Skip to main content
Log in

Neural network training with optimal bounded ellipsoid algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Compared to normal learning algorithms, for example backpropagation, the optimal bounded ellipsoid (OBE) algorithm has some better properties, such as faster convergence, since it has a similar structure as Kalman filter. OBE has some advantages over Kalman filter training, the noise is not required to be Guassian. In this paper OBE algorithm is applied in training the weights of the feedforward neural network for nonlinear system identification. Both hidden layers and output layers can be updated. From a dynamic system point of view, such training can be useful for all neural network applications requiring real-time updating of the weights. Two simulations give the effectiveness of the suggested algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bland RG, Goldfarb D, Todd MJ (1981) The ellipsoid method: a survey. Oper Res 29:1039–1091

    Article  MATH  MathSciNet  Google Scholar 

  2. Chowdhury FN (2003) A new approach to real-time training of dynamic neural networks. Int J Adapt Control Signal Process 31:509–521

    Article  Google Scholar 

  3. Correa MV, Aguirre LA, Saldanha RR (2002) Using steady-state prior knowledge to constrain parameter estimates in nonlinear system identification. IEEE Trans Circuits Syst Part I 49(9):1376–1381

    Article  Google Scholar 

  4. Dickerson JA, Kosko B (1996) Fuzzy function approximation with ellipsoidal rules. IEEE Trans Syst Man Cybern 26:542–560

    Article  Google Scholar 

  5. Fogel E, Huang YF (1982) On the value of information in system identification: bounded noise case. Automatica 18(2):229–238

    Article  MATH  MathSciNet  Google Scholar 

  6. Gazor S, Shahtalebi K (2002) A new NLMS algorithm for slow noise magnitude variation. IEEE Signal Process Lett 9(11):348–351

    Article  Google Scholar 

  7. El Ghaoui (2001) Robust filtering for discrete-time systems with bounded noise and parametric uncertainty. IEEE Trans Autom Control 46(7):1084–1089

    Article  MATH  Google Scholar 

  8. Gollamudi S, Nagaraj S, Kapoor S, Huang YF (1996) Set membership state estimation with optimal bounding ellipsoids. In: Proceedings of international symposium on information theory and its applications, Victoria, BC, Canada, pp 262–265

  9. Goodwin GC, Sang Sin K (1984) Adaptive filtering prediction and control. Prentice-Hall, Englewood Cliffis

  10. Haykin S (1994) Neural networks—a comprehensive foundation. Macmillan, New York

    MATH  Google Scholar 

  11. Jiang ZP, Wang Y (2001) Input-to-state stability for discrete-time nonlinear systems. Automatica 37(2):857–869

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin L, Nikiforunk PN, Gupta MM (1999) Adaptive model reference control of discrete-time nonlinear systems using neural networks. Control Theory Adv Technol Part 3 10(4):1373–1399

    Google Scholar 

  13. Joachim D, Deller JR (2006) Multiweight optimization in optimal bounding ellipsoid algorithms. IEEE Trans Signal Process 54(2):679–690

    Article  Google Scholar 

  14. Kapoor S, Gollamudi S, Nagaraj S, Huang YF (1996) Tracking of time-varing parameters using optimal bounding ellipsoid algorithms. In: Proceedings of 34th Allerton conference on communication, control and computing Monticello

  15. Kayuri NS, Vienkatasubramanian V (1993) Representing bounded fault classes using neural networks with ellipsoidal activation functions. Comput Chem Eng 17(2):139–163

    Article  Google Scholar 

  16. Kosmatopoulos EB, Polycarpou MM, Christodoulou MA, Ioannou PA (1995) High-order neural network structures for identification of dynamical systems. IEEE Trans Neural Netw 6(2):422–431

    Article  Google Scholar 

  17. Liguni Y, Sakai H, Higekatsu Tokumaru (1992) A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter. IEEE Trans Signal Process 40(4):959–966

    Article  Google Scholar 

  18. Lorenz RG, Boyd SP (2005) Robust minimum variance beamforming. IEEE Trans Signal Process 53(5):1684–1696

    Article  MathSciNet  Google Scholar 

  19. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  20. Nazin SA, Polyak BT (2001) Limiting behavior of bounding ellipsoids for state estimation. In: Proceedings of the 5th IFAC symposium on nonlinear control systems, St Petersburg, Russia, vol 4–6, pp 585–589

  21. Parlos AG, Menon SK, Atiya AF (2001) An algorithm approach to adaptive state filtering using recurrent neural network. IEEE Trans Neural Netw 12(6):1411–1432

    Article  Google Scholar 

  22. Puskorius GV, Feldkamp LA (1994) Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans Neural Netw 5(2):279–297

    Article  Google Scholar 

  23. Ros L, Sabater A, Thomas F (2002) An ellipsoidal alculus based on propagation and fusion. IEEE Trans Syst Man Cybern 32(4):430-442

    Article  Google Scholar 

  24. Rubio JJ, Yu W (2005) Dead-zone Kalman filter algorithm for recurrent neural networks. In: 44rd IEEE conference on decision and control, CDC’05, Seville, Spain, pp 2562–2567

  25. Ruck DW, Rogers SK, Kabrisky M, Maybeck PS, Oxley ME (1992) Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons. IEEE Trans Pattern Anal Mach Intell 14(6):686–691

    Article  Google Scholar 

  26. Safonov MG, Athans M (1978) Robustness and computational aspects of nonlinear stochastic estimators and regulators. IEEE Trans Autom Control 23(4):717–725

    Article  MATH  MathSciNet  Google Scholar 

  27. Sastry PS, Santharam G, Unnikrishnan KP (1994) Memory neural networks for identification and control of dynamic systems. IEEE Trans Neural Netw 5:306–319

    Article  Google Scholar 

  28. Schueppe FC (1973) Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  29. Singhal S, Wu L (1989) Training multilayer perceptrons with the extended Kalman algorithm. Adv Neural Inf Process Syst I 133–140

  30. Weyer E, Campi MC (2000) Non-asymptotic confidence ellipsoids for the least squares estimate. In: 39rd IEEE conference on decision and control, Sydney, Australia, pp 2688–2693

  31. Wang LX (1997) A course in fuzzy systems and control. Prentice-Hall, Englewood Cliffs

  32. Yu W (2002) Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms. Inf Sci 158(1):131–147

    Google Scholar 

  33. Yu W, Ferreyra A (2005) On-line clustering for nonlinear system identification using fuzzy neural networks. In: IEEE international conference on fuzzy systems, pp 678–683

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Jesús Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jesús Rubio, J., Yu, W. & Ferreyra, A. Neural network training with optimal bounded ellipsoid algorithm. Neural Comput & Applic 18, 623–631 (2009). https://doi.org/10.1007/s00521-008-0203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-008-0203-5

Keywords

Navigation