Skip to main content
Log in

Speech nonfluency detection using Kohonen networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work covers the problem of application of neural networks to recognition and categorization of non-fluent and fluent utterance records. Fifty-five 4-s speech samples where the blockade on plosives (p, b, t, d, k and g) occurred and 55 recordings of speech of fluent speakers containing the same fragments were applied. Two Kohonen networks were used. The purpose of the first network was to reduce the dimension of the vector describing the input signals. A result of the analysis was the output matrix consisting of the neurons winning in a particular time frame. This matrix was taken as an input for the next self-organizing map network. Various types of Kohonen networks were examined with respect to their ability to classify utterances correctly into two, non-fluent and fluent, groups. Good examination results were accomplished and classification correctness exceeded 76%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen W-Y, Chen S-H et al (1996) A speech recognition method based on the sequential multi-layer perceptrons. Neural Netw 9(4):655–669. doi:10.1016/0893-6080(95)00140-9

    Article  Google Scholar 

  2. Chou SM, Papliński AP et al (2007) Speaker-dependent bimodal integration of Chinese phonemes and letters using multimodal self-organizing networks. Proceedings of international joint conference on neural networks, Orlando, Florida, USA

  3. Cottrell M, Fort JC et al (1998) Theoretical aspects of the SOM algorithm. Neurocomputing 21:119–138. doi:10.1016/S0925-2312(98)00034-4

    Article  MATH  Google Scholar 

  4. Czyżewski A, Kaczmarek A et al (2003) Intelligent processing of stuttered speech. J Intell Inf Syst 21(2):143–171. doi:10.1023/A:1024710532716

    Article  Google Scholar 

  5. Edwards ADN, Blore A (1995) Speech input for persons with speech impairments. J Microcomput Appl 18:327–333. doi:10.1016/S0745-7138(05)80032-6

    Article  Google Scholar 

  6. Farrell K, Mamione R et al (1994) Speaker recognition using neural networks and conventional classifiers. IEEE Trans Speech Audio Process 2(1, part 2):194–205. doi:10.1109/89.260362

    Article  Google Scholar 

  7. Garfield S, Elshaw M et al (2001) Self-organizing networks for classification learning from normal and aphasic speech. The 23rd Conference of the Cognitive Science Society, Edinburgh

  8. Geetha YV, Pratibha K et al (2000) Classification of childhood disfluencies using neural networks. J Fluency Disord 25:99–117. doi:10.1016/S0094-730X(99)00029-7

    Article  Google Scholar 

  9. Hadjitodorov S, Boyanov B et al (1997) A two-level classifier for text-independent speaker identification. Speech Commun 21:209–217. doi:10.1016/S0167-6393(97)00004-6

    Article  Google Scholar 

  10. Howel P, Vause L (1986) Acoustic analysis and perception of vowels in stuttered speech. J Acoust Soc Am 79:1571–1579. doi:10.1121/1.393684

    Article  Google Scholar 

  11. Howell P, Au-Yeung J et al (1997) Detection of supralexical dysfluencies in a text read by children who stutter. J Fluency Disord 22:299–307. doi:10.1016/S0094-730X(97)00012-0

    Article  Google Scholar 

  12. Kangas J, Kohonen T (1996) Developments and applications of the self-organizing map and related algorithms. Math Comput Simul 41:3–12. doi:10.1016/0378-4754(96)88223-1

    Article  Google Scholar 

  13. Kestler HA, Schwenker F (2000) Classification of high-resolution ECG signals. In: Howlett R, Jain L (eds) Radial basis function neural networks: theory and applications. Physica-Verlag, Heidelberg

    Google Scholar 

  14. Kohonen T (1982) Analysis of a simple self-organizing process. Biol Cybern 44:135–140. doi:10.1007/BF00317973

    Article  MATH  MathSciNet  Google Scholar 

  15. Kohonen T (1982) Self-organized formation of topologically correct future maps. Biol Cybern 43:59–69. doi:10.1007/BF00337288

    Article  MATH  MathSciNet  Google Scholar 

  16. Kohonen T (1998) The self-organizing map. Neurocomputing 21:1–6. doi:10.1016/S0925-2312(98)00030-7

    Article  MATH  Google Scholar 

  17. Kohonen T (2001) Self-organizing maps. Springer, Berlin

    MATH  Google Scholar 

  18. Kuniszyk-Jóźkowiak W (1996) A comparison of speech envelopes of stutterers and nonstutterers. J Acoust Soc Am 100(2):1105–1110. doi:10.1121/1.416295

    Article  Google Scholar 

  19. Leinonen L, Hiltunen T et al (1997) Categorization of voice disorders with six perceptual dimensions. Folia Phoniatr Logop 49:9–20

    Article  Google Scholar 

  20. Leinonen L, Kangas J et al (1992) Dysphonia detected by pattern recognition of spectral composition. J Speech Hear Res 35:287–295

    Google Scholar 

  21. Martinem-Hinarejos CD, Juan A et al (2003) Median strings for k-nearest neighbour classification. Pattern Recognit Lett 24:173–181. doi:10.1016/S0167-8655(02)00209-X

    Article  Google Scholar 

  22. Mulier FM, Cherkassky VS (1995) Statistical analysis of self-organization. Neural Netw 8(5):717–727. doi:10.1016/0893-6080(95)00018-U

    Article  Google Scholar 

  23. Nayak J, Bhat PS et al (2005) Classification and analysis of speech abnormalities. ITBM-RBM 26:319–327. doi:10.1016/j.rbmret.2005.05.002

    Article  Google Scholar 

  24. Nour MA, Madey GR (1996) Heuristic and optimization approaches to extending the Kohonen self organizing algorithm. Eur J Oper Res 93:428–448. doi:10.1016/0377-2217(96)00033-1

    Article  MATH  Google Scholar 

  25. Papliński AP, Gustafsson L (2005) Multimodal feedforward self-organizing maps. Lect Notes Comput Sci 3801:81–88. doi:10.1007/11596448_11

    Article  Google Scholar 

  26. Ritchings RT, McGillion M et al (2002) Pathological voice quality assessment using artificial neural networks. Med Eng Phys 24:561–564. doi:10.1016/S1350-4533(02)00064-4

    Article  Google Scholar 

  27. Robb M, Blomgren M (1997) Analysis of F2 transitions in the speech of stutterers and non-stutterers. J Fluency Disord 22(1):1–16. doi:10.1016/S0094-730X(96)00016-2

    Article  Google Scholar 

  28. Schwenker F, Kestler HA et al (2001) Three learning phases for radial-basis-function networks. Neural Netw 14:439–458. doi:10.1016/S0893-6080(01)00027-2

    Article  Google Scholar 

  29. Singh S, Hadron J et al (2001) Nearest-neighbour classifiers in natural scene analysis. Pattern Recognit 34:1601–1612. doi:10.1016/S0031-3203(00)00099-6

    Article  MATH  Google Scholar 

  30. Smolka E, Kuniszyk-Jozkowiak W et al (2004) Speech nonfluency recognition in two stages of Kohonen networks. Biocybernetics and Biomedical Engineering, Zakopane

    Google Scholar 

  31. Smołka E, Kuniszyk-Jóźkowiak W et al (2002) Reflection of fluent and non-fluent words in Kohonen network (in Polish). XLIX Open Seminar on Acoustics, Warszawa—Stare Jabłonki

  32. Song X-H, Hopke PK (1996) Kohonen neural network as a pattern recognition method based on weight interpretation. Anal Chim Acta 334:57–66. doi:10.1016/S0003-2670(96)00315-7

    Article  Google Scholar 

  33. Suganthan PN (2001) Pattern classification using multiple hierarchical overlapped self-organizing maps. Pattern Recognit 34:2173–2179. doi:10.1016/S0031-3203(00)00147-3

    Article  MATH  Google Scholar 

  34. Szczurowska I, Kuniszyk-Jóźkowiak W et al (2006) The application of Kohonen and multilayer perceptron networks in the speech nonfluency analysis. Archiv Acoust 31(4 (Supplement)):205–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesława Kuniszyk-Jóźkowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczurowska, I., Kuniszyk-Jóźkowiak, W. & Smołka, E. Speech nonfluency detection using Kohonen networks. Neural Comput & Applic 18, 677–687 (2009). https://doi.org/10.1007/s00521-009-0261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0261-3

Keywords

Navigation