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This paper presents the recognition of speech commands using a modified neural-fuzzy network (NFN).  

By introducing the associative memory (the tuner NFN) into the classification process (the classifier 

NFN), the network parameters could be made adaptive to changing input data.  Then, the search space of 

the classification network could be enlarged by a single network.  To train the parameters of the modified 

neural-fuzzy network, an improved genetic algorithm is proposed.  As an application example, the 

proposed speech recognition approach is implemented in an eBook experimentally to illustrate the design 

and its merits. 

 

Keywords: Neural network, genetic algorithm, fuzzy logic, speech recognition and pattern recognition. 
 

 
I.  Introduction 

 Speech is a natural tool for communications with others.  However, when we want to 

communicate with a machine, it is quite difficult for the machine to recognize each of our spoken 

words.  In general, the solution to a speech recognition problem involves two steps: feature 

extraction and classification.   

 Feature extraction is a preprocessing step for speech recognition.  It is used to extract the 

specific voice features from the speech signals.  In a noise free environment, each word or 

phoneme has its corresponding formant frequencies.  However, when the environment is noisy, 

the speech signals are impure, and it is difficult to identify the corresponding features of speeches.  

The problem becomes more complicated when the speeches to be recognized have similar 

phonemes.  Thus, researchers worked on developing some distinctive feature extraction 

techniques.  The most commonly used approaches are filter-bank modeling and linear predictive 

coding (LPC) analysis [1].  Filter-bank modeling involves a bank of band-pass filters, which are 

used to model the characteristics of human ears.  Since, human ears are sensitive to lower-

frequency signals, the frequency scale of the band-pass filters are usually distributed in mel-scale 

or Bark-scale.  LPC analysis [1] approximates the current sampled speech as a linear combination 

of its past samples.  The time-domain speech signals are first windowed into frames, and the 
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autocorrelation coefficients between frames are obtained.  This approach mimics the human vocal 

tract. 

 Classification is the next step to identify input speeches based on the feature parameters.  

Speech signals classification can be done in either a pattern recognition approach or a statistical 

approach.  Neural networks (NNs) and hidden Markov model (HMM) are commonly employed 

in the pattern recognition approach and statistical approach respectively [1, 8].  NN is distinct in 

discrimination, and the classification can be done by measuring the closeness of the testing data 

to the training templates.  However, a large number of mathematical operations will be required if 

the number of speech samples is large and the duration of the speech is long.  HMMs are good at 

statistically modeling continuous speech signals.  The states in the HMM characterize the 

phonemes.  The speech is formulated into a sequence of states.  HMM is usually used for 

continuous speech recognition. 

 Recognizing Cantonese-digit speeches is a challenge task.  Cantonese is a nine-tonal and 

syllabic language [2].  Some Cantonese digits are difficult to discriminate when they are spoken 

in Cantonese, such as the digits ‘1’ and ‘7’.  Other human factors will introduce additional 

difficulties to achieving a good performance in Cantonese speech recognition.  Good algorithms 

for the speech feature extraction and classification are important. 

 Notebook Computers and Personal Digital Assistants (PDAs) are changing our reading 

habit.  Electronic Books (eBooks) have been winning their popularity as a kind of media that can 

offer rich contents and features within a small handheld device.  An eBook Reader should have 

no keyboard or mouse.  The main input device is a touch screen.  As many functions are 

implemented in a single eBook Reader, it is not convenient to access these functions through 

menus and hot keys alone.  By using a small microphone, a one-step commanding process using 

speeches is proposed for eBooks, so that when a user says a predefined word, the eBook can 

respond to the command represented by that word.  To realize speech recognition for 

commanding, a variable-parameter neural-fuzzy network (NFN) trained by an improved GA is 

proposed in this paper.  The proposed NFN consists of two NFNs such that one NFN is 

responsible for providing the parameters of another NFN.  In this way, the trained NFN will have 

variable-parameters.  Effectively, the associative memory for each recognized pattern will change 

according to the pattern itself.  On applying the proposed NFN, the performance of speech 

recognition is improved.  The proposed GA with improved genetic operations performs better as 
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compared with conventional GA in terms of the fitness value and convergence rate.  In this paper, 

the variable-parameter NFN is used to recognize ten Cantonese-digit speeches, and implemented 

in an eBook Reader practically. 

 This paper is organized as follows.  The variable-parameter neural-fuzzy network is 

presented in section II.  The improved genetic algorithm is presented in section III.  In order to 

test its searching performance, the improved genetic algorithm is applied in some benchmark test 

functions.  The speech feature extraction and the classification procedures will be presented in 

section IV.  The implementation and results of the recognizer will be reported in sections V and 

VI.  A conclusion will be drawn in section VII. 

 

II.  Variable-parameter Neural-fuzzy Network 

 A variable-parameter neural-fuzzy network is proposed to recognize speeches.  Referring 

to Fig. 1, the proposed NFN consists of two NFNs, namely a tuner NFN (associative memory) 

and a classifier NFN (processor).  In general, the parameters of traditional NFNs are fixed after 

the training.  In the proposed NFN, some parameters of the classifier NFN are adjusted by the 

tuner NFN (which have fixed parameters after training) to cope with the changing environment 

during the operation. 

 
Tuner

Neural-fuzzy
Network

Classifier
Neural-fuzzy

Network

x(t)

y(t)

 
Fig. 1.  Block diagram of the variable-parameter neural fuzzy network. 

 

 We use a fuzzy associative memory (FAM) [3-4, 18] type of rule base for both the tuner 

and classifier NFNs.  An FAM is formed by partitioning the universe of discourse of each fuzzy 

variable according to the level of fuzzy resolution chosen for the antecedents, thereby generating 

a grid of FAM elements.  The entry at each grid element in the FAM corresponds to a fuzzy 

premise.  An FAM is thus interpreted as a geometric or tabular representation of a fuzzy logic 

rule base.  The tuner or classifier NFN is shown in Fig. 2.   
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Fig. 2.  Three-layer neural fuzzy network. 

 

 

 We define the input and output variables as xi and yj respectively; where i = 1, 2, …, nin; 

nin is the number of input variables; j = 1, 2, …, nout; nout is the number of output variables.  The 

behavior of yj of the NFN is governed by mf fuzzy rules of the following format: 

Rg: IF )(1 tx  is ))(( 11 txAg  AND )(2 tx  is ))(( 22 txAg  AND … AND )(tx
inn  is ))(( txA

inin n
g
n  

            THEN yj(t) is gjw , g = 1, 2, …, mf ; t = 1, 2, …, u (1) 

where u denotes the number of input-output data pairs; mf is the number of rules; 
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= is a bell-shaped membership function; igx and igσ are the mean value and 

the standard deviation of the membership function respectively; gjw , j = 1, 2, …, nout, is the 

output singleton of the rule g.  The grade of the membership of each rule is defined as,  

[ ] ))(())(())((10)( 2211 txAtxAtxAt
inin n

g
n

gg
g ×××=∈ Kµ , g = 1, 2, …, mf (2) 
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The j-th output of the tuner NFN, yj(t), is defined as, 
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 It should be noted that for this partially connected neural-fuzzy network, the number of 

rules mf is equal to number of membership functions used for each input variables.  The 

structures of both the tuner and classifier NFNs are the same, and the outputs are governed by (3).  

The main difference is that the outputs of the tuner NFN are the values of the output singleton, 

gjλ , of the classifier NFN as shown in Fig. 3.  Hence, the task of the tuner NFN is to bring the 

information corresponding to the input patterns into the associative memory to help the 

classification process.  Referring to Fig. 3, the outputs of the turner NFN offer the values to the 

connection weights gjλ  of the classifier NFN according to the present input information.  The 

connection weights gjλ  are thus varying during the operation of the classification.  In practice, 

each input pattern will generate its own set of parameters for the operation of the classifier NFN.  

The output of the classifier NFN is shown as follows: 
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where mc is the number of rules of the classifier NFN. 
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Fig. 3.  The variable-parameter neural-fuzzy network 

 

III.  Improved Genetic Algorithm 

 Genetic algorithm (GA) is a directed random search technique [6] that is widely applied 

in optimization problems [6-8, 10].  This is especially useful for complex optimization problems 

where the number of parameters is large and the analytical global solutions are difficult to obtain.  
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GA has been applied in different areas such as fuzzy control [11-13, 17], path planning [14], 

greenhouse climate control [15], modeling and classification [16], etc. 

 Much effort has been spent to improve the performance of GA.  Different selection 

schemes and genetic operators have been proposed.  Selection schemes such as rank-based 

selection, steady-state election and tournament selection have been reported [21].  There are two 

kinds of genetic operations, namely crossover and mutation.  Apart from random mutation and 

one-point crossover, other crossover and mutation algorithms have been proposed.  For crossover, 

two-point crossover, multipoint crossover, arithmetic crossover and heuristic crossover have been 

reported [6, 20-22].  For mutation, boundary mutation, uniform mutation and non-uniform 

mutation can be found [6, 20-22]. 

 An improved GA is presented here for training the network parameters of the proposed 

network.  The conventional GA [6-7, 10] is modified by replacing the conventional crossover, 

mutation and reproduction operations with a set of operations that better suit the training of 

network parameters of the proposed network.  The improved GA process is shown in Fig. 4 and 

its details will be given as follows. 

 
 

 
Fig. 4.  Procedure of the improved GA. 

 
 

 

Procedure of the improved GA
begin 

τ→0  // τ: number of iteration 
initialize P(τ) //P(τ): population for iteration τ 
evaluate f(P(τ)) // f(P(τ)):fitness function 

while (not termination condition) do 
 begin 
 τ→τ+1 
 select 2 parents p1 and p2 from P(τ−1) 
 perform crossover operation with cp according to equations (10) - (16) 
 perform mutation operation with mp according to equations (17) - (22) 
  to generate the offspring os 
 // reproduce a new P(τ) 
   if random number < pa   // pa: probability of acceptance 

os replaces the chromosome with the smallest fitness value in the 
population 

  else if f(os) > smallest fitness value in the P(τ−1) 
        os replaces the chromosome with the smallest fitness value 
  end 
 evaluate f(P(τ)) 
 end  
end 
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A.  Initial Population 

 The initial population is a potential solution set P.  The first set of population is usually 

generated randomly. 

{ }sizepopP _21  , , , ppp L=  (5) 

[ ]
varsnoj iiiii pppp

_21
LL=p ,  

i = 1, 2, …, pop_size; j = 1, 2, …, no_vars (6) 
j

i
j parappara

j maxmin ≤≤  (7) 

where pop_size denotes the population size; no_vars denotes the number of variables to be tuned;  

jip , i = 1, 2, …, pop_size; j = 1, 2, …, no_vars, are the parameters to be tuned; jparamin  and 

jparamax  are the minimum and maximum values of the parameter 
jip  respectively for all i.  It can 

be seen from (5) to (7) that the potential solution set P contains some candidate solutions ip  

(chromosomes).  The chromosome ip  contains some variables 
jip  (genes). 

 

B.  Evaluation 

 Each chromosome in the population will be evaluated by a defined fitness function.  The 

better chromosomes will return higher values in this process.  The fitness function to evaluate a 

chromosome in the population can be written as, 

)( iffitness p=  (8) 
The form of the fitness function depends on the application. 

 

C.  Selection 

 The selection of a new population is done with respect to a probability distribution based 

on fitness values.  The selection method of spinning the roulette wheel [6] is used.  It is believed 

that high potential parents will produce better offspring (survival of the best ones).  The 

chromosome having a higher fitness value should therefore have a higher chance to be selected.  

The selection can be done by assigning a probability qi to the chromosome ip : 

∑
=

= sizepop

k
k

i
i

f

fq _

1

)(

)(

p

p , i = 1, 2, …, pop_size (9) 
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The cumulative probability iq̂  for the chromosome ip  is defined as, 

∑
=

=
i

k
ki qq

1

ˆ , i = 1, 2, …, pop_size (10) 

The selection process starts by randomly generating a nonzero floating-point number, [ ]10∈d .  

Then, the chromosome ip  is chosen if ii qdq ˆˆ 1 ≤<−  ( 0ˆ0 =q ).  It can be observed from this 

selection process that a chromosome having a larger f( ip ) will have a higher chance to be 

selected.  Consequently, the best chromosomes will get more offspring, the average will stay and 

the worst will die off.   

 

D.  Genetic Operations 

 The genetic operations are to generate some new chromosomes (offspring) from their 

parents after the selection process.  They include the crossover and the mutation operations. 

 

Crossover 

 The crossover operation is mainly for exchanging information between two parents ( 1p  

and 2p ) that are obtained by the selection operation.  In the crossover operation, a probability of 

crossover cp  will be adopted, which gives the expected number sizepoppc _× of chromosomes 

that undergo the crossover operation in a generation.  First, four chromosomes will be generated 

according to the following equations, 

[ ]
2

211
_

1
2

1
1

1 ppos +
== varsnoc ososos L  (11) 

[ ] ( )wwososos varsnoc 21max
2

_
2
2

2
1

2 ,max)1( pppos +−== L  (12) 

[ ] ( )wwososos varsnoc 21min
3

_
3
2

3
1

3 ,min)1( pppos +−== L  (13) 

[ ]
2

)()1)(( 21minmax4
_

4
2

4
1

4 wwososos varsnoc
ppppos ++−+

== L  (14) 

[ ]varsnoparaparapara _
max

2
max

1
maxmax L=p  (15) 

[ ]varsnoparaparapara _
min

2
min

1
minmin L=p  (16) 

where [ ]10∈w  denotes the weight to be determined by users, ( )21 ,max pp  denotes the vector 

with each element obtained by taking the maximum among the corresponding element of p1 and 

p2.  For instance, [ ] [ ]( ) [ ]332132,321max =− .  Similarly, ( )21 ,min pp  gives a vector 
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by taking the minimum value.  For instance, [ ] [ ]( ) [ ]121132,321min −=− .  Among 
1
cos  to 4

cos , the one with the largest fitness value is used as the offspring of the crossover 

operation.  The offspring is defined as, 

[ ] osi

csnoososos osos =≡ var_21 L  (17) 

ios denotes the index i which gives a maximum value of ( )i
cf os , i = 1, 2, ,3 ,4. 

 If the crossover operation can provide a good offspring, a higher fitness value can be 

reached in less iteration.  In general, two-point crossover, multipoint crossover, arithmetic 

crossover or heuristic crossover can be employed to realize the crossover operation [6, 20-22].  

The offspring generated by these methods, however, may not be better than that from our 

approach.  As seen from (11) to (14), the potential offspring after the crossover operation spreads 

over the domain.  While (1`) and (14) result in searching around the centre region of the domain 

(a value of w near to 1 in (14) can move 4
cos  to be near 

2
21 pp + ), (12) and (13) move the 

potential offspring to be near the domain boundary (a small value of w in (12) and (13) can move 
2
cos  and 3

cos  to be near pmax and pmin respectively). 

 

Mutation 

 The offspring (17) will then undergo the mutation operation.  The mutation operation is to 

change the genes of the chromosomes.  Consequently, the features of the chromosomes inherited 

from their parents can be changed.  In general, various methods like boundary mutation, uniform 

mutation or non-uniform mutation [6, 20-22] can be employed to realize the mutation operation.  

In this paper, a different process of mutation is proposed.  The details are as follows.  Every gene 

of the offspring os of (17) will have a chance to mutate governed by a probability of mutation, 

[ ]10∈mp , which is defined by the user.  This probability gives an expected number 

( ×mp no_vars) of genes that undergo the mutation.  For each gene, a random number between 0 

and 1 will be generated such that if it is less than or equal to mp , the operation of mutation will 

take place on that gene and updated instantly.  The gene of the offspring of (17) is then mutated 

by: 
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[ ]000 LL L
s

L
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o∆=∆ so  (22) 
[ ]10∈r  is a randomly generated number; ( ]10∈

kmw  is a weight governing the magnitudes of 

U
sk

o∆  and L
sk

o∆ .  The value of weight 
kmw is varied by the value of 

T
τ , where τ is the iteration 

number and T is the total number of iteration.  In order to perform a local search, the value of 

weight 
kmw  should become small as 

T
τ  increases in order to reduce the significance of the 

mutation.  Based on this idea, a monotonic decreasing function governing 
kmw  is proposed as 

follows, 

01
1

≥⎟
⎠
⎞

⎜
⎝
⎛ −=

ττ w

fm T
ww

k
 (23) 

 

where [ ]10∈fw  and wτ > 0 determine the initial value and the decay rate respectively.  Their 

values are chosen by the user.  For a large value of wf, it can be seen from (19) and (20) that 

( )
kk

ospararo kU
s

−≈∆ max  and ( )kL
s paraosro

kk min−≈∆  initially as 11
1

≈⎟
⎠
⎞

⎜
⎝
⎛ −

ττ w

T
 which ensure a 

large search space.  When the value of 01
1

≈⎟
⎠
⎞

⎜
⎝
⎛ −

ττ w

T
, the values of U

sk
o∆  and L

sk
o∆  are small to 

ensure a small search space for fine tuning. 

 

E.  Reproduction 

 The new offspring will be evaluated using the fitness function of (8).  This new offspring 

will replace the chromosome with the smallest fitness value among the population if a randomly 

generated number between 0 and 1 is smaller than [ ]10∈ap , which is the probability of 
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acceptance defined by the user.  Otherwise, the new offspring will replace the chromosome with 

the smallest fitness value if the fitness value of the offspring is greater than the fitness value of 

that chromosome in the population.  pa is effectively the probability of accepting a bad offspring 

in order to reduce the chance of converging to a local optimum.  Hence, the chance of reaching 

the global optimum is kept. 

 After the operation of selection, crossover, mutation and reproduction, a new population 

is generated.  This new population will repeat the same process.  Such an iterative process can be 

terminated when it meets a defined condition, e.g. a defined number of iteration has been reached. 

 

F.  Benchmark Test Functions 

 Some benchmark test functions [8-9, 19] are used to examine the applicability and 

efficiency of the improved GA.  Six test functions, )(xif , i = 1, 2, 3, 4, 5, 6 will be used, where 

[ ]T21 nxxx L=x ; n is an integer denoting the dimension of the vector x.  The six test 

functions are defined as follows. 

∑
=

=
n

i
ixf

1

2
1 )(x , 12.512.5 ≤≤− ix  (24) 

where n = 3 and the minimum point is at f1(0, 0, 0) = 0. 

( ) ( )( )∑
−

=
+ −+−=

1

1

222
12 1100)(

n

i
iii xxxf x , 048.2048.2 ≤≤− ix  (25) 

where n = 2 and the minimum point is at f2(0, 0) = 0. 

∑
=

+=
n

i
ixfloornf

1
3 )(6)(x , 12.512.5 ≤≤− ix  (26) 

where n = 5 and the minimum point is at f3([5.12, 5], …, [5.12, 5]) = 0.  The floor function, 

floor(⋅), is to round down the argument to the nearest integer. 

∑
=

+=
n

i
i Gaussixf

1

4
4 )1 ,0()(x , 28.128.1 ≤≤− ix  (27) 

where n = 3 and the minimum point is at f4(0, 0, 0) = 0.  Gauss(0, 1) is a function to generate 

uniformly a floating-point number between 0 and 1 inclusively. 

( )
∑

∑=

=

−+
+=

25

1
2

1

6
5

11)(
j

i
iji axjk

f x , 356.65356.65 ≤≤− ix  (28) 

where 
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k = 500 and the maximum point is at f5(32, 32) ≈ 1. 

( )[ ]∑
=

+−=
n

i
ii xxf

1

2
6 102cos10)( πx , 12.512.5 ≤≤− ix  (29) 

where n = 3 and the minimum point is at f6(0, 0, 0) = 0. 

 

It should be noted that the minimum values of all functions in the defined domain are zero except 

for )(5 xf .  The fitness functions for 1f  to 4f  and 6f are defined as, 

)(1
1

xif
fitness

+
= , i = 1, 2, 3, 4, 6. (30) 

and the fitness function for 5f  is defined as, 

)(5 xffitness =  (31) 
 The proposed GA goes through these 6 test functions.  The results are compared with 

those obtained by the standard GA with arithmetic crossover and non-uniform mutation [6, 20-

22].  The control parameters of the proposed GA and the standard GA are tabulated in Table I.  

These control parameters are selected by trial and error through experiments for good 

performance.  The population size is 50.  The initial values of x in the population for a test 

function are set to be the same for both the proposed and the standard GAs.  The number of 

iteration for each test function is listed in Table II.  For test functions 1 to 6, the initial values 

are [ ]111 , [ ]5.05.0 , [ ]11 L , [ ]5.05.0 L , [ ]1010 L  and [ ]111  respectively.  

The results of the average fitness values over 50 times of simulations based on the proposed and 

standard GAs are shown in Fig. 5 and tabulated in Table II.  Generally, it can be seen that the 

performance of the proposed GA is better than that of the standard GA in terms of the 

convergences rate and the fitness value. 
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Fig. 5. The average fitness value using the improved GA (solid line) and the standard GA (dotted 

line) for different test functions.  
 
IV.  Speech Command Recognition in an eBook 

 The purpose of speech recognition in an eBook reader is to provide a voice command 

environment for the users.  A block diagram of the speech recognition system is shown in Fig. 6.   
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Fig. 6.  Block diagram of the Cantonese-digit speech recognition system. 

 

To command the eBook, speech signals are recorded from the microphone of the eBook.  

They are in mono, 8-bit PCM format sampled at 11kHz.  Then the speech signal in time-domain 

s(τ) is windowed by 128-sample Hamming windows wh(⋅) with 50% overlap to form speech 

frames; where 

otherwise
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The windowed speech signals will be transformed into frequency spectrums using fast Fourier 

transform (FFT).  The real part of the frequency components at the n-th speech frame is defined 

as follows. 

 

( ) ( ) ( )[ ] [ ]( ){ },)()(FFT12710 ττ nnnnn swhReSfSfSf == LSf   0≤ τ ≤ 127 (33) 

 

where Re{⋅} denotes the real part of the argument vector, and sn(τ) is the τ-th element of the n-th 

speech frame. 

A uniform filter-bank is then applied to process the speech frames in order to retrieve the 

feature coefficients (one filter gives one coefficient.)  The process done by the uniform filter-

bank can be described as follows.  

 

( )
α

ρ
α

β
β

∑
=

−+
= 1

10 1log20
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n

n

lSf
c ,  β = 1, 2, …, no_filter (34) 
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where β
nc denotes the mean power of a speech frame generated by the n-th band-pass filter for the 

n-th frame, no_filter denotes the number of band-pass filter, α denotes the number of the 

frequency components entering the band-pass filter, floor(⋅) denotes the floor function which is 

used to round-up a floating point number; Dn is a vector formed by magnitude differences 

between two consecutive band-pass filter outputs of the n-th speech frame.  The mean feature 

coefficient of all the speech frames will be calculated and they will be normalized as the neural 

network inputs, which perform the template matching classification process.  The training of the 

proposed NFN is to maximize the following fitness value: 

err
fitness

+
=

1
1  (38) 
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where yd(t) denotes the desired output vector; y(t) denotes the network output vector, num 

denotes the dimension of the output vector (the number of classes to be recognized), num_pat 

denotes the number of training patterns.  The desired output vector of the network is defined as 

follows. 

[ ]numd aaaa ,...,,, 321=y  (40) 
where ai, i = 1, 2, …, num, describes the target class of the system.  Only the value of ai for a 

particular class i is equal to 1, and the rest elements of dy  are all zero.  The improved GA will be 

employed to train the modified NFN.  During the recognition, the position of the element of ( )ty  

that has the largest value indicates the possible class of the input pattern. 

 

V.  Application and Results 

 The speech recognition approach as shown in Fig. 6 is implemented in a practical eBook 

reader.  The Cantonese speech signals are sampled at 11kHz, 8-bit mono.  The speech samples 

are recorded from a male speaker and the amplitude of each sample is normalized to lie between 
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–1 and 1.  50 training patterns and 20 testing patterns for each digit are collected.  The 

Cantonese-digit speeches are ‘0’ to ‘9’ (10 classes).  We use the method of the last section to 

obtain 20 feature parameters representing each digit.  Examples of the feature parameters of the 

digits ‘0’ to ‘9’ are shown in Fig. 7.   

 The speech feature coefficients of the ten Cantonese-digit speeches are processed by the 

variable-parameter NFN with 20 inputs and 10 outputs.  The improved GA is employed to train 

the modified NFN based on the training patterns in order to maximize the following fitness 

function. 

err
fitness

+
=

1
1  (41) 
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The number of training patterns for the modified NFN is 500.  The first 50 training patterns are 

the feature parameters of the Cantonese digit ‘1’.  Thus, the first 50 vectors of yd are [1 0 0 0 0 0 

0 0 0 0].  Similarly, the next 50 training patterns are the feature parameters of the Cantonese digit 

‘2’, and the corresponding 50 vectors of yd are [0 1 0 0 0 0 0 0 0 0], and so on.  The number of 

membership functions used for the tuner and classifier NFN are (3,5), (4,5), (5,5), (5,4) and (5,3) 

where the first number in the bracket is the number of membership functions used by the tuner 

NFN, and the second number in the bracket is the number of membership functions used by the 

classifier NFN.  The learning process is carried out by a personal computer with a P4 1.4GHz 

CPU and 256 MB RAM.  The number of iteration for training is 50000; w = 0.5, pm = 0.01; wf = 

0.5, wτ = 5, pa = 0.1 for all cases.  After training, 200 testing patterns (10 Cantonese-digits × 20) 

are used to test the performance of the proposed NFN.  The fitness values and the errors are the 

measures of the network performance.  The training fitness values are tabulated in Table III.  The 

testing fitness values and the testing errors for each spoken digit are tabulated in Tables IV and V 

respectively.  From Table V, it can be seen that the best result of 98.5% accuracy is obtained 

when the numbers of membership functions in the tuner NFN and the classifier NFN are 5 and 5 

respectively. 
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(c). Digit ‘3’   (d). Digit ‘4’ 
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(e). Digit ‘5’   (f). Digit ‘6’  
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Fig. 7.  Examples of the first speech feature pattern (20 feature parameters) for the digits ‘0’-‘9’. 
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VI.  Comparison 

 For comparison, a traditional NFN with different number of membership functions trained 

by the genetic algorithm with arithmetic crossover and non-uniform mutation [10] is also used to 

do the recognition.  The number of iteration is 50000.  The shape parameter, probability of 

crossover and probability of mutation of the GA [10] are chosen to be 1, 0.8 and 0.05 

respectively.  The results are summarized in Tables VI to VIII.  It can be seen that the 

performance of the proposed NFN is generally better than that of the traditional NFN.  When the 

same number of parameters (650) is used, the proposed NFN provides a better result.  The 

accuracy of recognition for the testing patterns is 98.5% for the proposed method and 97% for the 

traditional method.  It is interesting to see that the recognition error of the proposed NFN 

increases when the number of membership functions in the tuner NFN is bigger than that of the 

classifier NFN.  Referring to Table IV and Table V, the recognition accuracy drops from 89% of 

the network working with a (3, 5) membership function combination to 79% of the network 

working with a (5, 3) membership function combination.  It indicates that the number of 

membership functions in the classifier NFN should be large in the classification process.  It is 

because a larger classifier NFN requires a larger number of associative memory outputs.  In this 

example, the number of parameters supplied by the tuner NFN for a (3, 5) membership function 

combination is 50, while only 30 parameters can be supplied by the tuner NFN for a (5, 3) 

membership functions combination.  In other words, if the classifier NFN is larger, more 

information can be acquired from the tuner NFN after the network has been trained. 

 
 
 
 

Test 
function w pc pm wf wτ pa 

)(1 xf  0.1 0.8 0.3 0.001 0.001 0.1 
)(2 xf  0.5 0.8 0.5 0.01 10 0.1 
)(3 xf  0.1 0.8 0.8 1 1000 0.1 
)(4 xf  0.5 0.8 0.35 0.001 10 0.1 
)(5 xf  0.5 0.8 0.8 0.1 0.1 0.1 
)(6 xf  0.01 0.8 0.1 0.01 0.01 0.1 

(a) 
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Test function b, (Shape parameter 
of mutation) 

pc (Probability of 
crossover) 

pm (Probability of 
mutation) 

)(1 xf  5 0.7 0.9 
)(2 xf  1 0.8 0.8 
)(3 xf  0.1 0.7 0.6 
)(4 xf  1 0.8 0.35 
)(5 xf  0.1 0.8 0.5 
)(6 xf  0.9 0.7 0.4 

(b) 
Table I.  Control parameters of GAs for the benchmark test functions: (a) improved GA, (b) 

standard GA with arithmetic crossover and non-uniform mutation. 
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Test function Average fitness value 
from proposed GA 

Average fitness value 
from standard GA Number of iteration

)(1 xf  1.0000 1.0000 200 
)(2 xf  1.0000 0.9997 5000 
)(3 xf  0.9996 0.9924 500 
)(4 xf  1.0000 1.0000 200 
)(5 xf  1.0000 1.0000 250 
)(6 xf  1.0000 0.0986 1000 

Table II.  Average fitness values obtained from the proposed GA and the traditional GA for the 

benchmark test functions. 

 
 
Membership 

functions 
combination 

(3,5) (4,5) (5,5) (5,4) (5,3) 

Fitness value 0.9968 0.9963 0.9995 0.9969 0.9940 
Number of 
parameters 470 560 650 560 470 

Table III.  Fitness values under different combinations of numbers of membership functions in 

the variable-parameter NFN (50 training patterns for each digit). 

 
Membership 

functions 
combination 

(3,5) (4,5) (5,5) (5,4) (5,3) 

Fitness value 0.9818 0.9855 0.9952 0.9854 0.9675 
Table IV.  Fitness values under different combinations of numbers of membership functions in 

the variable-parameter NFN (20 testing patterns for each digit). 
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 Membership functions combination 
Digit # (3,5) (4,5) (5,5) (5,4) (5,3) 

1 5 5 0 13 4 
2 1 1 1 1 3 
3 5 3 0 1 1 
4 2 1 1 0 3 
5 0 0 0 0 0 
6 2 1 0 0 1 
7 0 2 0 3 15 
8 5 3 0 0 13 
9 1 1 1 0 1 
0 1 0 0 1 1 

Table V.  Number of recognition errors for the Cantonese digits ‘0’-‘9’ using the proposed NFN 

(20 testing patterns for each digit). 

 
Number of 

membership 
functions 

9 10 11 12 13 

Fitness value 0.9891 0.9930 0.9655 0.9957 0.9962 
No. of 

parameters 450 500 550 600 650 

Table VI.  Fitness values of the traditional neural-fuzzy network trained by the genetic algorithm 

with arithmetic crossover and non-uniform mutation (50 training patterns for each digit). 

 

Number of 
membership 

functions 
9 10 11 12 13 

Fitness value 0.9626 0.9764 0.9895 0.9890 0.9932 
Table VII.  Fitness values of the traditional neural-fuzzy network trained by the genetic algorithm 

with arithmetic crossover and non-uniform mutation (20 testing patterns for each digit). 
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 Number of membership functions 

Digit # 9 10 11 12 13 
1 9 5 10 1 1 
2 2 2 2 1 1 
3 3 2 2 1 1 
4 1 3 1 1 0 
5 0 0 2 1 0 
6 2 1 0 0 2 
7 13 4 2 4 0 
8 14 4 0 0 0 
9 1 0 1 1 1 

10 2 1 2 0 0 
Table VIII.  Number of recognition errors for the Cantonese-digit speeches ‘0’-‘9’ using the 

traditional neural-fuzzy network trained by the genetic algorithm with arithmetic crossover and 

non-uniform mutation (20 testing patterns for each digit). 

 
VII.  Conclusion 

 A variable-parameter neural-fuzzy network has been proposed.  The associative memory 

technique has been successfully implemented in the variable-parameter neural-fuzzy network, 

making its parameters to change according to the changing input data.  The variable-parameter 

neural-fuzzy network has been applied to recognize Cantonese-command speeches. It is found 

that the performance in terms of recognition accuracy has been improved from 97% to 98.5% as 

compared with the traditional neural-fuzzy network that uses the same number of parameters.  

The search space for the neural-fuzzy network has been widened thanks to the specific structure 

of the proposed NFN.  An improved genetic algorithm has been proposed to train the parameters 

of the proposed neural-fuzzy network.  Six benchmark tests have been introduced to show the 

merits of the improved GA.  The variable-parameter neural-fuzzy network has been implemented 

in an eBook reader practically. 
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