Skip to main content
Log in

Face recognition based on gradient gabor feature and Efficient Kernel Fisher analysis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new Gradient Gabor (GGabor) filter is proposed to extract multi-scale and multi-orientation features to represent and classify faces. Gradient Gabor filters combine the derivative of Gaussian functions and the harmonic functions to capture the features in both spatial and frequency domains to deliver orientation and scale information. The spatial positions are encoded through using Gaussian derivatives which allow it to provide more stable information. An Efficient Kernel Fisher analysis method is proposed to find multiple subspaces based on both GGabor magnitude and phase features, which is a local kernel mapping method to capture the structure information in faces. The experiments on two face databases, FRGC version 1 and FRGC version 2, are conducted to compare performances of the Gabor and GGabor features. The experiment results show that GGabor yield a powerful tool to model faces, and the Efficient Kernel Fisher classifier can improve the efficiency of the original Kernel Fisher Discriminant analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leonardis A, Bischof H (2000) Robust recognition using eigenimages. Comput Vis Image Underst 78(1):99–118

    Article  Google Scholar 

  2. Moeslund TB, Granum E (2001) A survey of computer vision-based human motion capture. Comput Vis Image Underst 81(3):231–268

    Article  MATH  Google Scholar 

  3. Marr D, Hildreth E (1980) Theory of edge detection. Proc Royal Soc London 207:187–217

    Article  Google Scholar 

  4. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 891–906

  5. Gabor D (1946) Theory of communication. J Inst Electrical Eng 93(26):429–457

    Google Scholar 

  6. Zhang X, Jia Y (2006) Local steerable phase (LSP) feature for face representation and recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:1363–1368

    Google Scholar 

  7. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary pattern: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2041–2307

    Article  Google Scholar 

  8. Li Y, Zhang B, Shan S, Chen X, Gao W (2006) Bagging based Efficient Kernel Fisher Discriminant Analysis for Face Recognition. Int Conf Pattern Recognit 523–526

  9. Yang MH (2002) Kernel Eigenfaces vs. kernel Fisherfaces: face recognition using kernel methods. Int Conf Autom Face Gesture Recognit 215–220

  10. Jian Yang, Yang Jing-Yu, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244

  11. Liu Q, Huang R, Lu H, Ma S (2002) Kernel-based optimized feature vectors selection and discriminant analysis for face recognition. ICPR

  12. Philips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the face recognition grand challenges. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 947–954

  13. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns: A novel object representation for face recognition. IEEE Trans Image Process 16(1):57–68

    Article  MathSciNet  Google Scholar 

  14. Belhumer P, Hespanha P, Kriegman D (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 711–720

  15. Wang J-g, Lin Y-s, Yang W-k, Yang J-y (2008) Kernel maximum scatter difference based feature extraction and its application to face recognition. Pattern Recogn Lett 29(13, 1):1832–1835

    Article  Google Scholar 

  16. Hotta K (2008) Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel. Image Vis Comput 26(11, 1):1490–1498

    Article  Google Scholar 

  17. Liu C (2006) Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans Pattern Anal Mach Intell 725–737

  18. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  19. Su Y, Shan S, Chen X, Gao W (2006) Hierarchical ensemble of gabor fisher classifier for face recognition. Int Conf Automatic Face Gesture Recognit 91–96

  20. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. Proc IEEE Int Workshop Anal Model Faces Gestures 168–182

Download references

Acknowledgments

We thank Yu Su from JDL lab for sharing Ensemble-GFC algorithm, Heather Ford from Griffith University for proofreading the manuscript. We also thank for the support from mmlab in the Chinese University of Hong Kong. This work is supported by The Natural Science Foundation of China (NSFC) under Contract No. 60903065, Beihang Lantian XinXiu under Contract No. 221521, and Beihang Qingnian ChuangXin Foundation under Contract No. 911901339. We would like to express our appreciation to the anonymous reviewers for their suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang.

Appendix

Appendix

The 1D Gradient Gabor filter has a form of

$$ G\psi (x) = \left( { - x\exp \left( { - 2\pi f_{0} xi} \right) + C} \right)\exp \left( { - \pi x^{2} } \right). $$
(16)

It is known that the Fourier transform of a Gaussian function exp(−πx 2) has a Gaussian form:

$$ \mathop {G\Uppsi (f)}\limits^{\_\_\_\_} = \int\limits_{ - \infty }^{\infty } {\exp \left( { - \pi x^{2} } \right)} \exp ( - 2\pi ifx){\text{dx}} = \exp \left( { - \pi f^{2} } \right). $$
(17)

The Fourier transform of the derivative of a Gaussian function −xexp(−πx 2) is

$$ \begin{aligned} \int\limits_{ - \infty }^{\infty } { - x\;\exp \left( { - \pi x^{2} } \right)} \exp ( - 2\pi ifx){\text{dx}} = & \int\limits_{ - \infty }^{\infty } {\exp \left( { - \pi x^{2} } \right)} {\frac{ - 1}{2\pi j}}\;{\frac{{{\text{d}}\;\exp ( - 2\pi ifx)}}{\text{df}}}\exp ( - 2\pi ifx){\text{dx}} \\ & = - if\exp \left( { - \pi f^{2} } \right) \\ \end{aligned} $$
(18)
$$ \begin{aligned} \mathop {G\psi (f)}\limits^{\_\_\_\_\_} = & \int\limits_{ - \infty }^{\infty } {G\psi (x)} \exp ( - 2\pi ifx){\text{dx}} = - i\left( {f - f_{0} } \right) \\ \, & \exp \left( { - \pi \left( {f - f_{0} } \right)^{2} } \right) + C. \\ \end{aligned} $$
(19)

By setting \( \mathop {G\psi (0)}\limits^{\_\_\_\_\_} = 0 \), then \( C = if_{0} \exp \left( { - \pi f_{0}^{2} } \right). \)

The 2D Gradient Gabor wavelet in Eq. 17 can be reformulated as

$$ G\psi_{u,v} (x,y) = - \left( {\cos \left( {\Upphi_{u} } \right)x + \sin \left( {\Upphi_{u} } \right)y} \right){\frac{{||k_{u,v} ||^{4} }}{{\sigma^{4} }}}\exp \left( {{{ - ||k_{u,v} ||^{2} } \mathord{\left/ {\vphantom {{ - ||k_{u,v} ||^{2} } {2\sigma^{2} \left( {x^{2} + y^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {2\sigma^{2} \left( {x^{2} + y^{2} } \right)}}} \right)\exp \left( {i\left( {k_{v} \cos \left( {\Upphi_{u} } \right)x + k_{v} \sin \left( {\Upphi_{u} } \right)y} \right)} \right). $$
(20)

Then we define a DC-free Gradient Gabor wavelet as follows:

$$ \begin{aligned} G\psi_{u,v} (x,y) = & - {\frac{{||k_{u,v} ||^{4} }}{{\sigma^{4} }}}\left( {\left( {\cos \left( {\Upphi_{u} } \right)x + \sin \left( {\Upphi_{u} } \right)y} \right)\exp \left( {i\left( {k_{v} \cos \left( {\Upphi_{u} } \right)x + k_{v} \sin \left( {\Upphi_{u} } \right)y} \right)} \right) + C} \right) \\ \, & \exp \left( { - ||k_{u,v} ||^{2} /2\sigma^{2} \left( {x^{2} + y^{2} } \right)} \right) \\ \end{aligned} $$
(21)
$$ \begin{aligned} \mathop {{\text{G}}\psi_{u,v} (f,\varphi )}\limits^{\_\_\_\_\_\_\_\_\_} = & - {\frac{{||k_{u,v} ||^{4} }}{{\sigma^{4} }}}\left( {{\frac{{\left( {\cos \left( {\Upphi_{u} } \right) + \sin \left( {\Upphi_{u} } \right)} \right)}}{{i\sigma^{2} }}}} \right)\left( {f - k_{v} \cos \left( {\Upphi_{u} } \right) + \varphi - k_{v} \sin \left( {\Upphi_{u} } \right)} \right) \\ \, & \, \exp \left( { - {\frac{\pi }{{\sigma^{2} }}}\left( {\left( {f - k_{v} \cos \left( {\Upphi_{u} } \right)} \right)^{2} + \left( {\varphi - k_{v} \sin \left( {\Upphi_{u} } \right)} \right)^{2} } \right)} \right) + C \\ \end{aligned} $$
(22)

if \( \mathop {G\psi_{u,v} (0,0)}\limits^{\_\_\_\_\_\_\_\_\_} = 0, \) then

$$ C = - \left( {{\frac{{\left( {\cos \left( {\Upphi_{u} } \right) + \sin \left( {\Upphi_{u} } \right)} \right)}}{{i\sigma^{2} }}}\left( {k_{v} \cos \left( {\Upphi_{u} } \right) - k_{v} \sin \left( {\Upphi_{u} } \right)} \right)\exp \left( { - {\frac{\pi }{{\sigma^{2} }}}\left( {k_{v} } \right)^{2} } \right)} \right). $$
(23)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Qiao, Y. Face recognition based on gradient gabor feature and Efficient Kernel Fisher analysis. Neural Comput & Applic 19, 617–623 (2010). https://doi.org/10.1007/s00521-009-0311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0311-x

Keywords

Navigation