Skip to main content
Log in

AI-SIMCOG: a simulator for spiking neurons and multiple animats’ behaviours

  • ISNN 2008
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Designing a biologically inspired neural architecture as a controller for a complete animat or physical robot environment, to test the hypotheses on intelligence or cognition is non-trivial, particularly, if the controller is a network of spiking neurons. As a result, simulators that integrate spike coding and artificial or real-world platforms are scarce. In this paper, we present artificial intelligence simulator of cognition, a software simulator designed to explore the computational power of pulsed coding at the level of small cognitive systems. Our focus is on convivial graphical user interface, real-time operation and multilevel Hebbian synaptic adaptation, accomplished through a set of non-linear dynamic weights and on-line, life-long modulation. Inclusions of transducer and hormone components, intrinsic oscillator and several learning functions in a discrete spiking neural algorithm are distinctive features of the software. Additional features are the easy link between the production of specific neural architectures and an artificial 2D-world simulator, where one or more animats implement an input–output transfer function in real-time, as do robots in the real world. As a result, the simulator code is exportable to a robot’s microprocessor. This realistic neural model is thus amenable to investigate several time related cognitive problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. When implemented in a specific neuron, provide a constant positive inward current as a tool to investigate spontaneous neural activity and its contribution to the overall neural dynamics.

  2. Small round structures built as a different layer on top of the animat’s external shed, that generate their own independent movements.

  3. An open world version of the software is in progress.

References

  1. Pfeifer R, Scheier C (1999) Understanding intelligence. MIT Press, Cambridge

    Google Scholar 

  2. Langton CG (1989) Artificial life. In: Langton CG et al (eds) Artificial life. Addison Wesley, CA, pp 1–48

  3. Mataric M (2007) The robotics primer. MIT Press, Cambridge

    Google Scholar 

  4. Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci 20:553–557. doi:10.1016/S0166-2236(97)01149-1

    Article  Google Scholar 

  5. Chrisley R (2003) Embodied artificial intelligence. Artif Intell 149:131–150. doi:10.1016/S0004-3702(03)00055-9

    Article  Google Scholar 

  6. Pfeifer R (2007) How the body shapes the way we think: a new view of intelligence. MIT Press, Cambridge

    Google Scholar 

  7. Ziemke T (2003b) What’s that thing called embodiment? In: Proceedings of the 25th annual meeting of the cognitive science society. Cognitive Science Society, Boston

  8. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133. doi:10.1007/BF02478259

    Article  MATH  MathSciNet  Google Scholar 

  9. Hodgkin AL, Huxley AF (1952) A quantitative description of ion currents and its applications to conduction Hopfield, J.J. (1982) neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

  10. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  11. Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Wulfram and Werner

    MATH  Google Scholar 

  12. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671. doi:10.1016/S0893-6080(97)00011-7

    Article  Google Scholar 

  13. Maass W, Bishop CM (eds) (1999) Pulsed neural networks. MIT Press, Cambridge

    Google Scholar 

  14. Rieke F, Warland D, van Steveninck R, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  15. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572. doi:10.1109/TNN.2003.820440

    Article  Google Scholar 

  16. Maass W, Ruf B (1996) The computational power of spiking neurons depends on the shape of the postsynaptic potentials. NeuroCOLT technical report series

  17. Gerstner W, Kempter R, Van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 386:76–78. doi:10.1038/383076a0

    Article  Google Scholar 

  18. Bailey C, Kandel E (1985) Molecular approaches to the study of short-term and long-term memory. Functions of the brain. Clarendon Press, Oxford, pp 98–129

    Google Scholar 

  19. Balaban PM (2002) Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci Biobehav Rev 26:597–630. doi:10.1016/S0149-7634(02)00022-2

    Article  Google Scholar 

  20. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci 31:25–46. doi:10.1146/annurev.neuro.31.060407.125639

    Article  Google Scholar 

  21. Rudy JW (2008) The neurobiology of learning and memory. Sinauer Associates Inc., Sunderland

    Google Scholar 

  22. Steidl S, Rose JK, Rankin CH (2003) Stages of memory in the nematode Caenorhabditis elegans. Behav Cogn Neurosci Rev 2:3–14. doi:10.1177/1534582303002001001

    Article  Google Scholar 

  23. Amygdala Grover M, Koch R. http://amygdala.sourceforge.net

  24. Catacomb3 Cannon RC. Boston University. http://www.catacomb.org

  25. Genesis Bower J. California Institute of Technology. http://genesis-sim.org

  26. Matlab Neural Network Toolbox. The MathWorks Inc. http://www.mathworks.com

  27. Mcell Bartol T. at. Terry Sejnowski lab, Salt Lake Institute for biological studies and Stiles, J. at Ed Salpeter, Miriam Salpeter lab, Cornell University. http://www.mcell.cnl.salk.edu

  28. Neuron Hines M, Moore JW, Carnevale NT. Duke University. http://www.neuron.yale.edu/neuron

  29. Simbrain Yoshimi J. SimBrain development. http://www.simbrain.net

  30. Snnap Byrne JH. and al., University of Texas Medical School at Houston. http://snnap.uth.tmc.edu

  31. SNNS and javaNNS, Eberhard K. University of Tübingen. http://www.ra.cs.uni-tuebingen.de/SNNS

  32. Spikestream Gamez D. http://spikestream.sourceforge.net

  33. Webots C. http://cyberbotics.com

  34. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  35. Shepherd GM (2004) The synaptic organization of the brain, 5th edn. Oxford University Press, New York

    Google Scholar 

  36. Smythies J (2002) The dynamic neuron: a comprehensive survey of the neurochemical basis of synaptic plasticity. MIT Press, Cambridge

    Google Scholar 

  37. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143–149. doi:10.1126/science.3975635

    Article  Google Scholar 

  38. Fain GL (2003) Sensory transduction. Sinauer Associates Inc, Sunderland

    Google Scholar 

Download references

Acknowledgment

This software was developed with the help of AIFUTURE in collaboration with Objectif8, two Quebec-based software companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Cyr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyr, A., Boukadoum, M. & Poirier, P. AI-SIMCOG: a simulator for spiking neurons and multiple animats’ behaviours. Neural Comput & Applic 18, 431–446 (2009). https://doi.org/10.1007/s00521-009-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0254-2

Keywords

Navigation