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Abstract

A key problem in time series prediction using autoregressive models
is to fix the model order, namely the number of past samples required
to model the time series adequately. The estimation of the model order
using cross-validation may be a long process. In this paper, we inves-
tigate alternative methods to cross-validation, based on nonlinear dy-
namics methods, namely Grassberger-Procaccia, Kégl, Levina-Bickel
and False Nearest Neighbors algorithms. The experiments have been
performed in two different ways. In the first case, the model order has
been used to carry out the prediction, performed by a SVM for regres-
sion on three real data time series showing that nonlinear dynamics
methods have performances very close to the cross-validation ones. In
the second case, we test the accuracy of nonlinear dynamics methods
in predicting the known model order of synthetic time series. In this
case most of the methods have yielded a correct estimate and when
the estimate was not correct, the value was very close to the real one.

1 Introduction

Time series prediction is the problem of determining the future values of a
given time series. This problem has great importance in several fields, rang-
ing from finance (e.g. predicting the future behavior of stock markets) to
engineering (e.g. estimating future electrical consumption). A key problem
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in time series prediction is to fix the model order, namely the number of past
samples required to model the time series adequately. In principle, cross-
validation [6, 26] is the simplest solution, just picking the model order which
gives the lowest prediction error. The computational cost of cross-validation,
however, may be high; an estimate of the model order can be helpful, either
to be used directly, or to narrow down the range for cross-validation. The
problem of estimating the order of a model is crucial not only in time series
analysis, but in data modeling in general. Popular approaches to model
order estimation are based on concepts of Information Theory and Statis-
tics, such as the Akaike Information Criterion (AIC) [2], methods based on
the Minimum Description Length (MDL) principle [21], Bayesian Informa-
tion Criterion (BIC) [23], and hypothesis testing [3, 16]. Although these
methods have a solid theoretical foundation, the model assumption plays a
key role, and a deviation from the real model can lead to a degradation of
their performances [9]. A robust approach to the model order estimation
in the framework of uncertain statistics can be found in [9]. In this paper,
we focus on the time series prediction problem. In this context, the False
Nearest Neighbors algorithms has already been used in several time series
prediction applications [4] to estimate the model order. Here, we compare a
set of methods for model order estimation based on nonlinear dynamics the-
ory, namely Grassberger-Procaccia, Kégl, Levina-Bickel, and False Nearest
Neighbors algorithms. The model order is used to carry out the prediction
by means of a Support Vector Machine for Regression (SVM ) [20, 22, 30].
We assess the performances of the estimators on the basis of the prediction
accuracy achieved by the SVMs trained using the selected model order. We
also investigate the effectiveness of nonlinear dynamics methods comparing
their performances with those obtained by cross-validation. Finally, we test
the accuracy of nonlinear dynamics methods in predicting the known model
order of synthetic time series. The paper’s structure is as follows: in Section
2 a description of the nonlinear dynamics methods investigated is provided;
in Section 3 some experimental results are reported; in Section 4 conclusions
are drawn.

2 Nonlinear Dynamics Methods

We consider a time series x(t), with (t = 1, 2, . . . , ℓ). An autoregressive
model describes a time series as: x(t) = f(x(t − 1), . . . , x(t − d + 1)) + ǫt.

The function f(·) is called the skeleton of the time series [12, 29], the term ǫt

represents the noise. The key problem in the autoregressive models is to fix
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the model order (d − 1). Nonlinear Dynamics methods can be used for the
model reconstruction of the time series. This is performed by the method of
delays [7, 19]. The time series can be represented as a series of a set of points
{ ~X(t) : ~X(t) = [x(t), x(t− 1), . . . , x(t− d + 1)]} in a d -dimensional space. If
d is adequately large, between the manifold1 M obtained by the points ~X(t)
and the attractor U of the dynamic system that generated the time series,
there is a diffeomorphism2. The Takens-Mañé embedding theorem3 [15, 27]
states that to obtain a faithful reconstruction of the system dynamics, it
must be

2S + 1 ≤ d (1)

where S is the dimension of the system attractor U and d is called the em-
bedding dimension of the system. Hence it is adequate to measure S to infer
the embedding dimension d and the model order d−1. A unique definition of
the dimension has not been given yet. Popular definitions of set dimensions
are the Box-Counting Dimension [18] and the Correlation dimension [8].
In the next sections, we shall discuss three methods to estimate attractor
dimension (Grassberger-Procaccia, Levina-Bickel and Kégl methods) and a
method to estimate the embedding dimension, without using Takens-Mañé
embedding theorem (False Nearest Neighbors method).

2.1 Kégl’s algorithm

Let Ω = {~x1, ~x2, . . . , ~xℓ} be a set of points in R
n of cardinality ℓ. The Box-

Counting dimension (or Kolmogorov capacity) DB of the set Ω is defined as
follows [18]: if ν(r) is the number of the boxes (i.e. hypercubes) of size r

needed to cover Ω, then DB is

DB = lim
r→0

ln(ν(r))

ln(1
r
)

(2)

1A manifold [34] is a mathematical space in which every point has a neighborhood which
resembles Euclidean space, but in which the global structure may be more complicated.
In a one-dimensional manifold (e.g. a line, a circle) every point has a neighborhood that
looks like a segment of a line. In a two-dimensional manifold (e.g. a plane, the surface of
a sphere) the neighborhood looks like a disk. R

n is a n-dimensional manifold.
2
M is diffeomorphic to U iff there is a differentiable map m : M 7→ U whose inverse

m
−1 exists and is also differentiable.
3Takens-Mañé embedding theorem is a consequence of a Whitney Embedding The-

orem [32] stating that a generic map from an S-dimensional manifold to a (2S + 1)-
dimensional Euclidean space is an embedding, i.e. the image of the S-dimensional mani-
fold is completely unfolded in the larger space. Therefore two points in the S-dimensional
manifold do not map to the same point in the (2S + 1)-dimensional space.
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Recently Kégl [14], has proposed a fast algorithm (Kégl’s algorithm) to esti-
mate the Box-Counting dimension. The algorithm was originally proposed
for intrinsic data dimensionality estimation. In this paper, we propose a
novel application of Kégl’s algorithm, consisting in the dimension estima-
tion of an attractor. Kégl’s algorithm is based on the observation that
ν(r) is equivalent to the cardinality of the maximum independent vertex
set MI(Gr) of the graph Gr(V, E) with vertex set V = Ω and edge set
E = {(~xi, ~xj) | d(~xi, ~xj) < r}. Kégl has proposed to estimate MI(G) using
the following greedy approximation. Given a data set Ω, we start with an
empty set C. In an iteration over Ω, we add to C data points that are at
distance of at least r from all elements of C. The cardinality of C, after ev-
ery point in Ω has been visited, is the estimate of ν(r). The Box-Counting
dimension estimate is given by:

DB = −
ln ν(r2) − ln ν(r1)

ln r2 − ln r1
(3)

where r2 and r1 are values that can be set up heuristically.
It can be proven [14] that the complexity of Kegl’s algorithm is given by
O(DBℓ2), where ℓ and DB are the cardinality and the dimensionality of the
data set, respectively.

2.2 Grassberger-Procaccia algorithm

The Correlation dimension [8] of a set Ω is defined as follows. If the corre-
lation integral Cm(r) is defined as:

Cm(r) = lim
ℓ→∞

2

ℓ(ℓ − 1)

ℓ
∑

i=1

ℓ
∑

j=i+1

I(‖~xj − ~xi‖ ≤ r) (4)

where I is an indicator function4, then the Correlation dimension D of Ω is:

D = lim
r→0

ln(Cm(r))

ln(r)
(5)

It can be proved that the Correlation Dimension is a lower bound of the
Box-Counting Dimension. The most popular method to estimate Corre-
lation dimension is the Grassberger-Procaccia algorithm [8]. This method
consists in plotting ln(Cm(r)) versus ln(r). The Correlation dimension is the
slope of the linear part of the curve (see Figure 1a). For increasing values

4
I(λ) is 1 iff condition λ holds, 0 otherwise.
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of d one can notice a saturation effect. The limit value is the correlation
dimension.
The computational complexity of the Grassberger-Procaccia algorithm is
O(ℓ2s) where ℓ is the cardinality of the data set and s is the number of differ-
ent times that the integral correlation is evaluated, respectively. This imple-
mentation was adopted for the experiments reported in Section 3. However,
there are efficient implementations of the Grassberger-Procaccia algorithm
whose complexity does not depend on s. For these implementations, the
computational complexity is O(ℓ2).

2.3 Levina-Bickel Algorithm

The Levina-Bickel algorithm provides a maximum likelihood estimate of the
correlation dimension. Like the Kégl’s algorithm, the Levina-Bickel algo-
rithm was proposed for the estimation of the intrinsic data dimensionality.
Therefore the application of the Levina-Bickel algorithm for estimating the
dimension of an attractor is a novelty. The Levina-Bickel algorithm derives
the maximum likelihood estimator (MLE) of the intrinsic dimensionality D

of a manifold Ω = (~x1, . . . , ~xℓ). The dataset Ω represents an embedding of
a lower-dimensional sample, i.e. ~xi = g(Yi) where Yi are sampled from an
unknown smooth density f on R

D with D < n, g is a smooth mapping.
This last assumption guarantees that close datapoints in R

D are mapped to
close neighbors in the embedding.
That being said, we fix a data point ~x ∈ R

n assuming that f(~x) is con-
stant in a sphere S~x(r) centered in ~x of radius r and we view Ω as a
homogeneous Poisson process in S~x(r). Given the inhomogeneous process
{P (t, ~x), 0 ≤ t ≤ r}

P (t, ~x) =

ℓ
∑

i=1

I(~xi ∈ S~x(t)), (6)

which counts the datapoints whose distance from ~x is less than t. If we
approximate it by means a Poisson process and we neglect the dependence
on ~x, the rate λ(t) of the process P (t) is given by:

λ(t) = f(~x)V (D)DtD−1, (7)

where V (D) is the volume of a D-dimensional unit hypersphere.
The equation (7) is justified by the Poisson process properties since the
surface area of the sphere S~x(t) is d

dt
[V (D)tD] = V (D)DtD−1. If we define
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θ = logf(~x), the log-likelihood of the process P (t) [25] is:

L(D, θ) =

∫ r

0
logλ(t)dP (t) −

∫ r

0
λ(t)dt. (8)

The equation describes an exponential family for which a maximum like-
lihood estimator exists with probability that tends to 1 as the number of
samples ℓ tends to infinity. The maximum likelihood estimator is unique
and must satisfy the following equations:

∂L

∂θ
=

∫ r

0
dP (t) −

∫ r

0
λ(t)dt = P (r) − eθV (D)rD = 0. (9)

∂L

∂D
=

(

1

D
+

V ′(D)

V (D)

)

P (r) +

∫ r

0
log t dP (t) +

−eθV (D)rD

(

log r +
V ′(D)

V (D)

)

= 0. (10)

If we plug the equation (9) into the equation (10) we obtain the maximum
likelihood estimate for the dimensionality D:

D̂r(~x) =





1

P (r, ~x)

P (r,~x)
∑

j=1

log
r

Tj(~x)





−1

, (11)

where Tj(~x) denotes the Euclidean distance between ~x and its j-th nearest
neighbor.
Levina and Bickel suggest to fix the number of the neighbors k rather than
the radius of the sphere r. Therefore the estimate becomes:

D̂k(~x) =





1

k − 1

k−1
∑

j=1

log
Tk(~x)

Tj(~x)





−1

. (12)

The estimate of the dimensionality is obtained averaging on all points of the
data set Ω, that is :

D̂k =
1

ℓ

ℓ
∑

i=1

D̂k(~xi) (13)

The estimate of the dimensionality depends on the value of k. Levina and
Bickel suggest to average over a range of values of k = k1, . . . , k2 obtaining
the final estimate of the dimensionality, i.e.

D̂ =
1

k2 − k1 + 1

k=k2
∑

k=k1

D̂k (14)
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Regarding the computational complexity, the Levina-Bickel algorithm re-
quires a sorting algorithm5, whose complexity is O(ℓ log ℓ), where ℓ denotes
the cardinality of the data set. Hence the computational complexity for es-
timating D̂k is O(kℓ2 log ℓ), where k denotes the numbers of the neighbors
that have to be considered. Besides, Levina and Bickel suggest to consider
an average estimate repeating the estimate Dk s times, where s is the dif-
ference between the maximum and the minimum value that k can assume,
i.e. k2 and k1, respectively. Therefore the overall computational complexity
of the Levina-Bickel algorithm is O(sℓ2 log ℓ).
The Levina-Bickel algorithm provides an optimal estimate of the correlation
dimension. This topic has been widely investigated in nonlinear dynamics,
e.g. [24, 28]. In particular, Takens proposed an algorithm that provides a
maximum likelihood estimate, like the Levina-Bickel algorithm. The dif-
ference between the Takens and Levina-Bickel algorithms is the following.
The former provides an estimate that depends on a radius r that has to be
fixed properly; the latter depends on the number, chosen appropriately, of
the neighbors that have to be taken into account for each datapoint of the
manifold.

2.4 Method of False Nearest Neighbors

The Kégl, Grassberger-Procaccia and Levina-Bickel algorithms estimate the
attractor dimension and compute the model order of the time series by the
Takens-Mañé embedding theorem. An alternative approach is proposed by
the False Nearest Neighbors method [4, 13]. This method estimates directly
the embedding dimension without using the Takens-Mañé theorem. The
False Nearest Neighbors method is based on a simple geometric concept. If
the dimension d used to reconstruct the attractor is too small, many points
that appear near will become widely separated when d + 1 dimensions are
used in the attractor reconstruction. Nearest neighbor points that show this
wide separation when comparing their distance in dimension d and d + 1
are called False Nearest Neighbors in dimension d. Conversely, true nearest
neighbors will remain near each other in attractor reconstructions of both d

and d + 1 dimensions. More formally a pair of points are considered False

Nearest Neighbors in dimension d if
R2

d+1
(j)

R2
d
(j)

> α where Rd(j) and Rd+1(j)

are respectively the Euclidean distance between the jth point and its nearest
neighbors in d and d+1 dimensions and α is an heuristic threshold. Typical

5The complexity of effective sorting algorithms (e.g. mergesort and heapsort) is ℓ log ℓ,
where ℓ is the number of elements that have to be sorted.
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values for α are suggested in [4]. The adequacy of dimension d for recon-
structing an attractor can be evaluated by calculating for each data point
of the attractor the nearest neighbors in dimension d and then evaluating
the percentage of False Nearest Neighbors. Then the percentage of False
Nearest Neighbors is plotted versus the dimension d. The lowest dimension
corresponding to this minimum value of the percentage of False Nearest
Neighbors is the embedding dimension. The main operation involved in the
method is the nearest neighbor search. The time complexity of finding the
nearest neighbor of a point in a d dimensional set of cardinality ℓ, is O(dℓ).
Since we are interested in computing the the nearest neighbors for all the
ℓ points of the set, we can simply use the nearest neighbor algorithm for
all the ℓ points, that is O(dℓ2) in total. It is worth noting, however, that
the complexity of this approach can be reduced6 by storing the data in suit-
able data structures [31]. Once we obtain the nearest neighbors for the ℓ

data points, we need to compute the distances in the augmented space and
compute the percentage of false nearest neighbors; these operations have
a complexity that is lower than O(dℓ2). Finally, the procedure has to be
repeated for all the values of d for which we are interested in computing the
percentage of False Nearest Neighbors (FNN).
It is necessary to remark that in literature [4] when the FNN method is
applied, the obtained result is used directly as the model order estimate. In
the rest of the manuscript this procedure is used.

3 Experimental Results

The False Nearest Neighbors, Grassberger-Procaccia, Kégl and Levina-Bickel
algorithms have been tested on three synthetic time series and on three
benchmarks of real data.

3.1 Real Data Time Series

The False Nearest Neighbors, Grassberger-Procaccia, Kégl and Levina-Bickel
algorithms have been tested on three real data time series, e.g. the Data
Set A [10] of the Santa Fe time series competition, the Paris-14E Parc
Montsouris [33] and the DSVC1 [1] time series7. On the real data sets, we
have compared the prediction accuracy obtained by cross-validation with

6In our implementation, we use the linear search having complexity O(dℓ
2).

7Paris-14E Parc Montsouris and DSVC1 time series can be downloaded from
www.knmi.nl/samenw/eca and www.cpdee.ufmg.br/∼MACSIN/services/data/data.htm,
respectively.
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the SVM for regression trained using the model order estimated by the pre-
sented methods. In these experiments, we have used 10-fold cross-validation.
We recall that in K-fold cross-validation, the training set is partitioned into
K subsets. Of the K subsets, a single subset is retained as the validation
data for testing the model, and the remaining K − 1 subsets are used as
training data. The cross-validation process is then repeated K times, i,e.
the folds, with each of the K subsets used exactly once as the validation
data. The K results from the folds then can be averaged to produce a single
estimation.

3.1.1 Data Set A

Data Set A is a real data time series, formed by 1000 samples, generated by
a Lorenz-like chaotic system, implemented by NH3-FIR lasers. Firstly the
model order of the time series has been estimated by means of the False Near-
est Neighbors, Grassberger-Procaccia, Kégl and Levina-Bickel algorithms.
The estimates of the attractor dimension using Grassberger-Procaccia and
Kégl algorithms are respectively 2.00 and 2.02. Since the attractor dimen-
sion of data set A is 2.06, the estimates of both algorithms can be considered
quite satisfactory. Applying the equation (1) of the Takens-Mañé theorem
we see that the embedding dimension estimate, provided by Grassberger-
Procaccia and Kégl algorithms, is ∼ 5. Hence the model order is 4. The
estimate of Levina-Bickel for the attractor dimension of data set A is 2.35,
therefore the model order for Levina-Bickel is 5. Then we have estimated
the model order using the False Nearest Neighbors method. As shown in
Figure 1b, the percentage of False Nearest Neighbors is negligible for an
embedding dimension value of 3. Hence the model order estimated by False
Nearest Neighbors is 2. Then the model order, estimated by three different
algorithms, has been used to carry out one-step ahead prediction, i.e the pre-
diction of the next value of the time series. The former 70% of time series,
i.e. 700 samples, has been used for the training set, while the latter one has
been used for the test set, that is formed by 300 samples. The prediction
stage has been performed using SVM-Light [11], an implementation of SVM
for Regression [17, 20]. In our experiments, we have used the gaussian kernel
and the kernel variance has been set up using cross-validation. Finally, as a
comparison we have set up the model order by means of the cross-validation.
The results are reported in the table 1 and shown in figure 2.
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Figure 1: The Grassberger-Procaccia (a) and False Nearest Neighbors (b) algorithms on
Data Set A.
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Figure 2: Data Set A of Santa Fe Competition. The original target data and the results
yielded by SVM (model order = 4) are shown on the left and the right respectively.
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Attractor Embedding Model Mean Square
Algorithm Dimension Dimension Order Error

False Nearest Neighbors 3 214.2
(12.83)

Kégl 2.02 ∼5 4 138.3
(10.17)

Levina-Bickel 2.35 ∼6 5 167.5
(10.44)

Grassberger-Procaccia 2.00 ∼5 4 138.3
(10.17)

cross-validation 4 138.3
(10.17)

Table 1: The False Nearest Neighbors, Kégl, Grassberger-Procaccia and
cross-validation method on Data Set A. Average error is reported in brackets.

3.1.2 Paris-14E Parc Montsouris

Paris-14E Parc Montsouris is a real data time series formed by the daily
average temperatures, expressed in tenths of Celsius degrees, in Paris. The
time series covers the whole period from January 1 1958 to December 31 2001
and has 15706 samples. The former 64% of time series (10043 samples) has
been used for the training set, while the latter one has been used for the
test set, formed by 5663 samples. We have estimated the model order using
the False Nearest Neighbors, Grassberger-Procaccia, Kégl and Levina-Bickel
algorithms and we have performed the prediction stage using SVM-Light.
Even in this case, we have used the gaussian kernel, setting the variance
using cross-validation. As a comparison we have also estimated the model
order by means of the cross-validation. The results on the test set, expressed
in terms of quadratic loss, are reported in the table 2 and shown in figure
3.

3.1.3 DSVC1

DSVC1 is a real data time series, formed by 5000 samples, measured from
a hardware realization of Chua’s circuit [5]. The former 65% of time series
(3250 samples) has been used for the training set, while the latter one has
been used for the test set, that has 1750 samples. The model order was
estimated using The False Nearest Neighbors, Grassberger-Procaccia, Kégl)
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Attractor Embedding Model Mean
Algorithm Dimension Dimension Order Square Error

False Nearest Neighbors 5 436.5
(16.66)

Kégl 4.03 ∼9 8 434.3
(16.65)

Levina-Bickel 5.96 ∼13 12 434.6
(16.65)

Grassberger-Procaccia 4.91 ∼11 10 429.6
(16.53)

cross-validation 10 429.6
(16.53)

Table 2: The False Nearest Neighbors, Kégl, Grassberger-Procaccia and
cross-validation method on the Data Set Paris-14E Parc Montsouris. Aver-
age error is reported in brackets.

and Levina-Bickel algorithms. The prediction stage was performed using
SVM-Light. Even in this case, we have used the gaussian kernel, setting
the variance using cross-validation. The estimates of the attractor dimen-
sion using Grassberger-Procaccia, Kégl and Levina-Bickel algorithms are
respectively 2.20, 2.14 and 2.26. Since the attractor dimension of data set
A is ∼ 2.26, the estimates of the algorithms can be considered satisfactory.
As a comparison the model order was also estimated by means of cross-
validation. The results expressed on the test set are reported in the table 3

0 100 200 300 400 500
-50

0

50

100

150

200

250

0 100 200 300 400 500

0

50

100

150

200

250

Figure 3: Data Set Paris-14E Parc Montsouris. The original target data and the results
yielded by SVM (model order = 10) are shown on the left and the right respectively.
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and are shown in figure 4. Finally, the average CPU times required by all

Attractor Embedding Model Mean
Algorithm Dimension Dimension Order Square Error

False Nearest Neighbors 6 0.10
(0.23)

Kégl 2.14 [5 . . . 6] [4 . . . 5] [0.10 . . . 0.075]
([0.26 . . . 0.20])

Levina-Bickel 2.26 ∼6 5 0.075
(0.20)

Grassberger-Procaccia 2.20 [5 . . . 6] [4 . . . 5] [0.10 . . . 0.075]
([0.26 . . . 0.20])

cross-validation 5 0.075
(0.20)

Table 3: The False Nearest Neighbors, Kégl, Grassberger-Procaccia and
cross-validation method on DSVC1 Time Series. Average error is reported
in brackets. Since the model order estimated by Grassberger-Procaccia and
Kegl is between 4 and 5, mean square error is between 0.10 and 0.075, and
average error is between 0.26 and 0.20.

nonlinear methods for estimating the model order are reported in table 4.
Note that in the FNN method, percentage of false neighbors has been com-
puted up to a maximum dimension of 12. The experiments were performed
on a Windows Vista8 PC with a Dual Core 1,83 GhZ Intel Processor and
3 GByte RAM. False Nearest Neighbors, Grassberger-Procaccia and cross-
validation were implemented in C/C++, whereas Kégl and Levina-Bickel
were implemented using Mathematica9.

8Windows Vista is a registered trademark of Microsoft Inc.
9Mathematica is a registered trademark of Wolfram Inc.
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Figure 4: Chua Time Series. The original target data and the results yielded by SVM
(model order = 5) are shown on the left and the right respectively.

Data Set A Paris-14E DSVC1
Algorithm Parc Montsouris

False Nearest Neighbors 1 65 5

Kégl 32 1230 202

Levina-Bickel 30 1170 189

Grassberger-Procaccia 16 536 106

cross-validation 125 2810 756

Table 4: Average CPU Time, measured in seconds, required by False Nearest
Neighbors, Kégl, Grassberger-Procaccia and cross-validation methods for
estimating the model order on Data Seta A, Paris-14E Parc Montsouris and
DSVC1 benchmarks.

3.2 Synthetic Time Series

The synthetic time series10 have been generated with a fixed and known
model order, and we were interested in evaluating the ability of the presented
methods to estimate it. We generated three time series in the following way:

x(t + 1) =
d

∑

i=1

a(i)x(t − i + 1) + a(0) + ε

The vector ~a contains the coefficients of the linear combination of the past
d samples, and ε ∼ N (0, σ) is a white Gaussian noise term. The time se-
ries have been generated using the parameters shown in table 5. The series
have been generated starting from few random numbers between −1 and

10available on request for further investigations and comparisons.
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a(0) σ ~a

d = 4 -0.2 0.005 (-0.38, 0.493, 0.485, -0.535)

d = 5 -0.05 0.005 (-0.5, 0.3, 0.4, 0.25, -0.35)

d = 6 -0.3 0.005 (0.22, 0.38, -0.26, -0.23, -0.126, 0.4)

Table 5: Parameters of the three synthetic data sets.

1 (that have been discarded), and have length 10000. Tables 6, 7 and

Attractor Embedding Model Order
Algorithm Dimension Dimension Estimated

False Nearest Neighbors 4

Kégl 1.66 ∼4 3

Levina-Bickel 1.95 ∼5 4

Grassberger-Procaccia 1.98 ∼5 4

Table 6: The False Nearest Neighbors, Kégl, Grassberger-Procaccia methods
on a Synthetic Data series, whose model order is 4.

Attractor Embedding Model Order
Algorithm Dimension Dimension Estimated

False Nearest Neighbors 5

Kégl 1.90 ∼5 4

Levina-Bickel 2.69 ∼6 5

Grassberger-Procaccia 2.51 ∼6 5

Table 7: The False Nearest Neighbors, Kégl, Grassberger-Procaccia methods
on a synthetic time series, with model order 5.

8 show the model order of the three synthetic time series, estimated using
the False Nearest Neighbors, Grassberger-Procaccia, Kégl and Levina-Bickel
algorithms. In all the tables, the non-integer value of the embedding dimen-
sion is approximated to the closest integer. As shown in the tables, Kégl’s
algorithm underestimates the model order in all time series. False Nearest
Neighbor provides the correct value of the model order for two time series
and underestimates the model order of the remaining one. Grassberger-
Procaccia and Levina-Bickel algorithms estimate correctly the model order
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Attractor Embedding Model Order
Algorithm Dimension Dimension Estimated

False Nearest Neighbors 5

Kégl 1.92 ∼5 4

Levina-Bickel 2.89 ∼7 6

Grassberger-Procaccia 3.02 ∼7 6

Table 8: The False Nearest Neighbors, Kégl, Grassberger-Procaccia methods
on a synthetic time series, with model order 6.

in all time series.

4 Conclusion

In this paper, we have investigated four nonlinear dynamics methods, i.e.
False Nearest Neighbors, Grassberger-Procaccia, Kégl and Levina-Bickel al-
gorithms, to estimate the model order of a time series, namely the number of
past samples required to model the time series adequately. The experiments
have been performed in two different ways. In the first case, the model
order has been used to carry out the prediction, performed by a SVM for
regression on three real data time series. The experiments have shown that
the model order estimated by nonlinear dynamics methods is quite close to
the one estimated using cross-validation. In the second case the experiments
have been performed on synthetic time series, generated with a fixed and
known model order, and we were interested in evaluating the ability of the
presented methods to estimate it. In this case most of the methods have
yielded a correct estimate and when the estimate was not correct, the value
was very close to the real one.
As a general comment, even if cross-validation remains the simplest way to
set up the model order of a time series, nonlinear dynamics methods can
be very useful. They can be effectively used to narrow down the range for
cross-validation, speeding up the crossvalidating process.
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