Skip to main content
Log in

Stability analysis of discrete-time recurrent neural networks based on standard neural network models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In order to conveniently analyze the stability of various discrete-time recurrent neural networks (RNNs), including bidirectional associative memory, Hopfield, cellular neural network, Cohen-Grossberg neural network, and recurrent multiplayer perceptrons, etc., the novel neural network model, named standard neural network model (SNNM) is advanced to describe this class of discrete-time RNNs. The SNNM is the interconnection of a linear dynamic system and a bounded static nonlinear operator. By combining Lyapunov functional with S-Procedure, some useful criteria of global asymptotic stability for the discrete-time SNNMs are derived, whose conditions are formulated as linear matrix inequalities. Most delayed (or non-delayed) RNNs can be transformed into the SNNMs to be stability analyzed in a unified way. Some application examples of the SNNMs to the stability analysis of the discrete-time RNNs shows that the SNNMs make the stability conditions of the RNNs easily verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Warwich K (1995) Neural networks: an introduction. Neural network applications in control. In: Irwin GW, Warwick K, Hunt KJ (eds) The Institution of Electrical Engineers, London, pp 1–16

  2. Suykens JAK, Vandewalle JPL, De Moor BLR (1996) Artificial neural networks for modeling and control of non-linear systems. Kluwer, Boston

    Google Scholar 

  3. Medsker LR, Jain LC (eds) (2000) Recurrent neural networks: design and applications, CRC Press LLC, Boca Raton

  4. Miyoshi S, Yanai HF, Okada M (2004) Associative memory by recurrent neural networks with delay elements. Neural Netw 17(1):55–63. doi:10.1016/S0893-6080(03)00207-7

    Article  MATH  Google Scholar 

  5. Xia Y, Wang J (2004) A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans Circuits Syst I Regul Pap 51(7):1385–1394. doi:10.1109/TCSI.2004.830694

    Article  MathSciNet  Google Scholar 

  6. Liao XF, Chen GR, Sanchez EN (2002) LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE Trans Circ Syst I Fundam Theory Appl 49(7):1033–1039. doi:10.1109/TCSI.2002.800842

    Article  MathSciNet  Google Scholar 

  7. Liao XF, Chen GR, Sanchez EN (2002) Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Netw 15(7):855–866. doi:10.1016/S0893-6080(02)00041-2

    Article  MathSciNet  Google Scholar 

  8. Guo S, Huang L (2004) Exponential stability of discrete-time Hopfield neural networks. Comput Math Appl 47(8–9):1249–1256. doi:10.1016/S0898-1221(04)90119-8

    Article  MATH  MathSciNet  Google Scholar 

  9. Liang J, Cao J, Ho DWC (2005) Discrete-time bidirectional associative memory neural networks with variable delays. Phys Lett A 335(2–3):226–234. doi:10.1016/j.physleta.2004.12.026

    Article  MATH  Google Scholar 

  10. Xiong W, Cao J (2005) Global exponential stability of discrete-time Cohen–Grossberg neural networks. Neurocomputing 64:433–446. doi:10.1016/j.neucom.2004.08.004

    Article  Google Scholar 

  11. Liu MQ (2006) Discrete-time delayed standard neural network model and its application. Sci China Ser F Inf Sci 49(2):137–154. doi:10.1007/s11432-006-0137-4

    Article  MATH  Google Scholar 

  12. Barabanov NE, Prokhorov DV (2002) Stability analysis of discrete-time recurrent neural networks. IEEE Trans Neural Netw 13(2):292–303. doi:10.1109/72.991416

    Article  Google Scholar 

  13. Zhang SL, Liu MQ (2005) Stability analysis of discrete-time BAM neural networks based on standard neural network models. J Zhejiang Univ Sci 6A(7):689–696. doi:10.1631/jzus.2005.A0689

    Article  MATH  Google Scholar 

  14. Wang L, Xu Z (2006) Sufficient and necessary conditions for global exponential stability of discrete-time recurrent neural networks. IEEE Trans Circuits Syst I Regul Pap 53(6):1373–1380. doi:10.1109/TCSI.2006.874179

    Article  MathSciNet  Google Scholar 

  15. Mak KL, Peng JG, Xu ZB, Yiu KFC (2007) A new stability criterion for discrete-time neural networks: nonlinear spectral radius. Chaos Solitons Fractals 31(2):424–436. doi:10.1016/j.chaos.2005.09.075

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu S, Wang J (2002) Global stability of a class of discrete-time recurrent neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 49(8):1104–1117. doi:10.1109/TCSI.2002.801284

    Article  MathSciNet  Google Scholar 

  17. Liu MQ (2007) Delayed standard neural network models for control systems. IEEE Trans Neural Netw 18(5):1376–1391. doi:10.1109/TNN.2007.894084

    Article  Google Scholar 

  18. Chandrasekharan PC (1996) Robust control of linear dynamical systems. Academic Press, London

    Google Scholar 

  19. Rios-Patron E (2000) A general framework for the control of nonlinear systems, PhD thesis, University of Illinois

  20. Boyd SP, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    MATH  Google Scholar 

  21. Li CD, Liao XF, Zhang R (2004) Global asymptotical stability of multi-delayed interval neural networks: an LMI approach. Phys Lett A 328(6):452–462. doi:10.1016/j.physleta.2004.06.053

    Article  MATH  MathSciNet  Google Scholar 

  22. Xie L, de Souza CE (1992) Robust H control for linear systems with norm-bounded time-varying uncertainty. IEEE Trans Automat Contr 37(8):1188–1191. doi:10.1109/9.151101

    Article  Google Scholar 

  23. Khargonekar PP, Petersen IR, Zhou K (1990) Robust stabilization of uncertain linear systems: quadratic stability and H control theory. IEEE Trans Automat Contr 35(3):356–361. doi:10.1109/9.50357

    Article  MATH  MathSciNet  Google Scholar 

  24. Bhaya A, Kaszkurewicz E, Kozyakin VS (1996) Existence and stability of a unique equilibrium in continuous-valued discrete-time asynchronous Hopfield neural networks. IEEE Trans Neural Netw 7(3):620–628. doi:10.1109/72.501720

    Google Scholar 

  25. Guo S, Huang L (2004) Periodic oscillation for discrete-time Hopfield neural networks. Phys Lett A 329(3):199–206. doi:10.1016/j.physleta.2004.07.007

    Article  MATH  MathSciNet  Google Scholar 

  26. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81(10):3088–3092. doi:10.1073/pnas.81.10.3088

    Article  Google Scholar 

  27. Gahinet P, Nemirovski A, Laub AJ, Chilali M (1995) LMI control toolbox- for use with Matlab. The MATH Works, Inc., Natick

    Google Scholar 

  28. Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26(23):4947–4960

    Article  Google Scholar 

  29. Kosko B (1988) Adaptive bi-directional associative memories. IEEE Trans Syst Man Cybern 18(1):49–60. doi:10.1109/21.87054

    Article  MathSciNet  Google Scholar 

  30. Arik S, Tavsanoglu V (2005) Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays. Neurocomputing 68:161–176. doi:10.1016/j.neucom.2004.12.002

    Article  Google Scholar 

  31. Cao J, Liang J, Lam J (2004) Exponential stability of high-order bidirectional associative memory neural networks with time delays. Physica D Nonlinear Phenomena 199(3–4):425–436. doi:10.1016/j.physd.2004.09.012

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang L, Zou X (2004) Capacity of stable periodic solutions in discrete-time bidirectional associative memory neural networks. IEEE Trans Circuits Syst II Express Briefs 51(6):315–319. doi:10.1109/TCSII.2004.829571

    Article  Google Scholar 

  33. Cohen MA, Grossberg S (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural network. IEEE Trans Syst Man Cybern 13(5):815–826

    MATH  MathSciNet  Google Scholar 

  34. Wang W, Cao J (2006) LMI-based criteria for globally robust stability of delayed Cohen-Grossberg neural networks. IEE Proc Contr Theory Appl 153(4):397–402. doi:10.1049/ip-cta:20050197

    Article  MathSciNet  Google Scholar 

  35. Guo S, Huang L (2006) Stability analysis of Cohen-Grossberg neural networks. IEEE Trans Neural Netw 17(1):106–117. doi:10.1109/TNN.2005.860845

    Article  Google Scholar 

  36. Chen Y (2006) Global asymptotic stability of delayed Cohen-Grossberg neural network. IEEE Trans Circuits Syst I Regul Pap 53(2):351–357. doi:10.1109/TCSI.2005.856047

    Article  MathSciNet  Google Scholar 

  37. Cao J, Liang J (2004) Boundedness and stability for Cohen-Grossberg neural networks with time-varying delays. J Math Anal Appl 296(2):665–685. doi:10.1016/j.jmaa.2004.04.039

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqin Liu.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant 60504024 and 60874050, in part by the Zhejiang Provincial Natural Science Foundation of China under Grant Y106010, and in part by the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP), China under Grant 20060335022. This work was also supported by the “151 Talent Project” of Zhejiang Province (No. 05-3-1013 and No. 06-2-034).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M. Stability analysis of discrete-time recurrent neural networks based on standard neural network models. Neural Comput & Applic 18, 861–874 (2009). https://doi.org/10.1007/s00521-008-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-008-0211-5

Keywords

Navigation