Skip to main content
Log in

Hierarchical neuro-fuzzy current control for a shunt active power filter

  • Original Article
  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

Abstract

This paper presents the design of a hierarchical neuro-fuzzy current control scheme for a shunt active power filter compared with a single fuzzy controller scheme. A single fuzzy controller scheme is presented first and an ANFIS based neuro-fuzzy controller is connected hierarchically to the first one to improve the performance. Simulation results show that harmonic compensation is achieved with both schemes, however switching performance is superior for hierarchical scheme. The method of switching controller development in this paper is new and can be applied to other power electronic converter applications for improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bimal KB, Nitin RP, Kaushik R (1997) A neuro-fuzzy based on-line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive. IEEE Trans Indust Elect 44(2):270–273

    Article  Google Scholar 

  2. Pawel ZG, Marian PK, Bimal K. Bose, Frede Blaajberg (2000) A Simple direct–torque neuro-fuzzy control of PWM-inverter-fed induction motor drive. IEEE Trans Indust Elect 47(4):863–870

    Article  Google Scholar 

  3. Vazque JR, Salmeron PR (2000) Three-phase active power filter control using neural networks. 10th Mediterranean electrotechnical conference, Melecon, vol III, pp 924–927

  4. Jain SK, Agrawal P, Gupta HO (2002) Fuzzy logic controlled shunt active power filter for power quality improvement. IEE Proc Electr Power Appl 149(3):317–328

    Article  Google Scholar 

  5. Madtharad C, Premrudeepreechacharn S (2002) Active power filter for three-phase four-wire electric systems using neural networks. Elect Power Syst Res 60:179–192

    Article  Google Scholar 

  6. Naser M. Abdel-Rahim, Abdel Latif Elshafei (2003) Hierarchical fuzzy-logic control for a single-phase voltage-source UPS inverter. The Fourth Annual U.A.E. University Research Conference, pp 152–156

  7. Jyh-Shing, Roger Jang (1993) ANFIS: adaptive network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  8. Ushakumari S, Sankaran R, Nair PSC (2001) Adaptive neuro-fuzzy controller for improved performance of a permanent magnet brushless DC motor. In: The 10th IEEE international conference on fuzzy systems 1(2–5):493–496

  9. Rubaai A, Ofoli A (2004) Hardware implementation of an Adaptive network-based fuzzy controller for DC-DC converters. In: 39th IAS annual meeting conference record of the 2004 IEEE industry applications conference 4(3–7):2623–2629

  10. Vasudevan M, Arumugam R (2004) A robust torque control of induction motor for electric vehicle applications using ANFIS. In: IEEE region 10 conference TENCON 2004, vol 21–24 Nov. 2004, pp 17–20

  11. Miloudi A, Radadi EAA, Draou A, Miloud Y (2004) Simulation and modeling of a variable gain PI controller for speed control of a direct torque neuro fuzzy controlled induction machine drive. In: IEEE 35th annual power electronics specialists conference, PESC 04, vol 5, 20–25 June 2004, pp 3493–3498

  12. Tae-Chon Ahn, Yang-Won Kwon, Hyung-Soo Hwang, Pedrycz W (2001) Design of neuro-fuzzy controller on DSP for real-time control of induction motors. In: Joint 9th IFSA World congress and 20th NAFIPS International conference, 2001, vol. 5, 25–28 July 2001, pp 3038–3043

  13. Aware MV, Kothari AG, Choube SO (2000) Application of adaptive neuro-fuzzy controller (ANFIS) for voltage source inverter fed induction motor drive. In: The third international power electronics and motion control conference 2000 proceedings, PIEMC 2000, vol 2, 15–18 Aug 2000, pp 935–939

  14. Awadallah MA (2004) Switch fault diagnosis of PM brushless DC motor drive using adaptive fuzzy techniques. IEEE Trans Energy Convers 19(1):226–227

    Article  Google Scholar 

  15. Awadallah MA, Morcos MM (2004) ANFIS-based diagnosis and location of stator interturn faults in PM brushless DC motors. IEEE Trans Energy Conversion 19(4):795–796

    Article  Google Scholar 

  16. Jang-Hwan Park, Dong-Hwa Kim, Sung-Suk Kim, Dae-Jong Lee, Myung-Geun Chun (2004) C-ANFIS Based Fault diagnosis for voltage-fed PWM motor drive systems. In: IEEE annu meeting of the fuzzy information processing 2004, NAFIPS ‘04,Vol. 1, 27–30 June 2004, pp 379–383

  17. Engin SN, Kuvulmaz J, Ömurlü VE (2004) Fuzzy control of an ANFIS model representing a nonlinear liquid level control system. Neural Comput Appl J 13(3):202–210

    Article  Google Scholar 

  18. Fernández de Cañete J, Cordero T, Guijas D, Alarcon J (2000) An adaptive neuro-fuzzy approach to control a distillation column. Neural Comput Appl J 9(3):211–217

    Article  MATH  Google Scholar 

  19. Zeng J, Yu C, Qi Q, Yan Z, Ni Y, Zhang BL, Chen S, Wu FF (2004) A novel hysteresis current control for active power filter with constant frequency. Electr Power Syst Res 68(1):75–82

    Article  Google Scholar 

  20. El Habrouk M, Darwish MK, Pehta M (2000) Active power filters: a review. IEEE Proc Electr Power Appl 147(5):403–413

    Article  Google Scholar 

  21. Garduna-Ramirez R, Lee KY (2000) Wide range operation of a power unit via feedforward fuzzy control. IEEE Trans Energy Conversion 15(4):421–426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Tümay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayındır, K.Ç., Cuma, M.U. & Tümay, M. Hierarchical neuro-fuzzy current control for a shunt active power filter. Neural Comput & Applic 15, 223–238 (2006). https://doi.org/10.1007/s00521-005-0024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-005-0024-8

Keywords

Navigation