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Abstract

The function approximation problem has been tackled many times in
the literature by using Radial Basis Function Neural Networks (RBFNNs).
In the design of these neural networks there are several stages where, the
most critical stage is the initialization of the centers of each RBF since
the rest of the steps to design the RBFNN strongly depend on it. The
Improved Clustering for Function Approximation (ICFA) algorithm was
recently introduced and proved successful for the function approximation
problem. In the ICFA algorithm a fuzzy partition of the input data is per-
formed but, a fuzzy partition can behave inadequately in noise conditions.
Possibilistic and mixed approaches, combining fuzzy and possibilistic par-
titions, were developed in order to improve the performance of a fuzzy
partition. In this paper, a study of the influence of replacing the fuzzy
partition used in the ICFA algorithm with the possibilistic and the fuzzy-
possibilistic partitions will be done. A comparative analysis of each kind
of partition will be performed in order to see if the possibilistic approach
can improve the performance of the ICFA algorithm both in normal and
in noise conditions. The results will show how the employment of a mixed
approach combining fuzzy and possibilistic approach can lead to improve
the results when designing RBFNNs.

1 Introduction

The function approximation problem can be formulated as, given a set of obser-
vations {(~xk; yk), k = 1, ..., n} with yk = F (~xk) ∈ IR and ~xk ∈ IRd, it is desired
to obtain a function F so yk = F (~xk) ∈ IR with ~xk ∈ IRd. To solve this prob-
lem, Radial Basis Function Neural Networks (RBFNN) have been used because
of their capability as universal approximators [15, 14].

One of the methodologies to design an RBFNN is performed by following
a sequence of stages: 1) initialization of the centers, 2) initialization of the
radii, and 3) computation of the weights. The use of a clustering algorithm
is a common solution for a first initialization of the centers [9, 21]. These
clustering algorithms were designed for classification problems [8] instead of for
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the function approximation problem so the results they provide can be improved
significantly. The main elements that cause that clustering algorithms do not
perform well for the functional approximation problem are:

• Clustering algorithms try to classify the set of input data assigning a set
of predefined labels, however, in the function approximation problem, the
output of the function belongs to a continuous interval.

• Clustering algorithms do not use the information provided by the function
output ignoring the variability of the function.

In the function approximation problem, the information provided by the out-
put of the function to be approximated is needed to obtain a correct placement
of the centers. Centers must be placed in the areas where the function is more
variable because more RBFs will be needed to be able to model the variations
of the function, meanwhile, in the areas where the function is not that variable,
less RBFs will be needed to approximate the function.

It is necessary to design a clustering algorithm oriented to the function ap-
proximation problem. The Clustering for Function Approximation [6] (CFA)
and its Improved version (ICFA) [7] algorithms were designed specifically for
this task. These two algorithms defined a new approach to consider the out-
put of the function as a relevant information to place the centers. The ICFA
algorithm was developed to improve several flaws existing in the CFA algo-
rithm. Within the modifications of the original algorithm, a fuzzy partition
of the data was introduced. There are several kinds of possibilistic partitions
that can improve the performance of the fuzzy partition as it has been shown
in [20, 10, 12]. In this paper, the fuzzy partition of the ICFA algorithm will
be replaced by the several possibilistic approaches found in the literature and a
comparative analysis will be made for each of them.

2 RBFNN Description

An RBFNN F with fixed structure to approximate an unknown function F with
n inputs and one output starting from a set of values {(~xk; yk); k = 1, ..., n} with
yk = F (~xk) ∈ IR and ~xk ∈ IRd, has a set of parameters that have to be optimized:
the centers, the radii and the weights of the RBFs. An RBFNN is defined as:

F (~xk; C, R, Ω) =
m∑

i=1

φ(~xk;~ci, ri) · Ωi (1)

where C = {~c1, ...,~cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(~xk;~c i, ri) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the inter-
polation capabilities [17]. The procedure to design an RBFNN for functional
approximation problem is shown below:
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1. Initialize RBF centers C

2. Initialize the radius R for each RBF

3. Calculate the optimum value for the weights Ω

4. Apply local search algorithm to adjust centers and radii

The initialization of the centers is very important because, if an incorrect
initialization of the centers is performed, the approximation error could be in-
creased. The reason for this is because, during the execution of a local search
algorithm to make a fine tunning of the centers and the radii, there is a pos-
sibility of falling into a bad local minimum. The CFA algorithm was designed
for this initialization task, providing very good results in comparison with other
clustering techniques and later, the ICFA algorithm was presented as an im-
proved version, overcoming the results of its predecessor.

3 Possibilistic approaches to clustering

In this section, all the main clustering algorithms that use a possibilistic ap-
proach will be presented following a chronological order, starting from the old-
est algorithm. All these algorithms define a distortion function to be minimized
and the minimum is reached iteratively by an alternating optimization mecha-
nism. Let Up = [up

ik] be the matrix containing all the possibilistic memberships,
Uf = [uf

ik] the matrix containing the fuzzy memberships, and C = [~ci] the ma-
trix containing the center positions for i = 1...m and k = 1...n. The elements
that are modified on each iteration are: the possibilistic membership, the cen-
ters, and, in case the algorithm has a mixed approach, the fuzzy membership
will also be updated. Each algorithm proposes their respective equations, but
they all follow the same scheme:

Do
Calculate the new Up

i

If it is a mixed approach, calculate Uf
i

Calculate the new Ci

i=i+1
While(||Ci−1-Ci|| <threshold)

In all of the algorithms presented below there is an optional part that re-
iterates the main part of the algorithm in order to improve the shape of the
membership functions. The initialization of the centers does not require the
membership functions to keep their interpretability so this optional part is not
executed in any of the algorithms.
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3.1 Possiblistic C-means (PCM)

This algorithm was proposed in [10], and tries to solve the problem of the
presence of outliers that can affect the fuzzy partition deforming the shape of
the clusters.

In the Fuzzy C-means [2] (FCM) algorithm, the distortion function to be
minimized is defined as:

Jhf
(Uf , C; X) =

n∑

k=1

m∑

i=1

(uf
ik)hf D2

ik (2)

where Dik is the inner product induced norm, hf is a weighing exponent (usually
equal to 2), and uf

ik is restricted to the following constraints:

• ∑
uf

ik = 1 ∀k = 1...n

• 0 <
∑

uf
ik < n ∀i = 1...m.

The constraint
m∑

i=1

uf
ik = 1 can present a problem when there is an outlier

that does not belong to any cluster. For example, if there is a noisy point in
the middle of two centers that determine two clusters, the membership value
could be 0.5 and 0.5 respectively, when it is obvious that the point should not
belong to any of the clusters [10]. The idea of possibilistic clustering comes
from relaxing the previous constraint that forces all centers to share the input
vectors. In the previous example, each cluster could assign a possibility value
of membership of 0.25 or even less to the noisy point, meaning that the outlier
input does not belong to any cluster. If this constraint is relaxed, the problem of
finding the trivial solution of assigning zero to all the membership values arises.
To avoid this situation, it is necessary to add a new addend to the distortion
function defined by the FCM obtaining the following one:

Jhp(Up, C; X) =
n∑

k=1

m∑

i=1

(up
ik)hpD2

ik +
m∑

i=1

ηi

n∑

k=1

(1− (up
ik)hp) (3)

where ηi are suitable positive numbers. In the distortion function, the first
term demands that the distance from the feature vectors to the centers be as
small as possible. The second term forces the membership value up

ik be as big
as possible. The value of ηi determines the distance at which the membership
value of a point in a cluster becomes 0.5 so it has to be chosen depending on
how big the clusters are desired. The authors propose the following equation to
calculate its value:

ηi = K

n∑
k=1

(up
ik)hpD2

ik

n∑
k=1

(up
ik)hp

(4)
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where K is a positive number that usually is chosen to be 1. This approach is
robust because noisy points will not affect significantly the possibilistic partition
as they would do in a fuzzy partition. This approach presents a problem because
the distortion function can be minimized placing all the centers in the same
position [1]. Another big issue is the election of the values for ηi and K that
can deteriorate the performance of the algorithm.

3.2 Fuzzy Possibilistic C-means (FPCM)

In this approach developed in [12], a combination of a fuzzy partition and a
possibilistic partition is presented. The authors assert that the membership
value of the fuzzy partition is important to be able to assign a hard label to
classify an input vector, but at the same time, it is very useful to use the
typicality (possibility) value to move the centers properly in presence of outliers.
The distortion function to be minimized is:

Jhf ,hp(Uf , C, Up; X) =
n∑

k=1

m∑

i=1

((uf
ik)hf + (up

ik)hp)D2
ik (5)

with the following constraints:

m∑

i=1

uf
ik = 1 ∀k = 1...n (6)

n∑

k=1

up
ik = 1 ∀i = 1...m (7)

Let Up = [up
ik], then, the constraint shown above requires each row of Up to

sum up to 1 but its columns are free up to the requirement that each column
contains at least one non-zero entry. Thus, there is a possibility of input vectors
not belonging to any cluster.

3.3 Modified Possiblistic C-means (MPCM)

The authors in [19] implement a modification of the PCM that solves the prob-
lem that PCM presents when it minimizes the distortion function placing the
centers in the same position. To avoid the problem, a mutual repulsion of the
clusters is proposed to be able to separate the cluster centers. The cluster-
ing repulsion is implemented by adding a cluster repulsion term to the PCM
distortion function:

Jhp(Up, C;X) =
n∑

k=1

m∑

i=1

(up
ik)hpD2

ik +
m∑

i=1

ηi

n∑

k=1

(1− uik)h +
m∑

i=1

γi

m∑

j=1,j 6=i

1
D2

ij

(8)
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where γi is a weighing factor defined as γi = γ
n∑

k=1

uik. The parameter γ is

a positive number that increases or decreases how much the centers will be
repulsed.

The MPCM algorithm presents an interesting approach to avoid the problem
in the PCM algorithm by making a repulsion between the centers. Although
this approach works well for clustering problems, it might not fit for the function
approximation problem. In this problem, the repulsion factor given by γi can
deteriorate the quality of the results because it is based on the execution of the
FCM algorithm which can be very similar for equally distributed input vectors,
making the repulsion factor almost equal for all the centers. Hence, some centers
will not be able to come closer and the target function might require may centers
being very close to model the areas where the output is more variable. On
top of this, the election of a proper value for K when calculating ηi is still a
crucial problem for the performance of the algorithm. For these reasons, this
possibilistic approach will not be considered to modify the ICFA algorithm, not
appearing in the following sections.

3.4 Improved Possibilistic C-means (IPCM)

Another improved version of the PCM algorithm that combines fuzzy and possi-
bilistic memberships is proposed in [20]. To be able to keep the fuzzy approach
and use a possibilistic partition, the authors replace the similarity criteria in
the FCM distortion function by the distortion function defined in the PCM
algorithm, obtaining the following distortion function to be minimized:

Jhf ,hp(Up, Uf , C; X) =
n∑

k=1

m∑

i=1

(uf
ik)hf (up

ik)hpD2
ik +

m∑

i=1

ηi

n∑

k=1

(uf
ik)hf (1− up

ik)hp

(9)
where up

ik is the possibilistic membership of ~xk in the cluster i, uf
ik is the fuzzy

membership of ~xk to the cluster i, hp and hf are the weighting exponents for the
possibilistic and the fuzzy membership functions, and ηi is a scale parameter
that is calculated using:

ηi =

n∑
k=1

(uf
ik)hf (up

ik)hpD2
ik

(uf
ik)hf (up

ik)hp

. (10)

As in the previous methods, an iterative process drives the algorithm to
reach a minimum of the distortion function defined in (9).

3.5 Possibilistic Fuzzy C-means

This algorithm [13] is proposed in order to solve some drawbacks presented
in the FPCM algorithm regarding the possibilistic membership values. The
objective function that has to be minimized is obtained in the same way that
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the PCM was presented but, instead of using the FCM as start algorithm, the
FPCM is used:

Jhf ,hp
(Up, Uf , C; X) =

n∑

k=1

m∑

i=1

((a · uf
ik)hf + b · (up

ik)hp)D2
ik+

m∑

i=1

ηi

n∑

k=1

(uf
ik)hf (1− up

ik)hp

(11)
where a > 0, b > 0, hf > 1, hp > 1 and ηi are user defined constants. This
objective function, for certain values of the user defined parameters, includes the
ones of the FCM, PCM and FPCM algorithms. Therefore, the sections below
do not reference this algorithm explicitly although implicitly is included in the
comparisons. A further study can be done analyzing which values can be more
appropriate for the function approximation problem and how the possibilistic
membership is influenced by the expected output, which is the element that
adds the supervising feature to the clustering algorithms.

4 Clustering for function approximation prob-
lems

In this section, the ICFA algorithm will be described. This algorithm was
presented as a modification of the CFA algorithm, improving its performance
and increasing the algorithm speed.

4.1 Improved Clustering for Function Approximation (ICFA)

Even though the CFA algorithm improves the performance in comparison with
other clustering algorithms, it has some flaws that can be improved. Within
those flaws, it can be mentioned the way the partition of the input data is
done, the complex migration process, the algorithm speed, the existence of some
parameters that have to be set in order to obtain good solutions, and the fact
that the convergence to a minimum of the distortion function is not guaranteed.
An improved version of the CFA algorithm was presented in [7], this algorithm
adds several modifications that make the ICFA algorithm improve significantly
the results provided by the CFA algorithm.

4.1.1 Objective Function and Iterative Process

To be able to place the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
is needed. Each center is assigned an estimated output value that is used to
calculate the difference between the output of a center and the output of the
input vectors it owns:

wki = |F (~xk)− oi| (12)
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where F (~xk) is the function output for the input ~xk and oi is the estimated
output of ~ci.

The parameter w is introduced to modify the values of the distance between a
center and an input vector. The smaller w is, the more the distance DW between
the center and the vector will be reduced. The distance is now calculated by:

DikW = ‖~xk − ~ci‖ · wki. (13)

Proceeding this way, DikW will be small if the center is near the input vector
and they have similar output values. Thus a center can own input vectors that
are far from it if they have similar output values, and will not own input vectors
that, even though are near the center, have a big difference in the output values.
This will allow the algorithm to place more centers where the output of the
target function to be approximated is more variable. The distortion function to
be minimized is redefined as:

Jhf
(U,C,W ) =

n∑

k=1

m∑

i=1

(uf
ik)hf D2

ikW (14)

where hf > 1 is a parameter to control the degree of sharing of an input vector
in the fuzzy partition and usually is equal to 2. This function is minimized
applying the LS method, obtaining the following equations that will converge
to the solution:

uf
ik =




m∑

j=1

(
DikW

DjkW

) 2
hf−1



−1

(15)

~ci =

n∑
k=1

(uf
ik)hf ~xkw2

ki

n∑
k=1

(uf
ik)hf w2

ki

(16)

oi =

n∑
k=1

(uf
ik)hf ykd2

ik

n∑
k=1

(uf
ik)hf d2

ik

(17)

where dik is the euclidean distance between ~ci and ~xk.

4.1.2 Migration Step

The ICFA algorithm performs a migration step in order to avoid some local
minima. The migration only considers the centers that have a distortion value
above the average. The distortion of a center is the contribution to the error of
the function to be minimized. The center to be migrated will be the one that has
been assigned the smallest value of distortion. The destination of the migration
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will be the center that has been assigned the biggest value of distortion. If
the error is smaller than the one before the migration step, the migration is
accepted, otherwise is rejected.

5 Using possibility in clustering for Function Ap-
proximation

This section will describe the algorithms derived from using a possiblistic ap-
proach in the ICFA algorithm. The FCM algorithm, since it assigns membership
degrees, is less sensitive to noisy points than the hard approach because noisy
data will have smaller membership values than the non noisy ones. However,
a small value can still be significantly high to damage the performance. The
possibilistic approach was designed to solve this problem by allowing all the
centers to have a small membership values for the same input vector. When the
ICFA algorithm was presented, the substitution of a hard partition by a fuzzy
one was shown to be successful, so it is reasonable to study the behavior of the
algorithm using a possibilistic partition instead of a fuzzy one.

The algorithms that will be presented in the next subsections are the result
of replacing the fuzzy partition used in the ICFA algorithm by a possibilistic
one.

5.1 Possibilistic clustering algorithms for function approx-
imation general scheme

All the previous algorithms described above follow almost the same scheme as
the ICFA algorithm. There are some differences such as the starting point of the
algorithm and the initialization of some specific parameters for each algorithm.
In general, the main scheme that all the algorithms follow is shown in Figure 1.
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Figure 1: General scheme for the possibilistic approaches

Before starting the calculation of the position of the centers, a first value
has to be assigned. In the algorithms PCFA and IPCFA, the execution of the
FCM algorithm is mandatory since the parameter ηi has to be calculated using
the membership functions generated. However, in the ICFA algorithm, in order
to obtain robustness, a fixed starting point is assigned to the centers. Since
the FPCFA does not require the execution of the FCM algorithm, the centers
will be assigned the same positions used in the ICFA, this is, all the centers
are distributed uniformly through the input data space. For the initialization
of the expected outputs a value of 1 is assigned in all the algorithms, thus, all
the centers will be influenced by the output in the same conditions.

From the execution time point of view, the algorithms that only have one
kind of membership (FCM and PCM) are faster than the ones that have two
kinds (FPCM and IPCM). This is because they only have to compute one ma-
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trix with membership values instead of two membership matrixes (fuzzy and
possibilistic). However, when the block where the membership matrixes are
computed is compared using the Big −O notation, the four of them belong to
O(m × n) since O(m × n) + O(m × n) = O(m × n) where m is the number of
centers and n the number of input vectors.

The migration introduced by the ICFA algorithm has been adapted to the
possibilistic approaches. The distortion values depend on the kind of partition-
ing the algorithm uses because each algorithm has its own distortion function.
The distortion of a center will be the distortion that a center adds to the dis-
tortion function to be minimized. The selection procedure is performed as it is
done in the ICFA algorithm and, once the two centers are selected, the repar-
tition of the input vectors between them is done following the algorithm shown
below:

• Calculate vectors belonging to the center ~ci with maximum distortion:
V ectors = {~xik | uf

ik > 0.5, ∀k = 1...n , ∀i = 1...m }
• Place destination center ~ci and source centers ~cj :

Let min be a function returning the minimum values of all the coordinates
of the vectors contained in a set
Let max be a function returning the maximum values of all the coordinates
of the vectors contained in a set
~left = min(V ectors)
~right = max(V ectors)
~mid =

~right− ~left
2

~ci = ~mid + ~mid
2

~ci = ~mid− ~mid
2

• Apply Fuzzy C-means to the set V ectors using ~ci and ~cj as initial positions

• Update membership (possibilistic or fuzzy) matrix with the new configu-
ration and calculate global distortion

If the distortion is smaller than the one before the migration step, the mi-
gration is kept, else, the migration is not considered. The global algorithm to
perform the migration step is shown in Figure 2.
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Figure 2: Migration algorithm

In the followings subsections, the adaptation of the ICFA algorithm to a
possibilistic approach will be studied. These algorithms will keep the structure
just presented in this section.

5.2 Possibilistic CFA (PCFA)

This algorithm introduces the pure possibilistic partition in the ICFA algorithm.
To do that, the distortion function has to be redefined as shown below:

Jhp(Up, C,W ; X) =
n∑

k=1

m∑

i=1

(up
ik)hpD2

ikW +
m∑

i=1

ηi

n∑

k=1

(1− up
ik)hp (18)

The main difference with respect to the distortion function defined by the
PCM algorithm is the addition of the weighing parameter that allows the algo-
rithm to use the information provided by the target function.

Since the distortion function has changed, adding a new variable oi, the iter-
ative method that drives to the minimum has to be recalculated. The procedure
to obtain the equations is the same than the one used to obtain the equations
for the previous algorithms. The new equations are:

up
ik =

((
1 +

D2
ikW

ηi

) 1
hp−1

)−1

(19)
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~ci =

n∑
k=1

(up
ik)hp~xkw2

ki

n∑
k=1

(up
ik)hpw2

ki

(20)

oi =

n∑
k=1

(up
ik)hpykd2

ik

n∑
k=1

(up
ik)hpd2

ik

(21)

5.3 Fuzzy-Possibilistic CFA (FPCFA)

In the FPCM, a mixed approach was presented, adding a typicality value to the
membership function. The adaptation of the ICFA to this kind of partition is
very straightforward, obtaining the following distortion function:

Jhf ,hp
(Uf , C, Up,W ; X) =

n∑

k=1

m∑

i=1

((uf
ik)hf + (up

ik)hp)D2
ikW (22)

restricted to the same constraints than the FPCM one.
As in the previous case, the equations for the iterative method have to be

recalculated, obtaining the ones below:

uf
ik =




m∑

j=1

(
DikW

DjkW

) 2
hf−1



−1

(23)

up
ik =




n∑

j=1

(
DikW

DijW

) 2
hp−1



−1

(24)

~ci =

n∑
k=1

((uf
ik)hf + (up

ik)hp)~xkw2
ki

n∑
k=1

((uf
ik)hf + (up

ik)hp)w2
ki

(25)

oi =

n∑
k=1

((uf
ik)hf + (up

ik)hp)ykd2
ik

n∑
k=1

((uf
ik)hf + (up

ik)hp)d2
ik

(26)

5.4 Improved Possibilistic CFA (IPCFA)

This new algorithm uses a possibilistic partition and a fuzzy partition, combin-
ing both approaches as it was done in IPCM [20]. The objective function to be
minimized is defined as:
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Jhf ,hp(Up, Uf , C, W ;X) =
n∑

k=1

m∑

i=1

(uf
ik)hf (up

ik)hpD2
ikW +

m∑

i=1

ηi

n∑

k=1

(uf
ik)hf (1− up

ik)hp

(27)
The computation of ηi at the beginning of the algorithm requires the calcu-

lation of the distance between the centers and the input vectors. This distance
must not be weighted using w because the estimated outputs, in the initial-
ization of the algorithm, are not appropriate to measure the influence of the
output on the position of the centers. Therefore, ηi is calculated only once at
the beginning of the algorithm using the euclidean distance as follows:

ηi =

n∑
k=1

(uf
ik)hf d2

ik

(uf
ik)hf

(28)

As in all the previous algorithms based on a fuzzy or a possibilistic par-
tition, the solution is reached by an alternating optimization approach where
all the elements defined in the function to be minimized (Eq. 27) are updated
iteratively. For this new algorithm, the equations are:

up
ik =

1

1 +
(

DikW

ηi

) 1
hp−1

(29)

uf
ik =

1
m∑

j=1

(
(up

ik
)(hp−1)/2DikW

(up
jk

)(hp−1)/2DjkW

) 2
hf−1

(30)

ci =

n∑
k=1

(up
ik)hp(uf

ik)hf xkw2
ki

n∑
k=1

(up
ik)hp(uf

ik)hf w2
ki

(31)

oi =

n∑
k=1

(up
ik)hp(uf

ik)hf ykd2
ik

n∑
k=1

(up
ik)hp(uf

ik)hf d2
ik

(32)

6 Experimental analysis of the algorithms

This section will analyze the behavior of the previous clustering algorithms. For
the sake of clarity, we will use a one dimensional function f1 (Fig. 3) defined
as:

f1 =
sin(25X)

e(7X)
, (33)
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Figure 3: Target function f1 (output normalized in the interval [0,1])

A set of 401 points equally distributed in the interval [0, 1] was generated.
This function is very illustrative for the function approximation problem since
it presents a very variable output in one area whilst it is almost constant in
another area. This means that, to be able to model the function, it is necessary
to place more centers where the function is more variable. If no mechanism is
applied to use the information provided by the output of the function, the final
position of the centers will be incorrect and the approximation error after the
local search process will be big.

The RBFNNs that will approximate the target function f1, will be generated
following the procedure shown below:

• Initialize radii using the K-Nearest Neighbors [11] algorithm with K=1

• Obtain the weights optimally by solving a linear equation system [6]

• Apply a local search algorithm to optimize the centers and the radii, in
our case the Levenberg −Marquardt algorithm [6].

Since the number of the centers that are necessary to model the target
function is not known, the algorithms will be run using several values for the
number of centers. Once the every clustering algorithm has been executed exe-
cuted and the corresponding RBFNNs generated, the Normalized Root-Mean-
Squared-Error (Eq. 34) will be computed both for training and test data in
order to determine the quality of the approximation.

NRMSE =

√√√√√√√

n∑
k=1

(yk −F(~xk;C,R, Ω))2

n∑
k=1

(
yk − Ȳ

)2
(34)

where Ȳ is the average of the outputs of the target function
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6.1 PCFA

The performance of the PCM algorithm depends on the election of the param-
eter η for each center. This parameter determines the distance at which the
membership value of an input vector to a center becomes 0.5 and it needs the
setting of another parameter K which is a positive real number. The value as-
signed to η has to agree with the desired width of the cluster so, if a high value
is assigned, the cluster width will be big and all the centers will be moved to
the same position [1]. For the example, using the function f1, if K is small, the
centers will be placed uniformly trough the input vectors space, since the vec-
tors are equidistributed and the width of the clusters is small. When this value
becomes bigger, the centers tend to move to the middle of the input vectors
until they all are placed in the center of the input vector space.

The PCFA algorithm suffers from the same problem as the PCM algorithm.
If the values for η and K are calculated using the equations that the authors
propose (Eq. 4), it tends to find identical clusters, placing all the centers in
the same position but, due to the addition of the parameter w, this position is
closer to the area where the function is more variable.

Since the value proposed by the authors to initialize K and η is not good
enough, the problem of selecting a correct value arises. For the function approx-
imation problem it is not possible to decide the desired width of each cluster
previously to the initialization of the centers. Because of this, the computation
of η using the membership functions obtained by the FCM algorithm will not
be too appropriate. The parameter K can increase or decrease the value of η,
therefore, the main issue is to select the right value for this parameter.

The smaller K becomes, the more distributed and separated are the centers
will be. The reason for this is because K makes the algorithm converge faster so
it keeps the original distribution obtained by the first initialization step with the
FCM algorithm. If K is big, all the centers will be placed in the same position
in the area where the function is more variable. The balance is reached when
the value of K is big enough to allow the centers to move to the area where the
function is more variable but small enough to converge before they concentrate
in the same position.

In Figure 4, several executions with five centers for several values of K are
shown. In the first executions, it is not possible to see all the centers since they
are placed in the same position. When the value of K is decreased, the centers
start to separate and become more disperse.

Table 1 shows the results of the approximation error once the centers and
the radii were initialized and fine tuned using the local search algorithm. The
PCFA algorithm does not perform well and it is very difficult to find a correct
value for K.
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Figure 4: Centers initialization using several values for K in the PCFA algorithm

Table 1: Mean and Standard Deviation of the approximation error (NRMSE)
for function f1 before and after local search obtaining with PCFA algorithm.

PCFA
Centers K Approximation Error
6 0.000005 0.392(0.007)

0.00005 0.381(0.112)
7 0.00005 0.473(0.226)

0.0005 0.459(0.260)
8 0.00005 0.089(0.014)

0.0005 0.276(0.204)
9 0.00005 0.430(0.004)

0.0005 0.399(0.296)
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6.2 FPCFA

The FPCM algorithm solves successfully the problem presented in the PCM
algorithm avoiding the undesired effect of placing the centers in the same posi-
tion. For f1, the algorithm places the centers uniformly throughout the input
domain.

The adaptation of the fuzzy-possibilistic partition presented in FPCM to the
function approximation problem performs very good, placing the centers where
the function is more variable and keeping a compromise with the distances
between the centers. The are two parameters that can be tuned in order to
make a better placement of the centers. These two parameters are hf and hp,
the exponents for the membership and the typicality matrix.

The parameter hf controls how fuzzy the partition will be. If this parameter
is close to one, the sharing degree of an input vector will be small and the
partition will be almost hard. As the value of hf is increased, the sharing degree
of the input vectors will also be increased. The consequence of this is that, for
small values of hf , the centers will be more distributed because each one of
them will have its partition well defined, so if a center owns one area where the
function is more variable, no other centers will be placed there and they will be
distributed in other areas. If hf is big, the sharing degree will be bigger so all the
centers will own to a great extent other input vectors. This will make that the
areas where the function is less variable will not belong exclusively to any center
in particular and no center will be placed there. The parameter hp has the same
behavior than the parameter hf although its influence is smaller. The reason
for this is because the constraint applied to the possibilistic membership (Eq. 7)
affects only to the centers and the constraint applied to the fuzzy membership
(Eq. 6) affects the input vectors. Since there are more input vectors than
centers, it is logical that hf has more influence than hp in the behavior of the
algorithm.

To illustrate the previous paragraph, several executions for different values
of hf and hp were done, the results of these executions are shown in Figure 5.
As in the previous subsection, in the figure, sometimes it cannot be seen all the
centers because there is an overlap between them. If both hf and hp are near
one, the centers will keep a compromise between the concentration of centers in
the areas where the function is more variable and where it is not that variable.
If hf is near one and hp becomes bigger, the centers will be concentrated is a
major way in the areas where the function is more variable, not placing centers
where the function is not variable. If hf is big and hp is small, the centers will
be more distributed and if hf is big and hp is big, the centers will be extremely
concentrated where the function is more variable. From these executions we can
deduce that is advisable to select an small value for hf and a similar value for
hp.

Table 2 shows the approximation errors for the function f1 using several val-
ues for hf and hp. The FPCFA algorithm provides very good results not only
in the approximation error, that is small, but also in the robustness of the dif-
ferent solutions, because it always finds the same configuration. It is important
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to remark that independently of the values of hf and hp, the algorithm presents
a good performance for this example.
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Figure 5: Centers initialization using several values for hf and hp in the FPCFA
algorithm
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Table 2: Mean and Standard Deviation of the approximation error (NRMSE)
for function f1 using the FPCFA algorithm.

FPCFA
Centers hf hp Approximation Error

1.5 1.5 0.244(0)
1.5 2 0.043(0)

6 2 1.5 0.014(0)
2 2 0.025(0)
1.5 1.5 0.019(0)
1.5 2 0.013(0)

7 2 1.5 0.092(0)
2 2 0.020(0)
1.5 1.5 0.004(0)
1.5 2 0.067(0)

8 2 1.5 0.005(0)
2 2 0.066(0)
1.5 1.5 0.024(0.000)
1.5 2 0.015(0.000)

9 2 1.5 0.004(0.000)
2 2 0.021(0.000)

6.3 IPCFA

The IPCM presented a mixed approach to clustering as it was done in the
FPCM. As the FPCM algorithm, it distributes uniformly the centers through
the input space demonstrating its ability to fix the problems existing in the
PCM.

In this algorithm, there are some parameters that have to be set before it
execution. As in the FPCM case, two exponents, one for each kind of member-
ship function have to be set and the other parameter is η, which is the same
than the one defined for the PCM algorithm.

In this algorithm, the distortion function is more influenced by the fuzzy
membership value, because in the distortion function (Eq. 27) the fuzzy mem-
bership value is multiplying the rest of the elements in the equation. Then
when hf is small, the variations of hp are not too significant, because the fuzzy
membership values are big and the variations in the possibilistic membership
will not influence the distortion function. The behavior of the hf parameter is
the same than the parameter h in the previous algorithm. The smaller the hf ,
the more distributed through the input vectors the centers will be. Conversely,
the bigger the hf , the more concentrated in the area where the function is more
variable the centers will be. As the value of hf increases, hp becomes more
important because it will have more influence on the distortion function.In this
case, if hp is small, the centers will be more dispersed because the possibility
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values will be bigger so the centers will not share the input vectors to a great
extent. If hp is big, the centers will be more concentrated in the variable area
because, as it occurs with the fuzzy membership, the areas where the function
is not variable will be shared by all the centers and no center will be placed on
those areas. As in the previous cases, several executions are shown in Figure 6
and the approximation errors after the execution of the algorithm are shown in
Table 3.

The selection of the parameter η still influences the behavior of the algorithm
but in this case, the initialization that was proposed for the PCM algorithm
works good enough to avoid the situation of identical center positions.
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Figure 6: Centers initialization using several values for hf and hp in the IPCFA
algorithm
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Table 3: Mean and Standard Deviation of the approximation error (NRMSE)
for function f1 obtained using the IPCFA algorithm.

IPCFA
Centers hf hp Approximation Error

1.5 2 0.038(0.030)
6 2 2 0.265(0.289)

2 1.5 0.082(0.059)
1.5 2 0.102(0.064)

7 2 2 0.070(0.090)
2 1.5 0.075(0.043)
1.5 2 0.018(0.012)

8 2 2 0.045(0.021)
2 1.5 0.030(0.042)
1.5 2 0.095(0.058)

9 2 2 0.013(0.015)
2 1.5 0.073(0.089)

7 Experimental results

In this section the best algorithms analyzed in the previous subsection will be
compared with the ICFA algorithm. The bests algorithms were the ones that
combined a mixed approach (fuzzy and possiblistic) because their results are
not so dependent on the values of the parameters that have to be set. The
PCFA algorithm is not considered because its performance is very poor, it lacks
of robustness and needs a human expert to set the value of the parameters K
and ηi.

The experiments will consist in the approximation of a one dimensional
function in absence and in presence of noise; then, a two dimensional function
where the center positions are known will be used to see how near to the original
centers the algorithms locate the centers. After those experiments, two synthetic
functions with the presence of noise and two real world problems will be studied.

7.1 One dimension function

The comparison of the fuzzy approach and the new approaches will be performed
with the function f1 introduced in the previous section, in normal conditions
and in the presence of noise.

7.1.1 Absence of noise

The algorithms were executed with the best combination of the parameters
described above, the results are shown in Table 4.
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The results show how the FPCFA outperforms the other two algorithms
in a very significant way. The approximation error obtained is smaller for any
number of centers chosen, and as ICFA, the robustness is very high. The IPCFA
has a similar performance than the ICFA even improving the results of this one,
although there is a big drawback, the IPCFA has a big standard deviation since
it is quite dependent of the starting point of the algorithm.

Table 4: Mean and Standard Deviation of the approximation error (NRMSE)
for function f1.

Centers ICFA FPCFA IPCFA
6 0.280(0) 0.014(0) 0.265(0.289)
7 0.073(0) 0.092(0) 0.070(0.090)
8 0.033(0) 0.005(0) 0.045(0.021)
9 0.045(0) 0.004(0) 0.013(0.015)

7.1.2 Presence of noise

The function was distorted with the addition of Gaussian noise with variance
0.1. The generated RBFNN was tested with the original data points in ab-
sence of noise, the results are shown in Table 5. The results show how the
FPCFA algorithm outperforms again the other two algorithms, indicating that
the RBFNN generated is more able to interpolate the original function.

Table 5: Mean and Standard Deviation of the approximation error (NRMSE)
for function f1 using the test data.

Centers ICFA FPCFA IPCFA
6 0.141(0) 0.141(0) 0.125(0.018)
7 0.120(0) 0.079(0) 0.103(0.043)
8 0.089(0) 0.077(0) 0.100(0.054)
9 0.075(0) 0.049(0) 0.078(0.035)

7.2 Two dimensional function

In this experiment a two dimensional function is generated using a gaussian
RBFNN (Eq. 35) over a grid of 25x25 points using the parameters in Table 6,
that where randomly extracted using a random number generator.

The RBF function used to compute the output is:

e
− ||~xk−~ci||2

r2
i (35)
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~ci ri weights
7.0026 3.7539 0.8687 0.0377
8.8390 1.9328 4.4933 0.7343
9.4336 20.5478 3.7750 0.3106
15.3469 12.7493 2.6281 0.8203
24.8801 10.8553 4.8836 0.8785

Table 6: Parameters for the function f2

The approximation errors are shown in Table 7 where the FPCFA algorithm
has an optimum performance. Figure 7 a) shows the contour of the target
function and the position of the centers, then, in Figure 7 b),c), and d) the
positions where the three algorithms have placed the centers are shown. The
original centers are represented by hollow circles and the centers initialized by
the algorithms are represented by solid diamonds, when the initialized center
is in the same position of the original center, the combination of the diamond
and the hollow circle becomes a solid circle. The FPCFA algorithm placed
the centers in the same positions of the original ones, the ICFA and IPCFA
algorithms also placed four out of five centers correctly. However, the IPCFA
algorithm obtains a slightly better performance than the ICFA since it is able
to identify the area where the function has its maximum variability.

Table 7: Mean and Standard Deviation (in brackets) of the approximation error
(NRMSE) for function f2.

NRMSE
ICFA 0.0077 (0)

FPCFA 1.7301e-008 (0)
IPCFA 0.0062 (0.0035)
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Figure 7: Original centers for function f2 (circles) and the different initializations
performed by the ICFA,FPCFA and IPCFA algorithms (diamonds)

7.3 Further Experimental Results using both artificial and
real data

In this subsection, the three algorithms were executed using two two-dimensional
functions with the addition of noise and with two real world examples.

7.3.1 Synthetic Function f3 and f4

The target functions f3 and f4 were presented in [3] and they have been used
as a benchmark in [16][5][4]. The function f3 is defined as:

f3(x1, x2) =
1 + sin(2x1 + 3x2)
3.5 + sin(x1 − x2)

x1, x2 ∈ [−2, 2] (36)
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and function f4 is defined as:

f4(x1, x2) = 1.9[1.35 + ex1sin(13(x1 − 0.6)2)e−x2sin(7x2)] x1, x2 ∈ [0, 1] (37)

The training data set was obtained by selecting randomly points in the
original function and adding them positive and negative Gaussian noise with
variance 0.05.

The algorithms ICFA, FPCFA and IPCFA were executed using several values
for the parameters that have to be set before running the algorithms. The
results showed how all the algorithms have a very similar performance when
the mean error is compared. However, the ICFA algorithm showed a slightly
better performance, being more independent of the value of the parameter h to
obtain the solutions. Nevertheless, the FPCFA algorithm, for concrete values
of their parameters outcome the results provided by the ICFA and the IPCFA
algorithms.

7.3.2 Servo-motor Rise Time

The third experiment is taken from the UCI Machine Learning Repository [18]
and consists, as it is described in the UCI database, of a system involving a servo
amplifier, a motor, a lead screw/nut, and a sliding carriage of some sort. The
output value is a rise time, or the time required for the system to respond to a
step change in a position set point. This is collection of data covers an extremely
non-linear phenomenon: predicting the rise time of a servomechanism in terms of
two (continuous) gain settings and two (discrete) choices of mechanical linkages.
From the original 167 instances, the first 126 were used for training and the last
41 to test the RBFNN generated. The results (Table 8)showed again how the
three algorithms have a similar performance, although the IPCFA algorithm
outperforms slightly the results obtained by the other two algorithms. This
is due to the overfitting that suffer the ICFA and FPCFA algorithms which
are able to adjust more accurately the training data, loosing the generalization
capabilities. In real world data sets, it is very difficult to obtain significant or
representative data, making very difficult to obtain very accurate models. The
results show how the FPCFA is the less dependent of the values of its parameters
since it has the smallest standard deviations and this algorithm, for concrete
values of its parameters obtains the best performance with both the train and
test data.
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Table 8: Mean test error (NRMSE) for the servo-motor problem using several
values for hf and hp

Clusters ICFA FPCFA IPCFA
5 0.378(0.091) 0.419(0.046) 0.373(0.101)
6 0.403(0.127) 0.427(0.068) 0.404(0.101)
7 0.377(0.015) 0.353(0.060) 0.369(0.082)
8 0.377(0.056) 0.296(0.063) 0.284(0.021)
9 0.972(0.876) 0.420(0.102) 0.620(0.390)

8 Conclusions

The initialization of the centers when designing an RBFNN to approximate an
input/output mapping, is a very important step that has a big repercussion on
the posterior stages of the design. The ICFA algorithm was designed specifically
for this task showing how the approximation error can be diminished if an
appropriate initialization of the centers is carried out. The ICFA algorithm was
inspired in clustering techniques where a fuzzy partition of the data is performed.
Within clustering techniques, the possibilistic algorithms were presented as an
alternative to the commonly used fuzzy algorithms. The introduction of the
possibilistic membership has the objective of reducing the effect of the noise
in the input data because a fuzzy partition can behave inadequately in noise
conditions.

In this paper, a study of the influence of replacing the fuzzy partition used
in the ICFA algorithm with the possiblistic and the fuzzy-possiblistic partitions
has been done. The conclusions of this study are:

• The pure possibilistic approach, where only the typicality of an input
vector in a cluster is considered, is not too appropriate for the function
approximation problem.

• The mixed approaches were a fuzzy partition is combined with a possi-
bilistic partition fits better to the function approximation problem and
can improve, in some cases, the results provided by the algorithm that
uses a classical fuzzy partition.

• Comparing the two mixed approaches, the FPCFA algorithm is more ro-
bust and requires less parameters to bet set, plus it does not need the
prior execution of the FCM algorithm to initialize any parameter, not like
in the IPCFA algorithm.

• The ICFA still has an advantage over the FPCFA: it only requires one
parameter to be set, and it is not so dependant on it when is compared
with the other approaches.
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• From the computational cost point of view, the ICFA is faster than any
other possibilistic approach because it does not need to execute the FCM
algorithm at the beginning of the algorithm and it only requires the com-
putation of one membership matrix.

• The experiments showed how a possibilistic partition can outperform the
fuzzy one in real world and synthetic problems. These results showed that
the FPCFA algorithm can improve the results of the ICFA algorithm.
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[6] J. González, I. Rojas, H. Pomares, J. Ortega, and A. Prieto. A new Clus-
tering Technique for Function Aproximation. IEEE Transactions on Neural
Networks, 13(1):132–142, January 2002.
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