Skip to main content
Log in

Neurodynamic programming: a case study of the traveling salesman problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The paper focuses on the study of solving the large-scale traveling salesman problem (TSP) based on neurodynamic programming. From this perspective, two methods, temporal difference learning and approximate Sarsa, are presented in detail. In essence, both of them try to learn an appropriate evaluation function on the basis of a finite amount of experience. To evaluate their performances, some computational experiments on both the Euclidean and asymmetric TSP instances are conducted. In contrast with the large size of the state space, only a few training sets have been used to obtain the initial results. Hence, the results are acceptable and encouraging in comparisons with some classical algorithms, and further study of this kind of methods, as well as applications in combinatorial optimization problems, is worth investigating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aras N, Oommen BJ, Altinel IK (1999) The kohonen network incorporating explicit statistics and its application to the traveling salesman problem. Neural Netw 12(9):1273–1284

    Article  Google Scholar 

  2. Bentley J (1992) Fast algorithms for geometric traveling salesman problems. ORSA J Comput 4(4):387–411

    MATH  MathSciNet  Google Scholar 

  3. Bersini H, Dorigo M, Langerman S, Seront G, Gambardella L (1996) Results of the first international contest on evolutionary optimization (1st iceo). In: Evolutionary computation. Proceedings of IEEE international conference on. Springer-Verlag, Nagoya, pp 611–615

  4. Burke LI, Damany P (1992) The guilty net for the traveling salesman problem. Comput Oper Res 19(3–4):255–265

    Article  MATH  Google Scholar 

  5. Christofides N (1976) Worst-case analysis of a new heuristic for the travelling salesman problem. Tech Rep 388. Carnegie-Melon University, Pittsburgh

  6. Christofides N, Eilon S (1972) Algorithms for large-scale traveling salesman problems. Oper Res Quart 23(4):511–518

    Article  MATH  MathSciNet  Google Scholar 

  7. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568–581

    Google Scholar 

  8. Crites R, Barto A (1996) Improving elevator performance using reinforcement learning. Adv Neural Inf Process Syst 8:1017–1023

    Google Scholar 

  9. Croes GA (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812

    MathSciNet  Google Scholar 

  10. Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the travelingsalesman problem. Evolut Comput IEEE Trans 1(1):53–66

    Article  Google Scholar 

  11. Durbin R, Willshaw D (1987) An analogue approach to the traveling salesman problem using an elastic net method. Nature 326(6114):689–691

    Article  Google Scholar 

  12. Fiechter CN (1994) A parallel tabu search algorithm for large traveling salesman problems. Discrete Appl Math 51(3):243–267

    Article  MATH  MathSciNet  Google Scholar 

  13. Freisleben B, Merz P (1996) A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. In: International conference on evolutionary computation, pp 616–621

  14. Gambardella LM, Dorigo M (1995) Ant-q: a reinforcement learning approach to the traveling salesman problem. In: International conference on machine learning, pp 252–260

  15. Gendreau M, Hertz A, Laporte G (1992) New insertion and postoptimization procedures for the traveling salesman problem. Oper Res 40(6):1086–1094

    MATH  MathSciNet  Google Scholar 

  16. Golden BL, Stewart WR et al (1985) Empirical analysis of heuristics. In: Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB (eds) The traveling salesman problem. A guided tour of combinatorial optimization. Wiley, Chichester, pp 207–249

    Google Scholar 

  17. Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, PTR Upper Saddle River

    Google Scholar 

  18. Homaifar A, Guan S, Liepins GE (1993) A new approach on the traveling salesman problem by genetic algorithms. In: Proceedings of the 5th international conference on genetic algorithms. Morgan Kaufmann Publishers Inc., San Francisco, pp 460–466

  19. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52(3):141–152

    MATH  MathSciNet  Google Scholar 

  20. Jayalakshmi G, Sathiamoorthy S, Rajaram R (2001) An hybrid genetic algorithm—a new approach to solve traveling salesman problem. Int J Comput Eng Sci 2(2):339–355

    Article  Google Scholar 

  21. Johnson DS (1990) Local optimization and the traveling salesman problem. In: Goos G, Hartmanis J (eds) ICALP ’90: proceedings of the 17th international colloquium on automata, languages and programming. Springer-Verlag, London, pp 446–461

  22. Johnson DS, McGeoch LA (1997) The travelling salesman: a case study in local optimization. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, New York, pp 215–310

    Google Scholar 

  23. Kaelbling LP, Littman ML, Moore AP (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285

    Google Scholar 

  24. Kanellakis P, Papadimitriou C (1980) Local Search for the asymmetric traveling salesman problem. Oper Res 28(5):1086–1099

    MATH  MathSciNet  Google Scholar 

  25. Laarhoven P, Aarts E (1987) Simulated annealing: theory and applications. Kluwer, Norwell

    MATH  Google Scholar 

  26. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44(10):2245–2269

    MATH  Google Scholar 

  27. Lin S, Kernighan BW (1973) an effective heuristic algorithm for the traveling-salesman problem. Oper Res 21(2):498-516

    Article  MATH  MathSciNet  Google Scholar 

  28. Miagkikh VV, Punch WF (1999) An approach to solving combinatorial optimization problems using a population of reinforcement learning agents. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of the genetic and evolutionary computation conference, vol 2. Morgan Kaufmann, Orlando, pp 1358–1365

  29. Padberg M, Rinaldi G (1990) Facet identification for the symmetric traveling salesman polytope. Math Programm 47(1):219–257

    Article  MATH  Google Scholar 

  30. Potvin J (1993) The traveling salesman problem: a neural network perspective. ORSA J Comput 5:328–348

    MATH  Google Scholar 

  31. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384

    MATH  Google Scholar 

  32. Singh S, Bertsekas D (1997) Reinforcement learning for dynamic channel allocation in cellular telephone systems. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. The MIT Press, Cambridge, pp 974–980

  33. Sutton R (1988) Learning to predict by the methods of temporal differences. Mach Learn 3(1):9–44

    Google Scholar 

  34. Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  35. Tesauro G (1995) Temporal difference learning and TD-Gammon. Commun ACM 38(3):58–68

    Article  Google Scholar 

  36. Watkins C, Dayan P (1992) Technical note: Q-Learning. Mach Learn 8(3):279–292

    MATH  Google Scholar 

  37. Willshaw D, von der Malsburg C (1979) A marker induction mechanism for the establishment of ordered neural mappings: its application to the retinotectal problem. Philos Trans R Soc Lond B Biol Sci 287(1021):203–243

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported in part by the National Natural Science Foundation of China (Grants 60205004, 50475179, 60528002, 60621001, and 60635010), the National Basic Research Program (973) of China under Grant 2002CB312200, and the Hi-Tech R&D Program (863) of China (Grant 2006AA04Z258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Guang Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Yang, T., Hou, ZG. et al. Neurodynamic programming: a case study of the traveling salesman problem. Neural Comput & Applic 17, 347–355 (2008). https://doi.org/10.1007/s00521-007-0127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-007-0127-5

Keywords

Navigation