters that ontrol its impulse response. An adaptivealgorithm is usually used to automatially adjust the ontroller parameters to minimise somefuntion of the error (usually mean square error, though other error funtions an also be used).The error is de�ned as the di�erene between the input of the plant u(t�d), and the atual outputof the ontroller û(t � d). Many suh algorithms are desribed in the reports and textbooks byNarendra and Parthasarathy [13℄ and by White and Sofge [15℄.When trained, the network should be able to take the desired response yr and produe theappropriate ontrol signal u, whih is then supposed to make the plant output y approah thedesired response yr. This ontrol arhiteture however, may not be eÆient sine the networkmay have to learn the response of the plant over a larger operational range than is atuallyneessary. This problem is related to the onept of persistent exitation, whih aknowledgesthe importane of the inputs used to train learning systems. A preliminary disussion for thisonept an be found in [12℄.
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Figure 1: Training of an inverse ontroller.
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3 Distribution ModellingIn lassial inverse ontrol the hallenge is to build a neural network that will take past values ofthe input and output of the plant zzz(t) = [y(t� 1); ::::; y(t�n); u(t� d� 1); ::::; u(t�m)℄ and thedesired output value yr(t) as an input, and outputs the ontrol signals u(t�d) (assuming a relativedegree of d), whih will move the plant output to the desired value. In this work the primarygoal is to model the statistial properties of the ontrol signals, u(t�d), expressed in terms of theonditional distribution funtion p(u(t� d)jsss(t)). Here sss(t) = [zzz(t); yr(t)℄ is the input vetor tothe neural inverse model. For dynamial systems it is reasonable to assume that the output of thesystem y(t) is a funtion f of its input u(t� d) and the delayed vetor zzz(t). Furthermore, in thease of a one-to-one mapping, and only in this ase, the inverse of the funtion denoted by f�1an be introdued. In this example a feed-forward neural network trained using the sum of thesquare error funtion (between the input of the system and the atual output of the ontroller)an perform well. For this instane the distribution of the target data an be desribed by aGaussian funtion with an input-dependent mean (given by the outputs of the trained network),and an input-dependent variane (given by the residual error value). However, if the inverse ofthe funtion f annot be de�ned uniquely, then the diret inverse mapping f�1, found by usingthe sum of the square error funtion between the input of the system and the atual output ofthe ontroller, annot be used to tell us how to hoose the ontrol signal u(t� d) so as to reahthe desired response yr(t). Therefore, the assumption of a Gaussian distribution an lead to avery poor representation of the ontrol signal. For this situation a more general framework formodelling onditional probability distributions is required. This general framework is based onthe use of the mixture density network.3.1 Gaussian Distribution ModellingIf a neural network has been used to model the adaptive inverse ontroller, it an also modelthe onditional distribution of the target data (the ontrol signal) by modelling the onditionalunertainty involved in its own preditions. Di�erent methods for estimating the unertaintyaround the predited output of a neural network have been presented in [3, 7, 16℄. In this workthe preditive error bar method will be used [7℄. This approah is based on the important resultthat for a network trained on minimum square error, the optimum network output approximatesthe onditional mean of the target data, or f�1opt(sss(t)) =< u(t � d)jsss(t) >, and that the loalvariane of the target data an be estimated as ku(t� d)� f�1opt(sss(t))k2. If this variane is usedas a target value for another neural network, then the optimum output of this seond network4



is again the onditional mean of that variane. As reported in [7℄, in the implementation ofpreditive error bars two orrelated neural neural networks are used. Eah network shares thesame input and hidden nodes, but has di�erent �nal layer links whih are estimated to give theapproximated onditional mean of the target data in the �rst network, and the approximatedonditional mean of the variane in the seond network. Thus the seond network predits thenoise variane of the predited mean by the �rst network. This arhiteture is shown in �gure2. Optimisation of the weights is a two stage proess. The �rst stage determines the weights w1onditioning the regression on the mapping surfae. One these weights have been determined,the network approximations to the target values are known, and hene so are the onditionalerror values on the training examples. In the seond stage the inputs to the networks remainexatly as before, but now the target outputs of the network are the error values. This seondpass determines the weights w2 whih ondition the seond set of output noise to the squarederror values �2(sss(t)).
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where �j(sss(t)) represents the mixing oeÆients, and an be regarded as prior probabilities(whih depend on sss(t)), �j(u(t � d)jsss(t)) are the kernel distributions of the mixture model(whose parameters are also onditioned on sss(t)), and M is the number of kernels in the mixturemodel. Various hoies are available for the kernel funtions, but in this paper the hoie will berestrited to spherial Gaussians of the form�j(u(t� d)jsss(t)) = 1(2�)=2�j(sss(t)) exp��k u(t� d)� �j(sss(t)) k22�2j (sss(t)) � (2)where  is the dimensionality of the target data u(t � d), �j(sss(t)) represents the entre ofthe jth kernel, with omponents �jk. A spherial Gaussian assumption an be relaxed in a verystraightforward way, by using a full ovariane matrix for eah Gaussian kernel. However, usingfull ovariane Gaussian is not neessary, beause in priniple a Gaussian Mixture Model GMMwith suÆiently many kernels of the type given by (2) an approximate any given density funtionarbitrarily aurately providing that the mixing oeÆients and the Gaussian parameters areorretly hosen [3℄. It follows that for any given value of sss(t), the mixture model (1) provides ageneral formalism for modelling the onditional density funtion p(u(t�d)jsss(t)). To ahieve thisthe parameters of the mixture model, namely the mixing oeÆients �j(sss(t)), the means �j(sss(t))and the variane �2j (sss(t)) are taken to be general ontinuous funtions of sss(t). These funtionsare modelled by the outputs of a feed-forward neural network that takes sss(t) as input.The neural network element of theMDN is implemented with a standard radial basis funtionnetwork RBF of thin plate spline basis funtions. The output vetor from the RBF , Z, holdsthe parameters that de�ne the Gaussian mixture model. For M omponents in the mixturemodel (1) the network will have (+ 2)�M outputs. Namely, M outputs denoted by z�j whihdetermine the mixing oeÆients �j, M outputs denoted by z�j whih determine the kernel width�j, and M �  outputs denoted by z�jk whih determine the omponents �jk of the kernel entres�j. This is ompared with the usual  outputs for a RBF network used with a sum-of squareserror funtion. The outputs of theMDN undergo some transformations to satisfy the onstraintsof the mixture model. The onstraints are suh thatMXj=1 �j(sss(t)) = 1 (3)0 � �j(sss(t)) � 1 (4)The �rst onstraint ensures that the distribution is orretly normalised, so that (R p(u(t �d)jsss(t))du(t � d) = 1). These onstraints an be satis�ed by hoosing �j(sss(t)) to be related to6



the network's outputs by a `softmax' funtion�j(sss(t)) = exp(z�j )PMl=1 exp(z�l ) : (5)The varianes of the kernel represent sale parameters and always take positive values, so it isonvenient to represent them in terms of exponentials of the orresponding outputs of the RBFnetwork, z�j �2j = exp(z�j ): (6)The entres �j of the Gaussians represent a loation in the target spae and an take any valuewithin that spae. Therefore they are taken diretly from the orresponding outputs of the RBFnetwork, z�jk �jk = z�jk: (7)In order to optimise the parameters in a MDN , an error funtion is required that provides anindiation of how well the model represents the underlying generating funtion of the trainingdata. The error funtion of the mixture density network is motivated from the priniple ofmaximum likelihood [3℄. The likelihood of the training data set, fsss(t); u(t� d)g, an be writtenas L = Yn p(sssn(t); un(t� d)) (8)= Yn p(un(t� d)jsssn(t))p(sssn(t))where the assumption has been made that eah data point has been drawn independently fromthe same distribution, and so the likelihood is a produt of probabilities. Generally one wishesto maximise the likelihood funtion. However, in pratie, it is often more onvenient to onsiderthe negative logarithm of the likelihood funtion. These are equivalent proedures, sine thenegative logarithm is a monotonially dereasing funtion. The negative log likelihood an beregarded as an error funtion, EE = � lnL = �Xn ln p(un(t� d)jsssn(t))�Xn p(sssn(t)): (9)The seond term in (9) is onstant beause it is independent of the network parameters, so itan be removed from the error funtion. The error funtion beomesE = � lnL = �Xn ln p(un(t� d)jsssn(t)): (10)7



Next we substitute (1) into (10) and derive the negative log likelihood error funtion for theMDN E = �Xn ln� MXj=1 �j(sssn(t))�j(un(t� d)jsssn(t))�: (11)In order to minimise the error funtion, the derivatives of the error E with respet to the weightsin the neural networks must be alulated. Providing that the derivatives an be omputed withrespet to the outputs of the network, the errors at the network inputs may be alulated usingthe bak-propagation proedure [3℄. By �rst de�ning the posterior probability of the jth kernel,using Bayes theorem �j(sss(t); u(t� d)) = �j�jPMl=1 �l�l (12)the analysis of the error derivatives with respet to the network outputs is simpli�ed. From (12)the posterior probabilities sum to unity MXj=1 �j = 1: (13)Sine the error funtion (11) is omposed of a sum of terms E = PnEn, the omputation ofthe error derivative an further be simpli�ed by onsidering the error derivative with respet toeah training pattern, n. The total error E is then de�ned as a sum of the error, En, for eahtraining pattern E = NXn=1 En: (14)Eah of the derivatives of En are onsidered with respet to the outputs of the network and theirrespetive labels for the mixing oeÆients, z�j , variane parameters, z�j and entres or positionparameters z�jk. The derivatives are as follows�En�z�j = �j � �j (15)�En�z�j = ��j2 �k un(t� d)� �j k2�2j � � (16)�En�z�jk = �j��jk � uk(t� d)�2j � (17)One the network has been trained it an predit the onditional density funtion of the targetdata for any given value of the input vetor. This onditional density represents a ompletedesription of the generator of the data. More spei� quantities an be alulated from thisdensity funtion whih may be of interest in di�erent appliations. An example is the mean,8



orresponding to the onditional average of the target data. This orresponds to the meanomputed by a standard network trained by least squares. However, in ontrol appliationswhere unique solutions annot be found, and where the distribution of the target data willonsist of di�erent numbers of distint branhes, this is a not valid solution. In suh ases onemay be interested in �nding an output value orresponding to the most probable branh. Sineeah omponent of the mixture model is normalised, R �j(u(t� d)jsss(t))du(t� d) = 1, the mostprobable branh is given by arg maxj f�j(sss(t))g: (18)The required value of u(t � d) is then given by the orresponding entre �j. In this work theMDN will be used to model the onditional density funtion in ase of a multi-valued funtion.4 Problem Formulation and Solution DevelopmentDynami programming is a powerful tool in stohasti ontrol problems [6, 10℄. However, itperforms poorly when the order of the system inreases. The algorithm proposed here is basedon inorporating the unertainty knowledge from the neural network to avoid the omputationalrequirements for the dynami programming solution for stohasti ontrol problems. We searhfor an algorithmi approah yielding numerial solutions to the minimisation problem. Theproposed method is equivalent to sampling values from the distribution of u and using thefuntion value alone to determine a reasonable minimisation of the objetive, J(t). Using thegradient information of J(t), although it would be more eÆient, is not exploitable here due tothe random sampling nature of the algorithm. In the proposed method we assume that we knowthe set of deisions allowable at any stage whih an be determined from the distribution of theontrol signals, the e�et of these deisions or the model of the proess, and the riterion bywhih we evaluate the ontrol poliy that is employed.4.1 Neural Network Development for Inorporating UnertaintyOne properly trained, the inverse model an be used to ontrol the plant sine it an generatethe neessary ontrol signals to reate the desired system output. Despite the fat that neuralnetworks have been aepted as suitable models for apturing the behaviour of nonlinear dynam-ial systems, it is also aepted that suh models should not be onsidered exat. The algorithmproposed here irumvents the dynami programming saling problem whilst simultaneously al-lowing for the model unertainty by using the predited neural network error bars to limit the9



possible ontrol solutions needing to be onsidered. Aepting the inauray of neural networks,the distribution of the output of the inverse ontrol network an be approximated by a Gaussiandistribution, or more generally by a multi-omponent distribution as disussed previously. Usingjust the mean estimate of the ontrol in the Gaussian ase and the most probable value of theontrol in the multi-omponent distribution ase is typially suboptimal in nonlinear systems.Modelling the onditional distribution of the ontrol signals permits the idea of implementingimportane sampling of the ontrol signal distribution, whih de�ne the set of allowable deisionsat eah stage produing a better estimate of the ontrol law than the mean or the most probablevalue. The alulated quantities from these distributions, namely the mean, the most probablevalue, and the variane are nonlinear funtions of previous states, thus allowing for good modelsof forward and inverse plant behaviour.4.1.1 Inorporating Unertainty For the Gaussian Distribution FuntionBased on estimates of the distribution of ontrol signal values, we an onstrut the followingalgorithm inorporating the unertainty diretly. The arhiteture of this algorithm is shown in�gure 3.1. Based on the pre-olleted input-output data, an aurate model of the proess is on-struted and trained o� line. It is assumed to be desribed by the following neural networkmodel ŷ(t) = f(y(t� 1); :::; y(t� n); u(t� d); :::; u(t�m)) (19)where y(t) is the measured plant output, u(t) is the measured plant input, n is the maximumdelay in the output, m is the maximum delay in the input, and d is a known relative degreeof the plant.2. An aurate inverse model of the plant should also be onstruted, and trained o� lineto approximate the onditional mean of the ontrol vetor and the onditional variane.Assuming the following hidden variable of the neural network,x(t) = f�1(y(t); y(t� 1); :::; y(t� n); u(t� d� 1); :::; u(t�m)) (20)the onditional mean of the ontroller is û(t� d) = x(t)w1, and the onditional variane isvaru(t�d) = x(t)w2. Here w1 is the weight matrix of the linear layer estimated to preditthe onditioned mean of the ontrol signal, and w2 is the weight matrix of the linear layerestimated to predit the variane of the predited ontrol signal.10



3. At eah instant of time t the desired output is alulated from the referene model output,whih should be hosen to have the same relative degree, d, as that of the plant.4. Bring the ontrol network on line and at eah time t estimate the appropriate ontrol signalfrom the ontroller and the variane of that ontrol signal. The ontrol signal distributionis then assumed to be Gaussian and given byp(u(t� d) j sss(t)) = 1(2��2u(t�d)) 12 exp(�(u(t� d)� û(t� d))22�2u(t�d) ) (21)where �2u(t�d) is the variane of the ontrol signal sss(t) = [y(t); y(t � 1); :::; y(t � n); u(t �d� 1); :::; u(t�m)℄.5. Generate a vetor of samples from the ontrol signal distribution. Sine Gaussian dis-tribution, the Matlab random number generator an be used. That vetor of samplesis onsidered as the admissible ontrol values at eah instant of time. The number ofsamples is hosen based on the value of the predited variane of the ontrol signal as,number of samples = K � varu(t�d). This equation determines the number of samplesbased on the on�dene of the ontroller about the predited mean value of the ontrolsignal. So more samples are generated for larger variane.6. Based on the e�et of eah sample on the output of the model, the most likely ontrol valueis taken, whih is assumed to be the value that minimises the following ost funtion.J(t) =Minu2U Ev [(ŷ(t)� yr(t))2℄ (22)where U is a vetor ontaining the sampled values from the ontrol signal distribution, Eis the expeted value of the ost funtion over the random noise variable v. Beause weare using a neural network to model the system, and beause the neural network preditsthe mean value for the output of the model averaged over the noise on the data, the abovefuntion an be optimised diretly.7. Go to step 3.4.1.2 Inorporating Unertainty for the Mixture Density NetworkSine we have disussed most of the proposed algorithm in our disussion for inorporatingunertainty in the Gaussian distribution ase, we summarise here the main di�erenes betweenthe two algorithms: 11



1. The onditional distribution of the inverse model of the plant mentioned in step 2 for theGaussian distribution funtion, is assumed to be desribed by the MDN given by equation(1).2. For the non-sampling ase, the value of the ontrol signal in the MDN is assumed to begiven by the entre �j of the most probable branh, where the most probable branh isgiven by arg maxj f�j(sss(t))g: (23)The predited value of the ontrol signal for the Gaussian distribution funtion is assumedto be equivalent to the mean of that distribution.3. The admissible values of the ontrol signal at eah instant of time for the Gaussian distri-bution ase are assumed to be sampled from that distribution, as in step 5. The admissiblevalues of the ontrol signal for the mixture density network, are assumed to be sampledfrom a MDN . Sine we are using Gaussian kernel funtions, the samples an be generatedfrom eah kernel funtion randomly. This an be done by retrieving the omponents �jkof the kernel entres �j, and the kernel width �j of eah kernel funtion. The number ofsamples from eah omponent is determined randomly with more samples generated fromthe omponent with larger prior.Other steps are the same as in the Gaussian distribution ase.
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5 Simulation 1, Gaussian Distribution5.1 IntrodutionIn order to illustrate the validity of the theoretial developments, we onsider the liquid-levelsystem desribed by the following seond order equationy(t) = 0:9722y(t� 1) + 0:3578u(t� 1)� 0:1295u(t� 2)� 0:3103y(t� 1)u(t� 1)� 0:04228y2(t� 2) + 0:1663y(t� 2)u(t� 2) + 0:1087y(t� 2)u(t� 1)u(t� 2)� 0:3513y2(t� 1)u(t� 2) + 0:3084y(t� 1)y(t� 2)u(t� 2)� �vy2(t� 1)y(t� 2): (24)This model has been used in [1℄ to illustrate theoretial developments for diret adaptive ontrol.Beause disturbanes play an important part in real world proesses, a stohasti omponent,�v, has been added to this model. This omponent is taken to be a Gaussian random variableN (0:03259; 0:2). The plant has been onsidered to be desribed by equation (24). Given theprior information onerning the order of the plant, a seond order input-output model desribedby the following equation was hosen to identify the plant:ŷ(t) = f(y(t� 1); y(t� 2); u(t� 1); u(t� 2))where f is a Gaussian radial basis funtion network. This neural network model was trainedusing the saled onjugate gradient optimisation algorithm, based on noisy input output datameasurements taken from the plant with sampling time of 1s. The input to the plant and themodel was a sin funtion followed by a sine wave in the interval [�1; 1℄ with additive Gaussiannoise N (0; �2)(� = 0:3). Construting an exitation signal apable of persistent exitation innonlinear ontrol systems is a known problem. In example (24) we found that the suggested plantinput adequately explored the nonlinear ontrol problem aross the desired operating range. Thesingle optimal struture for the neural network found by applying the ross validation methodonsisted of 6 Gaussian basis funtions. If the order of the plant to be ontrolled is assumed tobe unknown, ross validation method needs to be implemented to �nd the optimal order of themodel.Similarly an input-output model desribed by the following equation was hosen to �nd theinverse model of the plant:û(t� 1) = f�1(y(t� 1); y(t� 2); y(t); u(t� 2))13



where f�1 is a Gaussian radial basis funtion network. The training data was the same as in theforward model. By ross validation, a neural network again, but oinidentally, with 6 Gaussianbasis funtions was found to be the best model.5.2 Classial Inverse Control ApproahAfter training the inverse ontroller o� line, the ontrol network is brought on line and the ontrolsignal is alulated at eah instant of time from the ontrol neural network and by setting theoutput value y(t) at time t equal to the desired value yr(t)u(t� 1) = f�1(y(t� 1); y(t� 2); yr(t); u(t� 2))where yr(t) = 0:2 � r(t � 1) + 0:8 � yr(t � 1) and r is the set point. The predited mean valuefrom the neural network was forwarded to the plant. After running the proess for about 600time steps the output of this lassial inverse ontrol system was found to be unstable, and thelassial inverse ontroller was unable to fore the plant output to follow the referene output.5.3 Proposed Control ApproahIn our new approah, both the mean and the variane of the ontrol signal were estimated.Following the proedure presented earlier, the best ontrol signal was found and forwarded tothe plant. This ontrol signal was obtained from a small number of importane samples from theGaussian distribution, typially a maximum of 27 samples. The overall performane of the plantunder the proposed method is shown in �gure 4, where it is evident that the system outputsremain stable aross the whole region, and that the proposed sampling approah managed tostabilise the plant. The ontrol signal is shown in �gure 5, and the variane of this ontrol lawis shown in �gure 6. The error from the absolute di�erene between the plant output and thedesired output of the lassial inverse ontroller and the proposed sampling approah is shownin �gure 7. More spei�ally, �gure 7 is the plot of error = jy � yrjsampling � jy � yrjlassial inverseagainst time, y is the atual plant output. From this �gure we an see that the sampling approahis no worse than taking the mean in the inverse ontrol, and in addition, the sampling methodremains stable in regions where the lassial approah diverges.
14
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Figure 4: The desired and atual output values. The atual output of the plant (solid line) andthe desired output (dotted line) are almost oinident, whih indiates aurate ontrol.
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Figure 5: The Control Signal. The utuation in the ontrol signal represents the stohastinature of the ontrol problem.
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Figure 6: The Control Signal Variane. Compared to the varianes added to the plant input(�2 = 0:09) and the plant output (�2 = 0:2), the predited variane around the ontrol signal issigni�antly smaller.
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Figure 7: The Error Di�erene. The di�erene between the absolute traking error of the pro-posed ontrol method and the absolute traking error of the lassial ontrol method. So thelassial ontrol method has more frequent and larger errors.
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6 Simulation 2, Mixture Density Networks6.1 IntrodutionFor inverse problems, the mapping an often be multi-valued and a unique solution annot befound. If the Gaussian distribution approximates the inverse model, it will approximate the on-ditional average of the target data, and this will frequently lead to extremely poor performane.Here we will overome this problem by appropriate use of a Mixture Density Network instead. Inorder to illustrate the appliation of the MDN with the proposed ontrol approah we onsidera simple example of single input single output given by the following equationy(t) = u(t) + 0:3 sin(2�u(t)) + � (25)where � is a random variable with uniform distribution in the interval (�0:1; 0:1), y(t) is the out-put variable, and u(t) is the input variable. This example has been used in [3, 11℄ to demonstratethe use of the MDN . This equation represents a stati system, sine no delay exists betweenthe input and the output variable. The plant has been onsidered to be given by equation (25).In order to identify the plant, an input-output model desribed by the following equation washosen ŷ(t) = f(u(t))where f is a thin plate spline radial basis funtion network. Figure 8 shows a data set of 300points generated by sampling equation (25). Also shown is the mapping represented by a thinplate spline radial basis funtion network after training using this data. The optimal struturefor the neural network found by applying the ross validation method onsisted of 5 thin platespline basis funtions. It was trained using the saled onjugate gradient method. It an be seenthat the network whih is approximating the onditional average of the target data, gives anexellent representation of the underlying generator of the data.6.2 Gaussian Distribution ModelWe onsider approximating the inverse mapping of the same problem and using the same trainingdata as in the forward model by training a thin plate spline radial basis funtion network usingleast squares, whih will lead to a Gaussian distribution assumption. Similarly an input-outputmodel desribed by the following equation was hosen to �nd the inverse model of the plant,û(t) = f�1(y(t)):17
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Figure 8: The forward model of the funtion y(t) = u(t)+0:3 sin(2�u(t))+�. The irles representthe samples generated from that funtion. The solid urve shows the result of training a thinplate spline radial basis funtion with 5 basis funtions using a sum of square error funtion.Again the network tries to approximate the onditional average of the target data, but nowthis orresponds to a very poor representation of the proess as an be seen from �gure 9. Thenetwork in this ase had 15 thin plate spline basis funtions and was trained using the saledonjugate gradient optimisation method. This network was onneted in series with the plant togenerate the ontrol signal required to ause the plant to follow the desired output. The desiredoutput was given by yr(t) = r(t) + 0:3 sin(2�r(t))where the input r(t) has been hosen in suh a way to generate data that have not been used inthe training stage. The result is shown in �gure 10, where it an be seen that there is a largeerror between the desired output and the plant output.6.3 Mixture Density NetworkIn this setion we apply an MDN to the same inverse problem, using the same data set asbefore. The appropriate number of kernel funtions and the omplexity of the neural networkwas deided by applying the ross validation method. It was found that the best struture for theMDN onsisted of 7 thin plate spline basis funtions with 9 outputs orresponding to 3 kernelfuntions . The MDN was trained using saled onjugate gradient optimisation. One trainedthe MDN predits the onditional probability density of the target data (regarded as the inputto the plant u(t) in the inverse model) for eah value of the input to the network (regarded asthe output to the plant y(t) in the inverse model). Having obtained a good representation for18
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Figure 9: The inverse model of the funtion y(t) = u(t)+0:3 sin(2�u(t))+�. The irles representthe same data as in Figure 8. The solid urve shows the result of training a thin plate splineradial basis funtion with 15 basis funtions using a sum of square error funtion.
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Figure 10: The ontrol result extrated using the lassial inverse ontroller.
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the onditional density of the target data, we an in priniple alulate any desired statistisfrom that distribution. In this ontrol problem, sine the onditional mean of the target data isa very poor approximation, we are interested in the evaluation of the entre of the most probablekernel aording to equation (23), whih gives the result shown in �gure 11. Again this networkhas been onneted in series with the plant to generate the ontrol signal required to ause theplant to follow the same desired output as before. The result is shown in �gure 12, where it anbe seen that using the most probable value of the kernel funtions has improved the performaneof the ontroller signi�antly.
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Figure 11: Plot of the entral value of the most probable kernel as a funtion of y(t) from theMixture Density Network.
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Figure 12: The ontrol result from using most probable value of the Mixture Density Networkas a ontrol law.
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6.4 Proposed Control ApproahThe �nal demonstration of the utility of the approah, is to sample from the ontrol signaldistribution (from the mixture density distribution). In this proposed ontrol approah the bestontrol signal was found and forwarded to the plant, following the proedure presented earlier.The ontrol signal was obtained from a small number of samples, typially 20 samples in thisase. The overall performane of the plant under the proposed ontrol approah is shown in �gure13. It an be seen from this �gure that the proposed sampling approah is superior to �nding themost probable entre value of the kernel funtion. The error from the absolute di�erene betweenthe plant output and the desired output of the most probable value of the kernel funtion in themixture density network, and the proposed sampling approah is shown in �gure 14. From this�gure we see that the sampling approah has redued the error signi�antly.
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Figure 13: The ontrol result from applying the proposed sampling approah from the mixturedensity network.7 ConlusionsGeneral inverse ontrol an be onsidered to be a good ontrol strategy if the model of theplant is invertible and aurate. We are assuming that the neural network approah allows usto onstrut aurate models suh that we an rely on their outputs as representing the orretonditional mean expetations. If this is not the ase then the approah disussed in this paperan fail. Assuming auray of the model, the intrinsi unertainty around the ontrol signal anbe estimated from the onditional distribution of the ontrol signal.The main ontribution of this paper is that it provides a systemati proedure to use thisunertainty measure in order to improve the generalisation property of the ontroller. Simulation21
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